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Abstract—We study low-delay error correction codes for
streaming-recovery over a class of packet-erasure channels. In
our setup, the encoder observes one source frame everyM time
slots, but is required to transmit a channel packet in each time
slot. The decoder is required to reconstruct each source frame
within a playback delay of T source frames. The collection ofM
transmitted channel packets between successive source frames is
called a (channel) macro-packet.

For a certain class of burst-erasure channels, we characterize
the associated capacity and develop explicit codes that attain the
capacity. We recover as a special case, the capacity whenM = 1,

studied in earlier works. Our proposed code constructions involve
splitting each source frame into two groups of sub-symbols,
applying unequal error protection and carefully allocating source
and parity-check sub-symbols within each (channel) macro-
packet. Our constructions are a non-trivial extension of the
previously proposed codes forM = 1. Simulation results indicate
significant gains over baseline error correction codes for the
Gilbert model for burst erasures.

I. I NTRODUCTION

Emerging applications such as video/audio conferencing,
mobile gaming and cloud computing impose stringent end-to-
end latency constraints and are inherently streaming in nature.
The sender terminal must encode a source stream in real-time,
and the destination must output each source frame within a
fixed playback deadline. The end-to-end latency is generally
less than250 ms [1, Table 1, pp. 7]. The round-trip time in
traditional networks can alone approach such limits. Thus we
need advanced techniques for error correction, rate control,
and scalable compression optimized for the delay-constrained
and streaming nature of such applications.

In this paper we propose a novel class of delay-optimized
error correction codes for real-time streaming over burst-loss
channels. Commonly used error correction codes operate on
message blocks. To apply them to streaming data, we need
to either buffer data packets at the encoder or accumulate all
packets at the decoder before any recovery is possible. To
reduce delay we need to keep the codeword lengths short,
which in turn reduces the error correction capability [2].

Low-delay error correction codes for streaming sources have
been recently studied in [3]–[5] and further generalized in[6],
[7]. The focus in [3]–[5] was on burst-erasure channels. The
transmitter is required to encode a stream of source packets
sequentially and the receiver is required to reconstruct each

source packet in the stream with a fixed delay. The channel
can introduce an erasure burst of a given maximum length. The
maximum achievable rate was characterized in this setup anda
new class of codes, Maximally Short Codes (MS), were shown
to outperform the classical Maximum Distance Separable
(MDS) codes. More recently [6], [7] propose robust extensions
of streaming codes that are resilient against both burst and
isolated losses. In particular it is shown that in the streaming
setup, there exists a fundamental tradeoff between the burst-
error correction and isolated-error correction capability of any
code. A new family of codes, MiDAS Codes, that achieve near
optimal performance has also been developed [7].

The above works however assume that the source and
channel transmission rates are identical i.e., one source packet
arrives before the transmission of every channel packet. In
many practical systems there is a mismatch between the source
and channel transmission rates. For example in most video
streaming systems, each source frame arrives once approxi-
mately every40 ms, whereas the interval between successive
channel packets is typically much smaller. Thus a large number
of channel packets may need to be transmitted in-between
the arrival of two successive source frames. We refer to
this mismatched scenario assource-channel rate mismatch. A
straightforward way of implementing the streaming codes in
this scenario is to split each source frame into multiple packets
such that there is one source packet for each transmitted
channel packet. We show that such a naive approach is sub-
optimal and propose a new class of optimal codes for this
mis-matched scenario. Due to page constraints, we only focus
on the case of burst erasure channels in this paper. We expect
that robust extensions that are resilient against both burst and
isolated losses can be obtained using the techniques in [6],
[7]. For other related works on low-delay streaming codes we
refer to [8]–[16].

II. SYSTEM MODEL

We study low-delay codes when there is a mismatch be-
tween source and channel frame rates. We assume that one
source packet arrives at the encoder everyM channel packets.
We call the collection of suchM channel-packets as a macro-
packet. Each source packet is encoded into the channel stream
in a causal fashion and needs to be reconstructed at the



Fig. 1. System under consideration. EachX[i, :] denotes a (channel) macro-
packet consisting ofM channel packets(x[i, 1], . . . ,x[i,M ]). One source
packet arrives at the start of each macro packet. The channel erases up toB
consecutive channel packets. Each source packet needs to bereconstructed
with a delay ofT macro packets.

destination after a delay ofT macro-packets. In this work we
focus on the burst-erasure channels i.e., we assume that up to
B consecutive channel packets are erased in a single burst.
Fig. 1 depicts the system under consideration. We discuss the
operation of each of the blocks in Fig. 1 in detail below.

A. Encoder

At each i ≥ 0, the encoder receives a source packet
s[i] ∈ F

k
q , whereFq denotes the underlying base-field and

k denotes the number of sub-symbols ins[i]. At the start
of macro-packeti, the encoder generatesM channel packets
x[i, j] ∈ F

n
q , j = {1, . . . ,M} which can depend on all the

observed source packets up to that time i.e.1,

x[i, j] = fi,j(s[0], s[1], · · · , s[i]) (1)

and transmit them in theM slots corresponding to the macro-
packeti. It will be convenient to use the notation

X[i, :] = [x[i, 1] | . . . | x[i,M ]] ∈ F
n×M
q (2)

to denote the macro-packeti. Fig. 1 denotes the operation
of our system whereas Fig. 2 denotes the structure of each
macro-packet.

B. Channel

The received packets corresponding to macro-packeti are
denoted byy[i, j] for j = {1, . . . ,M}. We assume a burst
erasure channel. The channel introduce an erasure burst of
maximum lengthB channel packets starting at arbitrary time
slot [is, js] during the transmission ofX[is, :] and ending
at [if , jf ] during the transmission ofX[if , :]. Note that the
number of symbols spanned in the period[is, js] → [if , jf ] is
given by:

τ = (M − js + 1) + (if − is − 1)M + jf ,

js, jf ∈ {1, . . . ,M}, if ≥ is ≥ 0. (3)

Thus, the output channel packets are given by,

y[i, j] =

{

⋆, for [i, j] ∈ {[is, js], [if , jf ]} ,

x[i, j], otherwise.
(4)

We note that the erasure burst can occur across multiple chan-
nel macro packets as shown in Fig. 2. The erasure burst can
also start at any arbitrary position within each macro-packet.
We will denote the set of all channel packets corresponding to
time indexi by the matrixY[i, :] = [y[i, 1] | . . . | y[i,M ]] ∈
F
n×M
q , where againy[·] denotes a column vector of lengthn.

Fig. 2. Channel Model. The erasure burst spans a total ofB channel symbols
as shown. Each source packets[i] arrives just before the transmission of
X[i, :] and needs to be reconstructed by the destination after a delay of T
macro-packets.

C. Decoder

The decoder is required to decode each source packet with
a maximum delay ofT macro packets i.e., the decoder uses a
reconstruction functiongi(.):

ŝ[i] = gi(Y[0, :],Y[1, :], · · · ,Y[i+ T, :]). (5)

The rate of the streaming code is defined as the ratio of the
entropy of the source packet to the size of the channel macro
packet i.e.,

R =
H(s)

n×M
. (6)

Note that in (6) we assume that the source sequence{s[i]}i≥0

is sampled i.i.d. from a distributionps(·). We say that a rate
R is achievable if there exists a streaming code of rateR such
thatPr(ŝ[i] 6= s[i]) = 0, for eachi ≥ 0. The largest achievable
rate is the streaming capacity, which is the quantity of interest.

III. M AIN RESULT

As our main result, the following Theorem provides a char-
acterization of the streaming capacity defined in the previous
section.

Theorem 1: For the streaming setup in section II, with
any M , T andB, the streaming capacity C is given by the
following expression:

C =







T
T+b

, B′ ≤ b
T+b

M, T ≥ b,
M(T+b+1)−B

M(T+b+1) , B′ > b
T+b

M, T > b,
M−B′

M
, B′ > M

2 , T = b,
0, T < b.

(7)

where the constantsb andB′ are defined via

B = bM +B′, B′ ∈ {1, . . . ,M − 1}, b ∈ N
0. (8)

�

The proof of Theorem 1 is divided into two main parts. The
code construction is illustrated in section V while the converse
appears in section VI. In the remainder of this section we
elaborate on the different cases associated with (7).

We note that the capacity is zero ifT < b. It can be easily
verified that in this case, there exists an erasure burst of length
B that spans all underlying channel packets up to the deadline
thus making the recovery impossible. This case will therefore
not be discussed further in the paper.

Next consider the case whenT = b, which corresponds to
the minimum possible delay for which the capacity is positive.

1The vectorss[i] andx[i, j] denote column vectors. We will later use the
notations†[i] andx†[i, j] to denote the transpose of these vectors.



In this case the capacity in Theorem 1 reduces to the following:

C =

{
1
2 , 0 ≤ B′ ≤ M

2 , T = b,
M−B′

M
, M

2 ≤ B′ ≤ M, T = b.
(9)

Since a burst of lengthB spans at-leastb macro-packets, dur-
ing the recovery ofs[i] we can only use the unerased symbols
of Y[i, :] andY[i + b, :]; all the intermediate macro-packets
are completely erased. It turns out that a simple repetition
code that usesmin

{
M −B′, M

2

}
information packets and an

identical number of parity check packets in each macro-packet
achieves the capacity whenT = b.

Finally, whenT > b the capacity in Theorem 1 is given by
the following

C =

{
T

T+b
, 0 ≤ B′ ≤ b

T+b
M,T > b

M(T+b+1)−B

M(T+b+1) , b
T+B

M < B′ ≤ M − 1, T > b
(10)

Examining (10) we note that, quite remarkably, the capacity
does not decrease withB′ as it is increased in the interval
[0, b

T+b
M ]. We refer the reader to Fig. 4 in section VII where

this characteristic of the capacity function is illustrated using
a numerical example.

IV. BACKGROUND

In this section we review previously proposed code con-
structions — Baseline Erasure Codes and SCo codes — and
study their error correction properties in the present setup.
We will conclude that the rates achieved by these schemes
do not meet the stated capacity in Therem 1. Nevertheless our
proposed codes build upon these ideas, and hence their review
is essential before stating the proposed construction.

A. Baseline Erasure Codes

Classical erasure codes are designed for maximizing the
underlying distance properties. In a streaming setup, roughly
speaking, such codes will be able to recover all the missing
source symbols simultaneously once sufficiently many parity
checks have been collected. Indeed, the motivation behind
random-linear codes is to guarantee that the underlying system
of equations is nearly of a full rank [17]–[19]. Instead of the
random linear codes, we study a class of deterministic codes
with maximum distance that are relevant for our streaming
setup.

Consider a(n, k,m) convolutional code that maps an input
source streams[i] ∈ F

k
q to an outputx[i] ∈ F

n
q using a memory

m encoder i.e.,

x[i] =

(
m∑

t=0

s†[i− t] ·Gt

)†

(11)

whereG0, . . . ,Gm are k × n matrices with elements inFq.
The first j + 1 output symbols can be expressed as,
[
x†[0],x†[1], . . . ,x†[j]

]
=
[
s†[0], s†[1], . . . , s†[j]

]
·Gs.

(12)
where

Gs =








G0 G1 . . . Gj

0 G0 Gj−1

...
. . .

...
0 . . . G0








(13)

is the truncated generator matrix to the firstj + 1 columns
and we defineGj = 0 if j > m.

The column distance of orderj is defined as:

dj = min
s≡(s[0],...,s[j])

s[0] 6=0

wt(x†[0], . . . ,x†[j]), (14)

where wt(x†[0], . . . ,x†[j]) counts the number of non-zero
sub-symbols in (x†[0], . . . ,x†[j]) ∈ F

(j+1)n
q . We are partic-

ularly interested in systematic convolutional codes whereGs

is expressed in the systematic form

G0=[Ik×k H0], Gi=[0k×k Hi], i = 1, . . . ,m,

H0,Hi ∈ F
k×(n−k)
q (15)

Theorem 2 (Gluesing-Luerssen et. al, Gabidulin [20], [21]):
For everyj ∈ N we have that

dj ≤ (n− k)(j + 1) + 1 (16)

A systematic, strongly MDS(n, k,m) codeC achieves

dj = (n− k)(j + 1) + 1, j = 0, 1, . . . ,m. (17)

�

Thus the systematic Strongly-MDS codes achieve the maxi-
mum distance in the window of interest. The following lemma,
which follows by an application of Theorem 2 will be used in
our analysis. It will not be included due to space constraints.

Lemma 1: Consider a systematic Strongly-MDS(n, k,m)
code defined in Theorem 2 that maps source symbolss[i] ∈
F
k
q to channel symbolsx[i] ∈ F

n
q as illustrated in (11).

Let x[i] =

[
s[i]
p[i]

]

, and suppose that the sub-symbols in

x[i] = (s1[i], . . . , sk[i], p1[i], . . . , pn−k[i])
† are transmitted

sequentially in the interval[i ·n, (i+1)n−1] over the channel.

1) For any j ∈ [0,m] where dj defined in (17), the
following holds: if no more thandj − 1 sub-symbols
are erased in the interval[0, (j + 1)n − 1] the source
symbol s[0] = (s1[0], . . . , sk[0]) can be recovered by
time (j + 1)n− 1.

2) If the channel introduces an erasure-burst of lengthB
sub-symbols in the interval[0, B−1], whereB ≤ dj−1,
then all erased source symbols are recovered by time
(j + 1)n− 1.

Intuitively property 2 above states that a strongly MDS code
does simultaneous recovery of all the erased source symbols
in the burst, once sufficiently many parity checks are available.
We refer to codes with such a property as Baseline Erasure
Codes (BEC), and use this throughout the rest of the paper.

From Property 2, an(n, k, T ) BEC code, is guaranteed to
recover from an erasure burst of lengthB channel packets
(equivalently up tonB sub-symbols) with a delay ofT if

B ≤
(n− k)

n
M(T + 1). (18)

UsingR = k
n

we have that an(n, k,m) BEC code with

RBEC = 1−
B

M(T + 1)
(19)

is feasible.



B. Streaming Codes (SCo) for M = 1

Unlike the erasure codes in the previous section, Maximally
Short Codes (MS) introduced in [4] and further generalized
in [6, Section IV-B] enable sequential recovery in the presence
of burst-erasures. These codes are constructed for the special
case when there is no mis-match between the source and
channel frame rates i.e.,M = 1. A (B, T ) SCo code encodes
a stream of source packetss[i] ∈ F

T
q into a stream of channel

packetsx[i] ∈ F
T+B
q such that every source symbols[i] can

be recovered with a delay ofT when the channel introduces
an erasure burst of length at-mostB. Note that rate of an SCo
code isR = T

T+B
. We briefly review the SCo construction

from [6]. The encoding steps are as follows:

• Split each source symbols[i] ∈ F
T
q into two groupsu[i] ∈

F
B
q andv[i] ∈ F

T−B
q as follows:

s[i] =

{

u1[i], . . . , uB [i]
︸ ︷︷ ︸

=u[i]

, v1[i], . . . , vT−B [i]
︸ ︷︷ ︸

=v[i]

}

. (20)

• Apply a BEC code from the previous sub-section on the
symbolsv[i] and generate parity-check symbols

p†
v[i] =

T∑

j=1

v†[i− j] ·Hv
j , pv[i] ∈ F

B
q , (21)

where the matricesHv
j are (T −B)×B matrices asso-

ciated with the systematic strongly MDS code (15).
• Super-impose theu[·] symbols ontopv[·] and let

q[i] = pv[i] + u[i− T ]. (22)

The channel input at timei is given by x†[i] =
(u[i],v[i],q[i])

†
∈ F

T+B
q .

The decoding of SCo codes proceeds as follows. Suppose
that an erasure burst happens in the interval[i, i + B − 1].
The decoder first recoverspv[i+B], . . . ,pv[i+ T − 1] from
q[i + B], . . . ,q[i + T − 1] by cancelling the interferingu[·]
symbols (c.f. (22)) which have not been erased. Using property
2 of the BEC code in Lemma 1 it can be verified that the
erased symbolsv[i], . . . ,v[i+B−1] can be recovered by time
t = i+ T − 1. Once all thev[·] symbols have been recovered,
the symbolsp[i+ T ], . . . ,p[i+ T +B − 1] can be computed
and cancelled from the associatedq[·] symbols. Thus each
u[i], . . . ,u[i+B−1] can be recovered at their deadline. Since
s[i] = (u[i],v[i]), this shows that each erased source symbol
is recovered with a delay ofT symbols.

Adapting SCo codes for Mis-Matched Case: We now dis-
cuss how the SCo codes can be adapted to the mis-matched
case. We propose to split each symbols[i] into M sub-
symbols, one for each time-slot in the macro-packet and then
apply an SCo code to this expanded source stream.

• Assume that eachs[i] ∈ F
TM
q and split eachs[i] =

(w[i, 1], . . . ,w[i,M ]) wherew[i, j] ∈ F
T
q holds.

• Apply a (B,MT ) SCo code of rate

RSCO =
MT

MT +B
=

T

T + b+ B′

M

(23)

to the source stream{w[·, j]}, whereM · T denotes the
delay in channel-packets. Transmit the associated channel

packetx[i, j] in slot j of the macro-packeti.

Note that the delay ofM · T channel packets implies that
the source packetw[i, j] is recovered at time[i + T, j] for
eachj ∈ {1, 2, . . . ,M}. Thus the entire source packets[i] is
guaranteed to be recovered by at the end of macro-packeti+T ,
thus satisfying the delay constraint. We note that (23) only
attains the capacity whenB′ = 0 andB < MT . Furthermore
if B > MT the above construction is not feasible and the rate
attained is zero.

V. CODE CONSTRUCTION

We first present the encoding and decoding for the case
when T > b in (7) in Theorem 1. The case whenT = b
uses a repetition code and will not be treated due to space
constraints.

A. Encoding: T > b and B′ ≤ b
T+b

M

Following (7) we need to present a construction that
achievesR = T

T+b
. We let

n = T + b, k = MT, (24)

throughout this case. Note that the rateR = k
Mn

reduces to
the desired expression.

The main steps in our encoder are stated below.

• Source Splitting: We partition each source vectors[i] ∈
F
k
q into k sub-symbols and divide them into two groups

uvec[i] ∈ F
ku

q andvvec[i] ∈ F
kv

q as follows,

s[i] = (s1[i], . . . , sk[i])

= (u1[i], . . . , uku
[i]

︸ ︷︷ ︸

uvec[i]

, v1[i], . . . , vkv
[i]

︸ ︷︷ ︸

vvec[i]

) (25)

where we select

ku = Mb, kv = M(T − b). (26)

• BEC Parity Checks: Apply a (kv + ku, kv, T )
BEC code of rate kv

kv+ku

to the sub-stream of
vvec[·] symbols generatingku parity-check sub-symbols,
qvec[i] = (q1[i], . . . , qku

[i]) ∈ F
ku

q for each macro-
packet. In particular we have that

qvec[i] =





T∑

j=0

vvec,†[i− j] ·Hj





†

(27)

whereHj ∈ F
kv×ku

q are the sub-matrices associated with
the BEC code.

• Parity-Check Generation: Combine theuvec[·] symbols
with theqvec[·] parity-checks after applying a shift ofT
to the former, i.e.,

pvec[i] = qvec[i] + uvec[i− T ], (28)

wherepvec[i] ∈ F
ku

q .
• Re-shaping:In order the construct the macro-packet, we

reshapeuvec[i], vvec[i] andpvec[i] into groups each ofn
sub-symbols generating the matricesU[i], V[i] andP[i]
as illustrated below.
U[i, :] =

[

u[i, 1] · · · u[i, r]
u[i, r + 1]

0

]

∈ F
n×r+1

q



V[i, :] =
[

0

v[i, 1]
v[i, 2] · · · v[i,M − 2r − 1]

0

v[i,M − 2r]

]

P[i, :] =

[

p[i, r + 1]
0

p[i, r] · · · p[i, 1]

]

∈ F
n×r+1

q
,

(29)

where the vectorsu[i, j], v[i, j] andp[i, j] are expressed
via

uvec[i]=










u[i, 1]
u[i, 2]

...
u[i, r]

u[i, r + 1]










vvec[i]=










v[i, 1]
v[i, 2]

...
v[i,M − 2r − 1]
v[i,M − 2r]










pvec[i] =










p[i, 1]
p[i, 2]

...
p[i, r]

p[i, r + 1]










(30)

In (29) we definer ∈ N
0 andr′ ∈ {0, 1, . . . , n− 1} via

ku = r · n+ r′. (31)

Note that u[i, j] ∈ F
n
q for each j ∈ {1, . . . , r} and

u[i, r + 1] ∈ F
r′

q . The splitting of pvec[i] into p[i, j]
in (29) follows in an analogous manner. In particular we
can express

p[i, j] = u[i− T, j] + q[i, j], j = 1, 2, . . . , r + 1
(32)

where q[i, j] is a sub-sequence ofqvec[i] defined in a
similar manner. In the splitting ofvvec[i] into v[i, j] we
note thatv[i, 1],v[i,M − 2r] ∈ F

n−r′

q whereasv[i, j] ∈
F
n
q for 2 ≤ j ≤ M − 2r − 1.

• Macro-Packet Generation ConcatenateU[i, :], V[i, :]
andP[i, :] to construct the channel macro packetX[i, :]
as follows2
X[i, :] = [x[i, 1], . . . ,x[i,M ]] =
[

u[i, 1] · · · u[i, r]
u[i, r + 1]
v[i, 1]

v[i, 2] · · ·

. . . v[i,M − 2r − 1]
p[i, r + 1]

v[i,M − 2r]
p[i, r] · · · p[i, 1]

]

.

(33)

Note that the channel macro packet at timei is denoted
by X[i, :] ∈ F

n×M
q and thejth channel packet inX[i, :]

by x[i, j] ∈ F
n
q for j ∈ {1, . . . ,M}.

This completes the description of the encoding function for
the first case in (7).

B. Encoding: T > b and B′ > b
T+b

M

We begin by choosing the following values ofn andk:

n = T + b+ 1, k = M(T + b+ 1)−B (34)

and note that the rateR = k
Mn

reduces to the second case
in (7).

2The expression assume thatM−2r > 1. If M−2r = 1 then thevvec[i]
symbols will only occupy one single column and the symbols ofu[i, r + 1]
andp[i, r+1] may be present in the same column. The analysis also applies
in this case. We can easily show thatM − 2r > 0 in all of our analysis.

We partition each source vectors[i] ∈ F
k
q into k sub-

symbols and divide them into two groupsuvec[i] ∈ F
ku

q and
vvec[i] ∈ F

kv

q as in (25). This time we select

ku = B = Mb+B′, kv = M(T + b+ 1)− 2B (35)

We generate the parity checkspvec[i] = qvec[i]+uvec[i−T ]
as in the previous sub-section. Thereafter we reshape vectors
uvec[i], vvec[i] and pvec[i] into matricesU[i, :], V[i, :] and
P[i, :] as in (29) and subsequently generate the macro-packet
X[i, :] as in (33). These steps will not be repeated due to space
constraints.

C. Decoding

We consider a channel that introduces a burst of lengthB =
bM+B′ starting at theith macro packet. The total number of
patterns to consider isM which corresponds to burst erasures
of lengthB starting atx[i, j] for j ∈ {1, . . . ,M}.

We begin by considering the patterns with the erasure burst
starting atx[i, 1] which erasesX[i], . . . ,X[i + b − 1],x[i +
b, 1], . . . ,x[i+ b,B′]. We will then discuss the case when the
burst-loss begins atx[i, j] wherej > 1. The main steps in the
decoding are as follows —

1) In each macro-packett ∈ [i + b, i + T − 1] recover all
un-erasedqvec[t] subtracting outuvec[t − T ] from the
associatedpvec[t] as the former are not erased (c.f. (28)).

2) Recover all erasedvvec[·] symbols by macro-packeti+
T − 1 using the underlying BEC code.

3) Computeqvec[i+T ], . . . ,qvec[i+T+b] as they combine
vvec[·] symbols which are either not erased or recovered
in the previous step.

4) Subtractqvec[i+ T ], . . . ,qvec[i+ T + b] from pvec[i+
T ], . . . ,pvec[i+T +b] to recoveruvec[i], . . . ,uvec[i+b]
respectively within a delay ofT macro packets. At this
point all the source packets have been recovered with a
delay ofT macro-packets as required.

It only remains to show the sufficiency of the BEC code in
the recovery during the second step. This can be established
by showing that no more thankuT sub-symbols are lost for
the (ku + kv, kv, T ) BEC code(vvec[t],qvec[t]) due to the
above erasure burst. The recovery then follows using Property
2 of Lemma 1. We separately consider two cases as below.

1) B′ ≤ b
T+b

M : In this case, the code parameters are
chosen according to (24) and (26). One needs to count the
total number of erased sub-symbols among(vvec[t],qvec[t])
for t ∈ [i, i+b] due to the erasure burst of lengthB = bM+B′

starting at x[i, 1]. This burst erases the channel packets,
X[i, :], . . . ,X[i+ b− 1, :],x[i+ b, 1], . . . ,x[i+ b,B′]. Clearly,
all sub-symbols of(vvec[t],qvec[t]) for t ∈ [i, i + b − 1] are
erased which are a total ofb(ku+kv) = bMT . For the(i+b)th
macro packet, the firstB′ channel packets are erased, which
correspond only to sub-symbols inuvec[i + b] asB′n ≤ ku
sinceB′ ≤ b

T+b
M . Hence, the total number of erased sub-

symbols in(vvec[t],qvec[t]) arebMT = kuT as required.
2) B′ > b

T+b
M : In this case the code parameters are cho-

sen as in (34) and (35). Similar to the previous case, we count
the number of erased sub-symbols among(vvec[t],qvec[t]) for



t ∈ [i, i+ b] due to an erasure burst of lengthB = bM + B′

starting atx[i, 1]. The firstb macro packetsX[i, :], . . . ,X[i+
b−1, :] are all erased. Thus, the total number of erasedvvec[t]
and qvec[t] sub-symbols in this interval isb(ku + kv) =
b(M(T+b+1)−B). In the(i+b)th macro packet, the firstB′

channel packets are erased which correspond to alluvec[i+ b]
sub-symbols and some of the(vvec[i + b],qvec[i + b]) sub-
symbols asB′n > ku sinceB′(T+b+1) > Mb+B′. Thus, the
number of erased sub-symbols among(vvec[i+b],qvec[i+b])
areB′n− ku = B′(T + b+ 1)−B. Hence, the total number
of erasures among(vvec[t],qvec[t]) for t ∈ [i, i+ b] are

b(M(T + b+ 1)−B) +B′(T + b+ 1)−B = BT = kuT

as required.
In the above decoding steps, we only considered bursts that

start atx[i, 1]. Here, we extend the decoding steps for erasure
bursts that start at any channel packet within the macro packet.
Consider an erasure burstsBj of lengthB = bM+B′ starting
at x[i, j] for j = {1, . . . ,M}. We argue that going fromBj

to Bj+1 we do not increase the total number of erased sub-
symbols in the(vvec[i],qvec[i]) BEC code. Thus the case when
j = 1 is in-fact the worst case.

Note that in going fromBj to Bj+1 the channel packet
x[i, j] is no longer erased and is available to the decoder.
From the construction of the macro-packetX[i, :] in (33) it
takes one of the following forms:

x[i, j] =







u[i, j] j = {1, . . . , r}
[

u[i, r + 1]

v[i, 1]

]

j = r + 1

v[i, j − r] j = {r + 2, . . . ,M − r − 1}
[

p[i, r + 1]

v[i, j − r]

]

j = M − r

p[i,M − j + 1] j = {M − r + 1, . . . ,M}.

(36)
We claim that in each case the number of sub-symbols released
by x[i, j] compensates for any additional erasures introduces
by Bj+1. In particular note thatBj+1 can introduce no more
thann additional erasures via the last channel packet which
is not included inBj .

• j = {1, . . . , r}: In this case, the revealedx[i, j] = u[i, j]
can be subtracted fromp[i+T, j] to recoverq[i+T, j] ∈
qvec[·] havingn sub-symbols. Thus, compensates for the
n extra erased sub-symbols.

• j = r + 1: The r′ sub-symbols ofu[i, r + 1] helps in
recovering ther′ sub-symbols ofq[i+T, r+1] ∈ qvec[·].
This together with the revealedn − r′ sub-symbols of
v[i, 1] ∈ vvec[·] compensates for then extra erasures and
the claim follows.

• j = {r + 2, . . . ,M − r − 1}: In this case, the revealed
channel packet isx[i, j] = v[i, j − r] ∈ vvec[·] and has
n sub-symbols.

• j = M-r: The decoder can subtractu[i − T, r + 1] from
p[i, r + 1] to recover ther′ sub-symbolsq[i, r + 1] ∈
qvec[·]. This together with then − r′ sub-symbols of

v[i,M − 2r] ∈ vvec[·] add up ton sub-symbols and the
claim follows.

• j = {M − r + 1, . . . ,M}: Finally, in this case there are
no erasures in the source symbolss[i] as only the parity
check symbols in the macro packeti are erased. Thus one
can ignore these erasures, directly move to the erasures
in macro packeti+ 1, and repeat the above argument.

VI. CONVERSE

To establish the converse to Theorem 1 for the case when
T > b it suffices to show that

C ≤ min

(
M(T + b+ 1)− (bM +B′)

M(T + b+ 1)
,

T

T + b

)

. (37)

For the first expression, we use the technique of periodic
erasure channel ( [4], [9], [10]) to derive an upper bound on
the rateR. Consider periodic bursts each of lengthB with
a guard interval ofM(b + T + 1) − B as shown in Fig. 3.
One period of this channel is of lengthTperiod = T + b+ 1.
We let the first burst start fromx[0, 1]. We require the erased
source symbols[0] to be recovered by the end of macro-packet
t = T + b. Onces[0] has been recovered, we reconstruct the
underlyingX[0, :] and consider the burst starting at macro-
packetX[1, :] and note thats[1] is reconstructed at the end of
macro packetT + 1. Repeating this argument the last erased
source vectors[b] is recovered at the end of macro packet
b+ T . Thus all ofX[0, :], . . . ,X[b, :] are now reconstructed at
the end of macro packetb+ T . Thus as shown in Fig. 3, at the
start of macro packetb+ T + 1 we can have a second erasure
burst and repeat the above argument. Thus we can recover all
erased source packets from the above periodic erasure channel.
Thus the rate of our streaming code must be upper bounded
by the capacity of the periodic erasure channel.

Since the above periodic erasure channel consists ofM(T+
b+1) channel packets in each period out of whichB are erased
it follows that

C ≤
M(T + b+ 1)− (bM +B′)

M(T + b+ 1)
(38)

which establishes the first part of our upper bound.
To establish the second part of the upper bound, note that

when B′ = 0 i.e., B = bM then in the above argument it
is sufficient to takeTperiod = T + b. Therefore repeating the
above argument in this special case we have that

CB=bM ≤
T

T + b
. (39)

Furthermore since the capacity is always a decreasing function
in B (as the receiver can always simulate a longer erasure
burst) it follows that (39) is also an upper bound for any
B = bM +B′ whereB′ > 0. This completes the justification
for (37).

It only remains to consider last case withB′ > M
2 andT =

b in Theorem 1. The periodic erasure channel argument is not
tight and therefore we consider the following argument which
simultaneously considers the effect of two different erasure
bursts. We start by considering a channel that erases the first

B = bM + B′ channel packets

{

x[i, 1], . . . ,x[i + b,B′]

}

.



Fig. 3. Periodic erasure channel used in the converse in Section VI

Since the delay constraint fors[i] is i+T = i+b, the following
equation should be satisfied,

H(s[i]|x[i+ b,B′ + 1], . . . ,x[i+ b,M ]) = 0. (40)

Next we consider the channel erasing the channel pack-

ets

{

x[i + b,M − B′ + 1], . . . ,x[i + 2b,M ]

}

. To recover

s[i+ b] by macro-packeti+2b the only available symbols are
x[i+ b, 1], . . . ,x[i+ b,M −B′]

H(s[i+ b]|x[i+ b, 1], . . . ,x[i+ b,M −B′]) = 0. (41)

Combining (40) and (41) and usingB′ < M/2 we have
that

H(s[i], s[i+b]|x[i+b, 1], . . . ,x[i+b,M−B
′
],x[i+b, B

′
+1], . . . ,x[i+b,M ])

= 0 (42)

Through some standard manipulations it follows that
H(x[i + b, 1], . . . ,x[i + b,M − B

′
],x[i + b, B

′
+ 1], . . . ,x[i + b,M ])

≥ H(s[i], s[i + b]) = 2H(s) (43)

Therefore we have that

2(M −B′)H(x) ≥ 2H(s) (44)

and thus

C =
H(s)

MH(x)
≤

M −B′

M
. (45)

as required.

VII. N UMERICAL COMPARISONS ANDSIMULATIONS

Fig. 4 illustrates a numerical example comparing capacity
with some baseline schemes. The achievable rate is shown on
the y-axis and the associated erasure burst length is shown
on the x-axis. We considerM = 20 and a delay ofT = 5
macro packets. We plotB ∈ [40, 80] in the left figure and
B ∈ [80, 120] in the right figure.

The capacity in each plot is shown by the blue-curve
marked with squares whereas the red curve marked with circles
denotes the rate achieved by a suitable modification of the SCo
code [4], [6] which is discussed in Section IV-B. We note that
the curves intersect wheneverB is an integer multiple ofM ,
indicating the optimality of the SCo codes for these special
values i,e, atB = {40, 60, 80, 100}. Furthermore for burst
lengthsB > MT = 100, SCo codes are not feasible and
the associated rate is zero. The capacity function is constant
in the intervalsB ∈ [40, 45], [60, 67], [80, 88], [100, 110], as
indicated in (10) and monotonically decreasing in the rest of
the intervals. The third class of codes — Baseline Erasure
Codes — discussed in Section IV-A are erasure codes that only

simultaneously recover all the erased source symbols after the
erasure burst. Since they do not perform sequential recovery,
their achievable rates is significantly lower.

In our simulations in Fig. 5, we consider a two-state Gilbert
channel model. In the bad state, each channel packet is
lost with a probability of1 whereas in the good state, the
loss probability is0. We let α and β denote the transition
probability from the good state to the bad state and vice versa,
respectively for this channel. Note that the average burst length
for this channel is1

β
whereas the average loss rate isα

α+β
.

In Fig. 5(a), we selectα = 10−5 and β is varied on the
x-axis in the interval[0.1, 0.4] which in turn changes the burst
length distribution. We further selectM = 10, i.e.,10 channel
packets are generated for every source packet received at the
encoder. We fix the rateR = 3/5 and the delayT = 3
macro packets. Under these conditions, the BEC code can
correct burst erasures of length up toBBEC = 16, whereas
a Streaming Code (SCo) achievesBSCo = 20. The optimal
code achievesB = 24. This gain in the burst-length is reflected
in Fig. 5(a) as one can see that the proposed codes achieve a
smaller loss probability. While the code parameters in Fig. 5(a)
correspond to the first case in (7) the code parameters used in
Fig. 5(b) correspond to the second case in (7). In this case
we selectM = 20, T = 4 and R = 9/14. The achievable
burst lengths for the BEC and SCo codes areBBEC = 35,
BSCo = 44 while the optimal codes achieveB = 50. We
again selectα = 10−5 and varyβ on the x-axis as illustrated.

VIII. C ONCLUSIONS

Motivated by the application to wireless video, we propose
a new family of low-delay streaming codes when the is a
mismatch between the source frame rate and channel trans-
mission rate. Our proposed codes are optimal over the burst-
erasure channel. We show that a naive extension of previously
proposed streaming codes designed when the source-channel
rates are matched can be sub-optimal. We also explicitly
characterize the associated capacity and show that it remains
constant over a certain interval of burst-lengths, as illustrated
in Fig. 4. Simulation results over the Gilbert channel are also
presented to show the improvements from the proposed codes
in achievable packet-loss rate.

In this paper we only focused on the case when the channel
is an erasure burst channel. We expect that our constructions
can be naturally extended to the case when the channel
introduces both burst and isolated erasures. Such an extension
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Fig. 5. Gilbert Channel Experiments with different parameters illustrating the loss probabilities of different code constructions.

can be done using a layered approach as was done for the case
of matched source-channel rates in [6], [7]. This extensionis
left for a future investigation.
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