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Abstract—A joint-source-channel setup for secret-key
generation between remote terminals is considered. The
sender communicates to the receiver over a discrete
memoryless wiretap channel and the sender and receiver
observe a pair of correlated discrete memoryless sources.
Lower and upper bounds for the secret-key rate are
presented and shown to coincide for the case when the
underlying channel is a reversely degraded parallel chan-
nel. Our setup also provides an operational significance
to the rate-equivocation tradeoff of the wiretap channel,
and this is illustrated in detail for the Gaussian case.

I. INTRODUCTION
There are two approaches for secret-key generation

— the channel coding setup [1], [2] and the source
coding setup [3], [4]. In the channel coding setup (also
known as the wiretap channel), the source terminal
is connected to the legitimate receiver and the eaves-
dropper over a discrete memoryless broadcast chan-
nel. The sender transmits a message to the legitimate
receiver while guaranteeing a certain level of equiv-
ocation at the eavesdropper and the tradeoff between
the information rate and equivocation is characterized.
Which point to operate on this tradeoff depends on
the application. For the secret-key-generation case, it
is reasonable to require that the eavesdropper remain in
(near) perfect equivocation. The maximum information
rate in this case is known as the secrecy capacity of the
wiretap channel. In the source coding setup, the sender
and receiver observe correlated discrete memoryless
sources and can communicate over a noiseless authen-
ticated public channel. The requirement here is that
the two terminals distil a secret-key, that is concealed
from the eavesdropper who observes communication
over the public channel. The maximum key rate in this
setup is the secret-key-rate.
Given these two lines of work, it is of interest

to consider a setup where the sender and legitimate
receiver observe correlated sources and communicate
over a noisy channel with a positive secrecy capacity.
The requirement is that the sender and the legitimate
receiver distil a common key that is concealed from
the eavesdropper. Naturally, if the correlated sources
are absent, this setup reduces to the standard wiretap
channel, albeit for key generation. On the other hand,
if the underlying channel is a noiseless channel, with

a finite rate, the setup reduces to that in [5, Thm. 2.6].
How should one simultaneously take into account the
equivocation due to the sources and the channel?
In this paper, we propose an approach that involves

a separation between source and channel coding as
well as a secret-key generation step that simultane-
ously takes into account both source and channel
equivocations. We also provide an upper bound on
the maximum secret-key-rate and establish the secret-
key-capacity for reversely degraded parallel broad-
cast channels. For the case of Gaussian sources and
Gaussian parallel channels, we establish the optimality
of Gaussian codebooks.
Our source-channel setup also provides an opera-

tional significance for the rate-equivocation region of
the wiretap channel. The rate-equivocation region cap-
tures the tradeoff between the information rate and the
equivocation at the eavesdropper. In general these are
conflicting requirements. In our setup, on one extreme,
if we maximize the contribution of the correlated
sources, we must operate at the Shannon capacity of
the underlying channel. On the other extreme, if we
maximize the contribution of the wiretap channel, we
must operate at a point of maximum equivocation.
In general, the optimal operating point is in between
these two points and we illustrate this for the Gaussian
example.
In a related problem, Merhav [6] studies a similar

setup where the sender, receiver and eavesdropper
observe correlated sources and communicate over a
broadcast channel. The receiver wishes to reconstruct
a lossy version of the source sequence with respect
to a certain distortion metric. The complete tradeoff
between the distortion and equivocation at the eaves-
dropper is characterized when both the sources and the
channels are degraded. Note that, in contrast, our setup
does not impose a distortion metric but requires that
the sender and receiver distill a common secret-key.
Also the motivations for the two problems are different.
In [6] the setup has implications on systematic coding
for the wiretap channel. In contrast, our setup is
motivated for providing an operational significance to
the rate-equivocation tradeoff of the wiretap channel.
After the completion of our work, we were told of [7]
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where the authors consider transmitting a confidential
message using correlated sources and noisy channels.
This problem appears different ours, since we allow the
key to be an arbitrary function of the source sequence.

II. PROBLEM STATEMENT
Our setup has three terminals: the sender, the (legit-

imate) receiver and the eavesdropper. They communi-
cate over n uses of a discrete memoryless broadcast
channel, whose transition probability is denoted by1
py,z|x(·). In addition the sender and the legitimate
receiver observe N independent copies of correlated
random variables distributed according to the distribu-
tion pu,v (·). The setup is indicated in Fig. 1.
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Fig. 1. Secret-key-generation setup using correlated sources and
channels.

Definition 1: A (n, N) secret-key-code for this
setup consists of two mappings at the encoder: fn,N :
UN → Xn, φn,N : UN × Xn → K and one mapping
at the decoder gn,N : VN × Yn → K.
Definition 2: A secret-key-rate R is achievable with

a bandwidth expansion factor β, if there exists a
sequence of (n, βn) secret-key-codes such that with
k = φn,βn(u, x), (i) Pr (k �= gn,βn(v, y)) ≤ εn and
(ii) 1

n
H(k) ≥ R − εn and (iii) 1

n
I(k ; z) ≤ εn, for

some sequence εn that goes to zero as n → ∞. The
largest achievable rate in this setup is the secret-key-
capacity.
We note in advance that a more general setup in-

volves having another correlated source sequence at the
eavesdropper. This more general setup is not treated in
this paper although a rather straightforward extension
of our result to the case of degraded sources and
degraded channels [8]. For certain applications e.g.,
biometric measurements [9], it is natural to assume that
the eavesdropper does not have access to a correlated
source as we consider in this paper. Furthermore, a
stronger notion of secrecy along the lines of [10] may
be also considered in this setup.

III. STATEMENT OF MAIN RESULT
Our main result is the characterization of upper and

lower bounds on the secret-key-rate for the setup in

1Throughout we use the sans-serif font to denote the random
variables, and regular (serif) font to denote the realization of random
variables. Upper case, calligraphic fonts are used for the alphabet of
random variables and sets. Bold case is used to denote vectors.

Fig. 1. We establish the secret-key-capacity for the
case when the broadcast channel py,z|x(·) is reversely
degraded and study the Gaussian case in detail.
Lemma 1: Let a and b be two random variables

such that the distribution pabxyz satisfies (i) the Markov
condition, b → a → x → (y , z), (ii) I(y ; b) ≤ I(z; b)
and (iii) I(y ; a|b) ≥ I(z; a|b). Define the quantities

Rch � I(y ; a), Req � I(y ; a|b)− I(z; a|b). (1)

Let t be another random variable such that the distri-
bution ptuv satisfies t → u → v and define

Rwz � I(t; u) − I(t; v), Rsrc � I(t; v). (2)

Suppose, further that we have,

Rch ≥ βRwz. (3)

Then the rate

Rkey = βRsrc + Req (4)

is an achievable secret-key-rate.
Note that Req represents the level of equivocation
at the eavesdropper due to the channel and Rsrc

represents the level of equivocation due to sources.
From (4), we have that the total secret-key-rate is the
sum of these two terms.
Lemma 2: An upper bound on the secret-key-

capacity is

Ckey ≤ max
pxpt|u

{I(x ; y |z) + βI(v ; t)}, (5)

where the maximum is over all distributions px and
pt|u such that t → u → v and

I(x ; y) ≥ β{I(t; u)− I(t; v)}. (6)

It suffices to restrict |T | ≤ |U|+ 1.
Our upper and lower bounds coincide for the case

of reversely degraded channels.
Definition 3: A reversely degraded channel [11]

with M independent sub channels, consists of an
input alphabet X = X1 × . . . × XM and output
alphabets Y = Y1 × . . .× YM , Z = Z1 × . . .× ZM ,
py1,...,yM ,z1,...zM |x1,...,xM

(·) = ΠM
i=1pyi,zi|xi

(·) and on
channel i, 1 ≤ i ≤ M , one of xi → yi → zi or
xi → zi → yi holds.
The following result follows from Lemma 1 and 2

and will be established in [8].
Theorem 1: The secret-key-capacity for the re-

versely degraded channel is given by

Ckey = max
px1

,...,pxM
,pt

{
M∑
i=1

I(xi; yi|zi) + βI(v ; t)

}
,

(7)
where the maximum is over all (independent) distribu-
tions px1 , . . . , pxM

and pt such that t satisfies the same
Markov conditions and cardinality bound in Lemma 2
and

M∑
i=1

I(xi; yi) ≥ β{I(t; u)− I(t; v)}. (8)
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An important example of the reversely degraded
channels is the Gaussian case.
Definition 4: A Gaussian source-channel setup con-

sists of the following (i) A reversely degraded parallel
channel, such that for each 1 ≤ i ≤ M , we have
yi = xi+nr,i and zi = xi+ne,i where nr,i ∼ N (0, σ2

r,i)
and ne,i ∼ N (0, σ2

e,i). Furthermore the noise random
variables are appropriately correlated such that xi →
yi → zi if σr,i ≤ σe,i and xi → zi → yi holds
otherwise and the noise random variables across the
channels are independent. (ii) An average sum power
constraint on the input E[

∑M
i=1 x2

i ] ≤ P (iii) Jointly
Gaussian sources2 i.e., u ∼ N (0, 1), v = u + s, where
s ∼ N (0, S) is independent of u.
We state the following capacity result for the

Gaussian setup. The proof follows by combining
Thm. 1 with the worst-case-additive-noise-Lemma
in [12] to establish the optimality of Gaussian distrib-
ution [8].
Theorem 2: For the Gaussian source-channel setup

in Def. 4, the secret-key-capacity is obtained by max-
imizing (7) over Gaussian distributions i.e., for some
P1, . . . , PM , Pi ≥ 0,

∑M
i=1 Pi ≤ P and D ∈ (0, 1], we

let pxi
= N (0, Pi), pt = N (0, 1−D) and u = t + d ,

where d ∼ N (0, D) is independent of t and,

CG
key = max

{Pi}M
i=1

,D

β

2
log

(
1 + S

D + S

)

+
∑

i:1≤i≤M

σr,i≤σe,i

1

2
log

(
1 + Pi/σ2

r,i

1 + Pi/σ2
e,i

)
,

(9)

where P1, . . . , PM , D satisfy
M∑
i=1

log

(
1 +

Pi

σ2
r,i

)
≥ β

{
log

(
1

D

)
− log

(
1 + S

D + S

)}
.

(10)
We now mention a few remarks. First, the condition in
Def. 4 requires that the noise variables are physically
degraded. As is well known [1], this condition can be
relaxed to the case of stochastic degradation of noise
random variables. Secondly, while we assumed scalar
valued Gaussian sources in Def. 4, this assumption
was only for simplicity. Our proof for optimality of
Gaussian codebooks also holds when the sources (u, v)
are multivariate jointly Gaussian, as it relies on the
worst-case-additive-noise-Lemma in [12].
In general there is a tension between maximizing

the two terms in (9). One one extreme, if we select
{P1, . . . , PM} according to the water-filling solution
we maximize the left hand side in (10) and this yields
the smallest feasible value of D. On the other hand, to
maximize the equivocation, i.e., the second term in (9),
we must set Pi = 0 when σr,i ≥ σe,i and optimize
over the remaining channels, but this choice in general
yields a larger value of D. The optimal choice of {Pi}

2From Def. 2 note that one can separately scale both u and v

without reducing the achievable rate. Thus this condition is satisfied
without loss of generality for any jointly Gaussian scalar valued puv
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Fig. 2. Tradeoff inherent in the secret-key-capacity formulation.
The solid curve is the secret-key-rate, which is the sum of the two
other curves. The dotted curve represents the source equivocation,
while the dashed curve represents the channel equivocation (see (2)).
The secret-key-capacity is obtained at a point between the maximum
equivocation and maximum rate.
that maximizes (9) balances this tension. We quantify
this tradeoff via an example below.

Example: We illustrate the tradeoff with a numer-
ical example. Consider two parallel channels,

y1 = a1x + nr,1, z1 = b1x + ne,2

y2 = a2x + nr,2, z2 = y2

(11)

where a1 = 1, a2 = 2, and b1 = 0.5. Furthermore,
u ∼ N (0, 1) and v = u + s, where s ∼ N (0, 1) is
independent of u. The noise random variables are all
CN (0, 1). There is a power constraint P = 1 and the
bandwidth expansion factor β equals unity.
In this example, the optimization in Corollary 2,

takes the form:

Ckey = max
P1,P2,D

Req(P1, P2) +
1

2
log

2

1 + D
, (12)

such that,

Rwz(D) =
1

2
log

1

D
−

1

2
log

2

1 + D
(13)

≤
1

2

(
log

(
1 + a2

1P1

)
+ log(1 + a2

2P2)
)
, (14)

Req(P1, P2) =
1

2

(
log(1 + a2

1P1)− log(1 + b2
1P1)

)
.

(15)
Fig. 2 illustrates the (fundamental) tradeoff between

rate and equivocation for this channel, which is ob-
tained as we vary power allocation between the two
sub-channels. We also present the function Rsrc =
I(t; v) which monotonically increases with the rate,
since larger the rate, smaller is the distortion in the
source quantization, and the function Req which de-
creases as we increase the rate beyond Rch = 0.5.
The optimal point of operation is between these two
extremes as indicated by the maximum of the solid
line in Fig. 2. This corresponds to a power allocation
(P1, P2) ≈ (0.29, 0.71) and the maximum value is
Rkey ≈ 0.6719.

IV. PROOF OF ACHIEVABILITY
Due to space constraints we only sketch an outline

of achievability.
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Throughout we will consider strongly typical se-
quences and denote the set of length n, pv η−typical
sequences by T n

v,η and pa|b conditionally typical se-
quences by T n

(a|b),η(b). For a certain sufficiently small,
δ > 0, we suppose that

βRwz = Rch − δ, (16)

and establish the achievability of (4) in Lemma 1
for (16) instead of (3).
If indeed βRwz < Rch − δ, then we one can

satisfy (16) for a modified β as follows. Note that for
some α < 1, we have that βRwz = α(Rch − δ). In
this case, for the first αn channel uses and use the
code construction presented below. For the remaining
(1 − α)n channel uses, we transmit an independent
message using another wiretap code at a secrecy rate
of Req. The resulting secret-key rate is given by

α

(
β

α
Rsrc + Req

)
+ (1− α)Req = Rkey, (17)

as required.
For some fixed ε ∈ (0, Rch − Req − 2δ), let

FWZ = 2n(βRwz+2ε), KSK = 2n(βRsrc+Req+2ε) and
LSK = 2n(βRwz−Req−ε) and construct the following3
codebooks.
1. Secret-Key Codebook: For each 1 ≤ i ≤ KSK

and 1 ≤ j ≤ LSK, select a codeword ti,j uniformly
and at random from T n

t,η. Let T denote the set of all
codewords, thus selected. We will refer to i as the bin-
index of ti,j in the secret-key codebook.
2. Wyner-Ziv Codebook: Assign each t ∈ T to one of
FWZ bins uniformly and at random. Let F i denote the
set of codewords assigned to bin i, 1 ≤ i ≤ FWZ.
3. Wiretap Codebook For a fixed δa > 0 and δb > 0,
let Rb = I(b; y) and Ra = I(a; y |b). For each 1 ≤ i ≤
2n(Rb−δb) select a codeword bi uniformly from the set
T n

b,η and denote the result set by Cb. For each bi ∈ Cb,
and each 1 ≤ j ≤ 2n(Ra−δa), select a codeword aj

uniformly from the set T n
(a|b),η and denote the result

set of codewords by Ca(bi).
The encoding and decoding functions are as follows.
Given a u, the encoder finds a jointly typical t ∈ T . It
declares the bin index of t in the secret-key-codebook
to be the secret-key ΓSK and the bin index in the
Wyner-Ziv codebook ΦWZ constitutes the message
for the secret-key codebook. This message is split
into [Φb, Φa], where since H(Φb) = I(b; y) − δb, Φb

can be decoded by both the terminals, while since
H(Φa) = I(a; y |b)− δa, Φa can be decoded by only
the legitimate receiver. The decoder upon observing y,
decodes Φ̂WZ and using v recovers t (whp). It declares
the bin index of t in the secret-key-codebook as the
key Γ̂SK. Our codebook construction guarantees that
1
n
H(ΓSK) ≥ Rkey − oε(1) and Pr(ΓSK �= Γ̂SK) ≤

oε(1), where oε(1) goes to zero as n→∞ and ε → 0.

3Notice that the exponent for LSK is positive via (16).

It remains to show that for our code construction
1
n
H(ΓSK|z) ≥ Rkey−oε(1). First, with some straight-
forward manipulation we can show that

H(ΓSK|z) ≥ H(t|ΦWZ) + H(ΦWZ|z)−H(t|z, ΓSK),
(18)

and for our code construction we have that
1
n
H(t|ΦWZ) ≥ βI(t; v) − oε(1) and 1

n
H(ΦWZ|z) ≥

Req − oε(1). From (4), we will complete the proof,
if we show that 1

n
H(t|z, ΓSK) = oε(1). Towards, this

end, we show that the eavesdropper, when provided the
knowledge of the secret-key ΓSK, is able to reproduce
t with high probability. In particular the eavesdropper
first decodes b from z (since Rb ≤ I(b; y) ≤ I(b; z))
and recovers Φb (whp). It searches for 1 ≤ j ≤ LSK

such that Φ̂WZ corresponding to tΓSK,j is such that
Φb = Φ̂b and the codeword â corresponding to Φ̂a

in Ca(b) is jointly typical with z. An error occurs if
either b̂ �= b or there exists a t̂ such that Φ̂b = Φb

and the codeword â is jointly typical with z. It can
be shown, via standard analysis, that these error events
have vanishing probability and hence Fano’s inequality
yields that 1

n
H(t|z, ΓSK) = oε(1), thus completing the

proof.

V. PROOF OF THE UPPER BOUND (LEMMA 2)

Given a sequence of (n, N = βn) codes that achieve
a secret-key-rate Rkey, we have that for a sequence εn,
such that εn → 0 as n →∞

1

n
H(k |y, v) ≤ εn (19a)

1

n
H(k |z) ≥

1

n
H(k)− εn (19b)

We can now upper bound the rate Rkey as follows.

nRkey = H(k)

= H(k |y, v) + I(k ; y, v)

≤ nεn + I(k ; y, v)− I(k ; z) + I(k ; z) (20)
≤ 2nεn + I(k ; y, v)− I(k ; z) (21)
= 2nεn + I(k ; y)− I(k ; z) + I(k ; v|y)

≤ 2nεn + I(k ; y)− I(k ; z) + I(k , y; v) (22)

where (20) and (21) follow from (19a) and (19b)
respectively.
Now, let J be a random variable uniformly dis-

tributed over the set {1, 2, . . . , N} and independent
of everything else. Let ti = (k , y, vN

i+1, u
i−1
1 ) and

t = (k , y, vN
J+1, u

J−1
1 , J), and vJ be a random variable

that conditioned on J = i has the distribution of
pvi
. (Define uJ analogously.) Note that since v is

memoryless, vJ is independent of J and has the same
marginal distribution as v and also that t → uJ → vJ

holds.
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I(k , y; v) =
N∑

i=1

I(k , y; vi|v
N
i+1)

≤
N∑

i=1

I(k , y, vn
i+1; vi)

≤
N∑

i=1

I(k , y, vn
i+1, u

i−1
1 ; vi)

= NI(k , y, vn
J+1, u

J−1
1 ; vJ |J)

= NI(k , y, vn
J+1, u

J−1
1 , J ; vJ)− I(J ; vJ )

= NI(t; v) (23)

where (23) follows from the fact that vJ is independent
of J and has the same marginal distribution as v .
Next, we upper bound I(k ; y)−I(k ; z) as below. Let

pxi
denote the channel input distribution at time i and

let pyi,zi
denote the corresponding output distribution.

Let px = 1
n

∑n
i=1 pxi

and let py and pz be defined
similarly.

I(k ; y)− I(k ; z) ≤ I(k ; y|z)

≤ I(x; y|z) (24)

≤
n∑

i=1

I(xi; yi|zi) (25)

≤ nI(x ; y |z), (26)

where (24) follows from the Markov condition k →
x → (y, z) and (25) follows from the fact that the
channel is memoryless and (26) from the fact that
I(x ; y |z) is a concave function in px(·) (see e.g., [13,
App. I])
Substituting (26) and (23) in (22) we have that

Rkey ≤ I(x ; y |z) + βI(v ; t) + 2nεn, (27)

thus establishing the first half i.e., (5) in Lemma 2. It
remains to establish (6). Since u → x→ y holds, and
the channel is memoryless, we have that

nI(x ; y) ≥ I(x; y) ≥ I(u; y) (28)
≥ I(u; y, k)− I(v; y, k)− nεn, (29)

where the last inequality holds, since

I(u; k |y)− I(v; y, k) = −I(v; y) + I(u; k |y)− I(v; k |y)

≤ I(u; k |y)− I(v; k |y)

= H(k |y, v)−H(k |y,u)

≤ nεn,

where the last step holds via (19a) and the fact that
H(k |y,u) > 0.
Continuing (29), we have

nI(x ; y) ≥ I(u; y, k)− I(v; y, k)− nεn

=
N∑

i=1

{I(ui; y, k , ui−1
1 vn

i+1)− I(vi; y, k , ui−1
1 vn

i+1)} − nεn

=

N{I(uJ ; y, k , uJ−1
1 vn

J+1|J)−I(vJ ; y, k , uJ−1
1 vn

J+1|J)− ε′n}

=

N{I(uJ ; t)− I(vJ ; t) + I(vJ ; J)− I(uJ ; J)− ε′n}

= N{I(u; t)− I(v ; t) − ε′n}.

Where βε′n = εn and the last step again follows
from the fact that the random variables vJ and uJ are
independent of J and have the same marginal distrib-
ution as v and u respectively. This establishes (6).
The cardinality bound on t is obtained via Carathe-

ordory’s theorem and will not be presented here.
Finally, since the upper bound expression does not

depend on the joint distribution of (t, x), it suffices
to optimize over those distributions where (t, x) are
independent.

VI. CONCLUSION
The problem of secret-key-generation using corre-

lated sources and channels is studied when the eaves-
dropper does not observe a side information source.
Upper and lower bounds are derived and shown to
match for the reversely degraded case. This broader
view also provides an operational significance to the
rate-equivocation tradeoff for the wiretap channel.
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