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connected child nodes experience a burst of erasures until a
suitable parent is selected again.

II. PROBLEM FORMULATION

We first review the single user setup in [1], [2], [3].

A. Single receiver case

The encoder receives a stream of i.i.d. source packets
{s[t]}t>o, each packet is over an alphabet S. It produces a
stream of channel packets {x[t]}t~o, The channel packet at
time t depends on on the source packets s[O], sjl], ... ,s[t] i.e.,

Abstract-We study a multicast extension of streaming burst
erasure codes previously proposed for the single user setting.
There are two receivers each interested in the common stream.
Each receiver's channel however has a different burst parameter
and likewise each receiver tolerates a different delay; both
receivers are interested in a common stream. We develop two
upper bounding approaches on the streaming multicast capacity.
The first upper bound is developed by introducing an erasure
channel that introduces periodic erasure bursts, which can
corrected due to the multicast property. The second upper bound
is based on information theoretic inequalities and is tight at the
minimum delay point. Finally we propose a simple multicast code
construction by combining the parity checks of two single-user
codes. x[t] == it (s[O], ... , s[t]) , (1)

for some sequence of functions it : st -t X. Throughout
this paper we only focus on deterministic mappings it (.). The
channel introduces a single erasure burst of length B at some
arbitrary time i.e., for some j 2: 0,

A decoder with delay T 2: 0 outputs the source packet
s[t] at time t + T i.e., there exists a sequence of de
coding functions 9t : yt+T -t S, such that s[t]
9t (y[O], ... , y[t], ... , y[t+ T]) and

Pr(s[t] -I s[t]) == 0, Vt 2: O. (3)

The maximum attainable rate such that there exists a sequence
of encoding and decoding functions that satisfy (3) is the
streaming capacity. As established in [1],

C == {TrB' T 2: B
0, otherwise. (5)

Remark 1: Note that for a given source and channel rates,
the proposed codes equivalently minimized the peak decoding
delay at the decoder. Also even though the setup considers
only a single erasure burst, it is possible to show [3] that the
resulting codes can correct multiple bursts, provided they are
separated by more than T +B symbols. Finally note that even
though the focus is on erasures the constructions naturally
generalize when no more than B consecutive symbols pass
through a noisy channel [7].

The quantity of interest is the information rate defined as

H(s) .
R = H(x) bits /symbol.

(2)

(4)

tE [j,j+B-1]

otherwise.y[t] = { :itJ,

I. INTRODUCTION

Streaming burst-erasure codes developed in [1], [2], [3] en
code live streams with causal encoding and delay constrained
decoding. An incoming stream of source packets at the encoder
is mapped into a stream of channel packets in a causal manner
- the channel packet x[i] depends on source s[O], ... , s[i].
The channel introduces one burst of contiguous erasures. The
receiver observes all packets reliably and without any delay
except for a burst of B packets that get erased. The decoder
outputs each source packet within a delay of T packets. In
other words source packet i is produced by time i + T. The
streaming capacity defined as the maximum rate that can be
supported on this channel is characterized in terms of Band
T. A complete characterization of the streaming capacity in
this setup is provided in [2], [3].

In related work, Sahai [4] considers the impact of peak
decoding-delay constraints on achievable error exponents over
discrete memoryless channels. The problem of multicasting to
two or more receivers over LLd. erasure channels with average
decoding delay constraints has been recently studied in [5], [6].

In this paper we study the design of burst-erasure codes
to simultaneously multicast a common stream to two het
erogeneous receivers. Each receiver's channel is affected by
an erasure-burst of different length. Likewise each receiver
experiences a different delay. Both the receivers are interested
in the common stream. One application for such codes is
video transmission over wireless channels. The wireless chan
nel introduces bursts of packet losses due to outage. When
multicasting a common video stream to several receivers, it
is of interest to develop such multicast codes. One other
relevant scenario where burst erasures are common is peer
to-peer networks. Whenever any node gets disconnected the
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Fig. 1. The extension of streaming capacity setup to the case when there are two receivers. The source stream is mapped into a stream of channel packets
by the encoder. Both the receivers observe these packets via their channels. The channel introduces an erasure-burst of length Bi, and it tolerates a delay of
Ti, for i = 1,2.

(6)

Bo Two receiver case

Fig. 1 shows the setup of interest. The encoder receives a
stream of source packets {5[t]}t2:o that needs to be reproduced
at both the receivers. The channel packets {x[t] }t2:o are
produced causally from the source stream via a function it (0 )

c.f. (1). Denote the channel output at receiver i at time t by
Yi [t]. The channel of receiver i introduces an erasure-burst of
length B i i.e., for some i. 2:: 0, we have that

{
* tE[ji,ji+Bi-l]

Yi [t] == x['t] , h .ot erwise,

for i == 1, 2. Furthermore, user i tolerates a delay of Ti i.e.,
there exists a sequence of decoding functions lIt ( .) and 12t ( . )

such that

and

Pr(s, [t] -I- Si [t]) == 0, Vt 2:: 0, i == 1, 2. (8)

As before, we study the streaming capacity for the two-user

setup. III. MULTICAST CODE CONSTRUCTION

Our code construction exploits the systematic nature of the
single user burst-erasure codes and concatenates the parity
checks of the two users. This results in the following lower
bound on the streaming capacity

Theorem 1: An achievable rate for the multicast streaming
capacity using the burst-erasure codes is

1
R == 2 B

i
- 08(1), (9)

1 + Li=1 Ti

where the term 08 (1) vanishes to zero as the size of the source
alphabet 151 goes to infinity.

Before describing our construction, we summarize for the
convenience of the reader, the single-user code construction
in [3].

Ao Single user burst-erasure codes

A single user code of rate T / (T +B) is constructed by the
following steps

1) Construct a systematic (B + T, T) block-code that can
correct a burst erasure of length B within a delay of

T. An explicit construction of such codes is provided
in [3], [2].

2) Split each source symbol 5[i] into T sub-symbols and
apply the block code designed above on a diagonally
interleave sub symbol stream.

B. Numerical Examples for Single User and Multicast Codes

It is instructive to illustrate the multicast code construction
via a numerical example. The single user code constructions
for (B,T) == (1,2) and (B,T) == (2,4) as well as the resulting
multicast code are illustrated in Fig. 2.

Note that for (B, T) == (1, 2), a systematic block code
that can correct a single erasure with a delay of T == 2 is
(va, VI,Va EB VI). By inspection it can be verified that if any
one symbol is erased, the remaining symbols can be recovered
within a delay of T == 1. We construct a streaming code from
the block code as follows: split each symbol 5[i] into two sub
symbols (50 [i], 51 [i]). After diagonal interleaving, as shown in
Fig. 2(a), the resulting coded symbol is

x[i] == (50[i], 51[i], 50[i - 2] EB 51[i - 1]).

Similarly we show the construction of a streaming code for
B == 2 and T == 4 in Fig. 2(b). Here the corresponding
systematic block code is (va, VI,V2, V3, Va EB V2, VI EB V3).
For the streaming code, each source symbol is split into
four sub-symbols (50 [i] , 51 [i] , 52 [i] , 53 [i]) and diagonally
interleaved to apply the block code giving x[i]
(50 [i], 51 [i], 52 [i], 53 [i], 50 [i - 4] EB 52 [i - 2], 51 [i - 4] EB 53 [i - 2]).

Note that both these code constructions have a systematic
part and a parity check part. The construction of an en
coder that simultaneously serves two users, with parameters
(B l , T l ) == (1,2) and (B 2 , T2 ) == (2,4), as illustrated in
Fig. 2(c) exploits this systematic code-structure. Each source
symbol is split into four sub-symbols (50 [i] , 51 [i] , 52 [i] , 53 [i]).
The parity checks for (B 1, Tl ) are generated by treating
to[i] == (50 [i], 51 [i]) and tl [i] == (52 [i], 53 [i]) as super-symbols.
The resulting parity check symbols are,

[
0] _ [0 ] [0 ] _ ( 50[i - 2] EB 52[i - 1] )

PI 't - to 't - 2 EB tl 't - 1 - [0 2] [0 1] .51 't - EB 53 't -

The parity check symbols for (B 2 , T2 ) using the above code

2888

Authorized licensed use limited to: Jatinder Singh. Downloaded on January 6, 2010 at 18:22 from IEEE Xplore.  Restrictions apply. 



ISIT 2009, Seoul, Korea, June 28 - July 3, 2009

(SO[i-2])

sI[i - 2]

so[i - 4] EB sI[i - 3]

so[i - 1] So [i) so[i + 1] so[i+2] so[i + 3]

( sI[i - 1] ) sI[i] sI[i + 1] 51[i + 2] 51[i + 3]

so[i - 3] EB sI[i - 2] ( so[i - 2] EB sI[i - 1] ) so[i -1] EBsI[i] so[i] EB sI[i + 1] so[i + 1] EB sI[i + 2]

(a) Burst-erasure code for B == 1 and T == 2. The code is formed from the block-code by splitting each source symbols into two
sub-symbols of equal length and then diagonally interleaving the symbols for the block code as illustrated above.

ISO[i - 2] \

sI[i - 2]

s2[i - 2]

s3[i - 2]

so[i - 6] EB s2[i - 4]

sI[i - 6] EB s3[i - 4]

so[i - 1]

I51[i - 1] I
52[i - 1]

53[i - 1]

So [i - 5] EB 52[i - 3]

sI[i - 5] EB s3[i - 3]

So [i)

sI[i]

~
53[i)

So [i - 4] EB 52[i - 2]

sI[i - 4] EB s3[i - 2]

so[i + 1]

sI[i + 1]

52[i + 1]

1 53[i + 1] I
so[i - 3] EB s2[i - 1]

sI[i - 3] EB s3[i - 1]

so[i+2]

sI[i + 2]

52[i + 2]

s3[i+2]

ISo [i - 2] EB 52[i) I
sI[i - 2] EB 53[i)

so[i + 3]

sI[i + 3]

52[i + 3]

s3[i + 3]

so[i - 1] EB s2[i + 1]

IsI[i - 1] EB 53[i + 1] I
(b) Burst-erasure code for B == 2 and T == 4. The code is formed from the block-code by splitting each source symbols into four sub-symbols
of equal length and then diagonally interleaving the symbols for the block code as illustrated above.

so[i - 1] So [i) so[i + 1] so[i + 2] so[i + 3]

sI[i] sI[i + 1] 51[i + 2] sI[i + 3]

52[i - 2] ~ 52[i + 1] s2[i + 2] s2[i + 3]

s3[i - 2] s3[i - 1] 53[i) Is3[i + 1] I s3[i+2] s3[i + 3]

so[i - 6] EB s2[i - 4] so[i - 5] EB s2[i - 3] So [i - 4] EB 52[i - 2] so[i - 3] EB s2[i - 1] ISo [i - 2] EB 52[i) I So [i - 1] EB 52[i + 1]

sI[i - 6] EB s3[i - 4] sI[i - 5] EB s3[i - 3] sI[i - 4] EB s3[i - 2] sI[i - 3] EB s3[i - 1] sI[i - 2] EB 53[i) IsI[i-l] EB s3[i+ 1] I
so[i - 4] EB s2[i - 3] so[i - 3] EB s2[i - 2] so[i - 2] EB s2[i - 1] So [i - 1] EB 52[i) So [i) EB 52[i + 1] so[i+ 1] EBs2[i+2]

sI[i - 4] EB s3[i - 3] sI[i - 3] EB 53[i - 2] sI[i - 2] EB s3[i - 1] sl[i - 1] EB s3[i] sI[i] EB s3[i + 1] sI[i+ 1] EBs3[i+2]

(c) A code construction to simultaneously support two users, one with (B, T) == (2,4) and the other with (B, T) == (1,2). It is formed by
repeating the parity check symbols of the two codes for the single user channel. The first four rows, correspond to the information symbols. The
next two rows are the parity check symbols for user 1, while the last two rows are parity check symbols for user 2.

Fig. 2. Streaming codes for single user and two user channels. Our lower bound is constructed by repeating the parity checks of the two individual codes
as illustrated above.

The decoder on channel 1 applies single user decoder for
channel 1 on super symbols tj [i] and ignore the parity checks
included for channel 2. Likewise the decoder on channel 2
applies single user decoder for channel 2 and ignores the parity
checks included for channel 1.

For general values of (B 1 , T1 ) and (B 2 , T2 ) , we let T be
the lowest common multiple of T1 and T2 , and divide s[i] into

with zeros so that it has the same size as the remaining sym
bols. We generate parity-check symbols for the first channel
by defining the super-symbol

tj[i] == (saj[i], saj+l[i], ... , Sa(j+l)-l)), j == 0,1, ... ,T-1

and generating the parity checks for the single-user (B, T)
code. Since each super-symbol constitutes of a symbols and
the (B, T) code produces a total of B parity-checks, the
total number of parity symbols due to channel 1 is aB. For
channel 2, we generate additional o.H parity checks from the
single-user (aB, aT) code. The overall code is formed by
concatenating all the parity check symbols. The resulting rate
of this code is

construction are

The resulting code is then constructed by concatenating the
information symbols with both the parity check symbols PI [i]
and P2[i] as shown in Fig. 2(c). Note that a decoder on channel
1 can recover from a burst of length B == 1 with a delay of
T == 2 by simply ignoring the parity checks P2[i] and using
the single user decoder on super-symbols tj [i]. Likewise the
decoder on channel 2 can also recover all symbols from a burst
of length B == 2 with a delay of T == 4 symbols by ignoring
the parity checks PI [i] and using the single user decoder on
the remaining symbols.

The construction for general burst-delay parameters is a
rather straightforward extension of the previous example.

C. Multicast code construction for general parameters

We first consider the code construction when (B 1, T1 )

(B, T) and (B 2 , T2 ) (aB, aT) for some integer
a > 1. We split the source symbol into T sub-symbols:
so[i], ... ,SaT-l [i]. If required the last super-symbol is padded

R == aT
2aB+aT

T
2B+T·
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(11)

(12)

T sub-symbols of equal size. Again the last symbol is padded
with zeros if required. Provided the alphabet is sufficiently
large, there is negligible loss in this step. We apply the code
for (B I , T I ) on super-symbols tIj [i] obtained by clustering
T ITI information symbols, and apply the code for (B2 , T 2 ) on
super-symbols t2j [i] obtained by clustering T IT2 information
symbols. The resulting parity check symbols are concatenated
as before and the decoders operate on the respective super
symbols. The rate of the resulting code is

(10)
where the term os (1) accounts for the rate loss due to potential
zero padding of the last symbol.

IV. UPPER BOUND VIA PERIODIC ERASURE CHANNEL

In this section we establish an upper bound on the stream
ing capacity by introducing a periodic erasure channel. This
approach builds upon the converse in [2] for the single user
case. While our proposed approach can be extended to general
burst-delay parameters, in the following, we only consider
"proportional" burst-delay parameters as defined below.

Theorem 2: Suppose that the two receivers in section 11-B
have parameters (B I , T I ) == (B, T) and (B2 , T 2 ) == (aB, aT)
for some integer a 2:: 2 and T 2:: B. Then the streaming
capacity is upper bounded by C ~ C+, where

C+ == 1- aB
c/T + (a -l)B·

Remark 2: Note that an immediate consequence of the
above upper bound (11) is that the multicast streaming capac
ity is in general strictly smaller than the single user streaming
capacity. In particular, for each a 2:: 2, the upper bound above
is strictly below the T ~B' the single user streaming capacity.

Numerical Example: We illustrate the basic idea behind our
proof via a simple example. Consider the case (B I, TI ) ==
(1, 1) and (B 2 , T2 ) == (2, 2). Consider a channel that erases
every two out of three symbols i.e., y[k] == *, if k mod 3 i- 2
and y[k] == x[k] otherwise. This corresponds to B == 1
in Fig. 3. As we now argue, for this channel, using the
two decoders and the multicast encoder we can recover all
the source symbols. Clearly for any sequence of codes that
recovers all erasures on this periodic erasure-channel, the rate
is upper bounded by 1/3, which is consistent with Theorem 2.
To show that all the symbols {x[t]} are recovered, consider
the symbols at time t == 0,1,2. Among these x[O] and xll]
are erased and only x[2] is observed. We use the decoder for
receiver 2 to recover 5[0] (and hence x[O] == fo(5[0])) with a
delay of two symbols i.e., from x[2]. Now it only remains to
recover 5[1]. Since we have already recovered x[O], we can
use the decoder of receiver 1, to recover 5[1] by time 2. Thus
by time 2 both the erased symbols are recovered. Since the
channel is a periodic erasure channel, this argument can be
continued to recover all the symbols.

ISIT 2009, Seoul, Korea, June 28 - July 3, 2009

General Case: The proof of the general case follows via
a straightforward extension of this reasoning. We begin by
showing the following Lemma:

Lemma 1: Suppose there exists a sequence of encoding
functions {ft (.)} and decoding functions {rl t ( .)} and {r2t (.)}
that satisfies (8). Then for the encoding function {ft (.) }
there exists a sequence of decoding functions rt (.) that can
reproduce the source symbols 5[t], over a channel with periodic
bursts as stated below

{
* t E [Tk,Tk +aB -1]

y[t] = x it], t E [Tk + «n,Tk+l - 1]

where Tk == kaT + k(a - l)B, k == 0,1, ...
An illustration of the periodic-burst channel when a == 2 is
shown in Fig. 3. Note that the result of Lemma 1 directly
implies that the capacity is upper bounded by

aB
C < 1- .

- aT + (a -l)B

To establish Lemma 1, it suffices to show that by time Ti; 
1, the receiver is able to recover symbols x[O], ... ,x[Tk 

1]. We first show that by time TI - 1, the receiver is able
to recover symbols x[O], ... ,x[TI - 1]. Since only symbols
x[O], ... ,x[aB - 1] are erased by time T I - 1 we focus on
these symbols.

Consider a single-burst channel that introduces a burst
of length o.H from times t == 0,1, ... , aB - 1. Note
that this channel behaves identically to the periodic burst
channel upto time T I - 1. Applying the decoder r2t (.) for
t == 0, 1, ... , (a - l)B - 1, the receiver recovers symbols
5[0], ... ,5[t] with a delay of o'T i.e., by time TI and hence
it also recovers the channel packets x[O], ... ,x[t] via (1).
It remains to show that the symbols at time t == (a
l)B, ... ,aB - 1 are also recovered by time T I - 1. One
cannot apply the decoder r2t to recover these symbols since
the decoding will require symbols beyond time TI , which are
available on the single-burst channel but not on the periodic
burst channel. However to recover these symbols we use
the multicast property of the code as follows. Consider a
channel that introduces a single erasure burst of length B
between times t == (a - l)B, . . . ,aB - 1. Note that upto
time TI , this channel is identical to our periodic burst-erasure
channel (which has recovered x[O], ... ,x[(a - l)B -1]). For
this channel, and hence the periodic erasure channel, using
the decoder rIt (.) the source symbols are recovered by time
aB +T - 1 ~ T I - 1. Furthermore via (1), the erased channel
symbols x[(a -1 )B], ... ,x[aB -1] are also recovered by time
TI . Since the channel introduces periodic bursts, the same
argument can be repeated to recover all symbols upto time
Tk - 1 for each k.

V. CAPACITY AT MINIMUM DELAY POINT

The minimum delay point occurs when Ti == B i . In this
case both the receivers require the least possible delay that
can be supported by the respective channels. The following
characterizes the capacity in this case.
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Fig. 3. A periodic burst erasure channel for a = 2. The channel all symbols transmitted in the shaded regions. An encoder that can simultaneously satisfy
two multicast users with parameters (B , T) and (2B, 2T ) can also be used to recover packets on the periodic burst channel.

(18)

Theorem 3: The streaming multicast capacity at the mini
mum delay point i.e., when T, = B, and Tz = Bz equals
1/3.

Note that the capacity can be achieved via simple repetition,

xli] = (s[i], s ri - T i ], sri - Tz])

The upper bound (11) in the previous section reduces to
c + = z':-=-\ and is not tight for a > 2 and hence a different
approach is needed. In the remainder of the section we show
the following,

Lemma 2: For any sequence of encoding functions and
decoding functions that support T, = B , and Tz = B z, we
have that H(Xk) ~ 3H(s) for each k ~ max (Ti ,Tz).
Note that the upper bound of 1/3 immediately follows from
the above lemma. For convenience we let T i = a and Tz = b
and assume that b > a. In what follows we use the notation sg
to denote the subsequence (sa,Sa+1 , ... , Sb)' Note that for any
sequence of encoding and decoding functions we have that for
all k > b the following conditions hold:

- H(Sk I S~- i , Xk) = 0 (13)

H(Sk_a ls~-a-i , Xk) = 0 (14)

H(Sk_b ls~-b-i, Xk) = 0 (15)

where (13) follows since if channel 1 erases symbols x~t~

then Sk must be decoded from Xk and the previously decoded
symbols, (14) from the fact that if channell erases xt~, then
Sk-a must be recovered using Xk and the previously decoded
symbols and (15) from the fact that the symbol Sk-b must be
recovered by time k using Xk and symbols upto time k - b- 1
when channel 2 erases xt~.

Conditions (13)-(15) can be combined to establish the
following, whose proof cannot be included due to space
constraints.

Lemma 3: For each k ~ b we have that

H(Xk) ~ H(Xk' SLb ls~-b-i)

H( k- a-i l k- b ) H( k- i I k- a )
- ~-~i~ , ~ - ~-~i~ , ~

(16)

To complete the proof it suffices to show that the right hand
side of (16) is at-least equal to 3H(5). The first term in this
expression can be written as follows,

H (. k \-k-b -i) H(. k-a-i k-i \-k-b -i)
~Xk, sk-bPO = ~Xk, Sk-b , sk-b+i , Sk- a, sk-a+i' SkPO

H( I k- b-i)= Xk , Sk-b , Sk- a, Sk So

H (, k- a- i k-i I k-b )+ ~sk-b+i' sk- a+i Xk,So ,Sk- a,Sk

H( I
k-b -i) +H(, k-a-i l k-b )= Xk , Sk-b , Sk-a , Sk So ~sk-b+ i Xk ,So ,Sk-a ,Sk

+ H ( k-i I k- a )sk- a+i Xk ,So , Sk

= H(Xk ls~-b, Sk- a, Sk) + H(Sk-b, Sk- a, sk ls~-~i)

where we use the fact that the symbols s, are LLd. in the last
step. Substituting the last expression in (16) we have that

H(Xk) ~ 3H(s) + H(Xk ls~-b , Sk-a , Sk)

I( k-a-i I k-b) I( k-i I k- a)- sk-b+i ; Sk , Sk- a Xk , So - sk-a+i ;Sk Xk , So

= 3H(s) + H(Xk ls~-a , Sk) + I(xk ;st~+i I s~- b, Sk , Sk-a)

I( k-a-i I k-b) I( k-i I k-a)- sk_b+i ;Sk,Sk-aXk,So - sk_a+i;SkXk,So

= 3H(s) + H(Xk ls~-a, Sk) - I(St~+l ; sklxk, s~-a)

I( k- a- i l k- b ) I( k- a- i I k- b)+ Xk ;sk-b+i So ,Sk, Sk- a - sk-b+i ;Sk, Sk- a Xk, So

= 3H(s) + H(Xk ls~- a , Sk) - I(st~+i ; sklxk, s~- a)

+ I( k- b k- a-i )
Xk ,So ; sk- b+i

~ 3H(s) + H(Xk ls~-a, Sk) - I(St~+l ; sklxk, s~-a)

= 3H(s) +H(Xk ls~)

I( k-i I k- a ) I( k-i I k- a)+ Xk;sk_a+i So ,Sk - sk_a+i ;Sk Xk,So

= 3H(s) + H(Xk ls~) + I(st~+l ;Xk ,S~-a) (19)

Here (18) follows from the fact that st~+1 is independent of
(s~-b, Sk , Sk- a) and similarly (19) follows from the fact that
s~-a is independent of Sk. Finally since the last two terms in
(19) are non-negative the desired inequality H(Xk) ~ 3H(s)
follows.
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