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Abstract—We study low-delay error correction codes for source packet in the stream with a fixed delay. The channel
streaming-recovery over a class of packet-erasure channelsn! can introduce an erasure burst of a given maximum length. The
our setup, the encoder observes one source frame evedy time  ayimum achievable rate was characterized in this setugand
slots, but is required to transmit a channel packet in each time .
slot. The decoder is required to reconstruct each source frame new class of codes, Maxw_nally Shqrt Codeg (MS), were shown
within a playback delay of T source frames. The collection ofif  t0 outperform the classical Maximum Distance Separable
transmitted channel packets between successive source framis (MDS) codes. More recently [6], [7] propose robust extensio
called a (channel) macro-packet. of streaming codes that are resilient against both burst and

For a certain class of burst-erasure channels, we characterize jsq|ated losses. In particular it is shown that in the stiegm

the associated capacity and develop explicit codes that attain the .
capacity. We recover as a special case, the capacity whaii — 1, SEUP; there exists a fundamental tradeoff between the-burs

studied in earlier works. Our proposed code constructions involve €rror correction and isolated-error correction capaboitany
splitting each source frame into two groups of sub-symbols, code. A new family of codes, MiDAS Codes, that achieve near
applying unequal error protection and carefully allocating source  optimal performance has also been developed [7].
and parity-check sub-symbols within each (channel) macro-  the above works however assume that the source and
packet. Our constructions are a non-trivial extension of the . . . .
previously proposed codes forM = 1. Simulation results indicate chgnnel transmission rates. ar_e identical i.e., one sourckep
significant gains over baseline error correction codes for the arrives before the transmission of every channel packet. In
Gilbert model for burst erasures. many practical systems there is a mismatch between theesourc
and channel transmission rates. For example in most video
streaming systems, each source frame arrives once approxi-
Emerging applications such as video/audio conferencingately every40 ms, whereas the interval between successive
mobile gaming and cloud computing impose stringent end-tohannel packets is typically much smaller. Thus a large rrmb
end latency constraints and are inherently streaming imreat of channel packets may need to be transmitted in-between
The sender terminal must encode a source stream in real-tithe arrival of two successive source frames. We refer to
and the destination must output each source frame withinttds mismatched scenario asurce-channel rate mismatch. A
fixed playback deadline. The end-to-end latency is generaéditraightforward way of implementing the streaming codes in
less than250 ms [1, Table 1, pp. 7]. The round-trip time inthis scenario is to split each source frame into multiplekpes
traditional networks can alone approach such limits. Thas wuch that there is one source packet for each transmitted
need advanced techniques for error correction, rate dontrchannel packet. We show that such a naive approach is sub-
and scalable compression optimized for the delay-comstdai optimal and propose a new class of optimal codes for this
and streaming nature of such applications. mis-matched scenario. Due to page constraints, we onlysfocu
In this paper we propose a novel class of delay-optimizeth the case of burst erasure channels in this paper. We expect
error correction codes for real-time streaming over bloss- that robust extensions that are resilient against botht launc
channels. Commonly used error correction codes operateisolated losses can be obtained using the techniques in [6],
message blocks. To apply them to streaming data, we nd@f For other related works on low-delay streaming codes we
to either buffer data packets at the encoder or accumulbterafer to [8]-[16].
packets at the decoder before any recovery is possible. To
reduce delay we need to keep the codeword lengths short, Il. SysTEM MODEL
which in turn reduces the error correction capability [2]. We study low-delay codes when there is a mismatch be-
Low-delay error correction codes for streaming sources haween source and channel frame rates. We assume that one
been recently studied in [3]-[5] and further generalize{bin source packet arrives at the encoder everchannel packets.
[7]. The focus in [3]-[5] was on burst-erasure channels. The call the collection of suct channel-packets as a macro-
transmitter is required to encode a stream of source packp#gket. Each source packet is encoded into the channetirstrea
sequentially and the receiver is required to reconstruch edan a causal fashion and needs to be reconstructed at the

I. INTRODUCTION
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Fig. 1. System under consideration. EaXlfi, :] denotes a (channel) macro- Burst of length B Deadline tbr_S[i],lDeadlineﬁJr_S[i;ll
packet consisting of\/ channel packet$x[i, 1],...,x[i, M]). One source I
packet arrives at the start of each macro packet. The charemdup taB +=i+T+1
consecutive channel packets. Each source packet needsrecdmstructed Fig. 2. Channel Model. The erasure burst spans a tot& ohannel symbols
with a delay of7" macro packets. as shown. Each source packsi] arrives just before the transmission of
X[i,:] and needs to be reconstructed by the destination after g dél&
macro-packets.

destination after a delay af macro-packets. In this work we
focus on the burst-erasure channels i.e., we assume that ugt Decoder

B consecutive channel packets are erased in a single burStI’he decoder is required to decode each source packet with
Fig. 1 depicts the system under consideration. We discess th

operation of each of the blocks in Fig. 1 in detail below. a maximum delay OTT mac.ro packets i.e., the decoder uses a
reconstruction functiom;(.):
§[i) = ¢:(Y[0,:],Y[L,:],--- , Y[i + T,:]). (5)
A. Encoder The rate of the streaming code is defined as the ratio of the

) entropy of the source packet to the size of the channel macro
At eachi¢ > 0, the encoder receives a source paCk?JTacket ie.

sli] € ]F’; where F, denotes the underlying base-field and H(s)
k denotes the number of sub-symbols sfi]. At the start R= M (6)
of'm'acroI-Fp:Laclfe_t, trlme encj\ci[der ?]gnherate\g dchangel paci:«::]s Note that in (6) we assume that the source sequési¢g >
Xg’j] ed ) =1 "k"t’ } ,:N tlﬁ t('z'anel epend on all In€;q sampled i.i.d. from a distributiops(-). We say that a rate
observe sourc.e Packets up to that time*,..€. R is achievable if there exists a streaming code of ratsuch
x[i, j] = fi,;(s[0], s[1], -, s[i]) (1) thatPr(s[i] # s[i]) = 0, for eachi > 0. The largest achievable
and transmit them in th&/ slots corresponding to the macro+ate is the streaming capacity, which is the quantity ofrege
packet:. It will be convenient to use the notation
X[i,:] = [x[i,1] | ... | x[i, M]] e Fp*M (2 _ . .
to denote the macro-packét Fig. 1 denotes the operation As our main result, the following Theorem provides a char-

of our system whereas Fig. 2 denotes the structure of ea%cﬁenzaﬂon of the streaming capacity defined in the presio

section.
macro-packet. . . . .
P Theorem 1. For the streaming setup in section Il, with

any M, T and B, the streaming capacity C' is given by the

IIl. M AIN RESULT

B. Channel following expression:
T%(b, ) B < 7245 M, T >0,

The received packets corresponding to macro-paclket MIT+0+1)—B  prs b ar TS
denoted byyl[i,j] for j = {1,...,M}. We assume a burst C= ﬁ“ﬂrl) ’ B i TMHJT’, ; -0 (1)
erasure channel. The channel introduce an erasure burst of 0 M T < b2’ S
maximum lengthB channel packets starting at arbitrary time ’ , ) )
slot [i,, ,] during the transmission oK[i,,:] and ending Where the constantsand B’ are defined via
at [is,j¢] during the transmission aK[iy,:]. Note that the B=bM+B', B'e{l,....M—-1},beN’. (8)
number of symbols spanned in the period js| — [if, js] is O
given by: The proof of Theorem 1 is divided into two main parts. The

7= (M—j,+1)+ (i —is— )M + jy, code construction is illustrated in section V while the canse

appears in section VI. In the remainder of this section we

Jsidg €1, M}, iy 2is 2 0. (3)  gjaporate on the different cases associated with .

Thus, the output channel packets are given by, We note that the capacity is zero’f < b. It can be easily
. *, for [i, 4] € {[is,4s], [ifs 3¢}, verified that in this case, there exists an erasure bursngtie
yli,jl = . - (4) B that spans all underlying channel packets up to the deadline
x[i,j], otherwise. : ) ) ) )
thus making the recovery impossible. This case will therefo

We note that the erasure burst can occur across multiple chﬁg
nel macro packets as shown in Fig. 2. The erasure burst ca
also start at any arbitrary position within each macro-pack
We will denote the set of all channel packets corresponding

time index: by the_ matrixY[i,:] = [y[i,1] | ... | y[i, M]] € 1The vectorss[i] andx[i, j] denote column vectors. We will later use the
IFZXM, where agairy[-] denotes a column vector of length notationst[i] andx'[i, j] to denote the transpose of these vectors.

t be discussed further in the paper.
Next consider the case wheh= b, which corresponds to
tpe minimum possible delay for which the capacity is positiv



In this case the capacity in Theorem 1 reduces to the follpwins the truncated generator matrix to the fijst- 1 columns

1 0<B <M 7_} and we definegz; =0 if j > m.
C= {?\47;43'7 %_< B/_<21\;I, T_ }) (®)  The column distance of ordgris defined as:
Since a burst of lengtl spans at-leadt macro-packets, dur- dj = =™ i) wt(x'[0], ... x"[j]), (14)
ing the recovery o§[i] we can only use the unerased symbols s[0]70
of Y[i,:] and Y[i 4+ b,:]; all the intermediate macro-packetsyvhere wt(x[0],...,x[j]) counts the number of non-zero
are completely erased. It turns out that a simple repetitigob-symbols in xto],...,x'[j]) € Fg#l)“. We are partic-

code that usemin { M — B’, 4 } information packets and an ylarly interested in systematic convolutional codes wh@re
identical number of parity check packets in each macro-@acks expressed in the systematic form
achieves the capacity whén= b. )
Finally, whenT > b the capacity in Theorem 1 is given by Go=[Tix Hol,  Gi=[0px Hy], i=1,...,m,
the following Ho, H; e F)*"%)  (15)

oo 0< B < M, T >b (10) _ Theorem2 (Gluesing-Luerssen et. al, Gabidulin [20], [21]):
J\'fz&T(JTrﬁrﬁr)l—)Bj TiB M<B <M-1,T>b For everyj € N we have that
Examining (10) we note that, quite remarkably, the capacity dj <(n—k)(j+1)+1 (16)
does not decrease with’ as it is increased in the intervalA systematic, strongly MD$n, k,m) codeC achieves
[0, 725 M]. We refer the reader to Fig. 4 in section VIl where b it 1. =01 17
this characteristic of the capacity function is illustchtgsing p= =R+ =01 m (A7)
a numerical example. U
IV. BACKGROUND Thus the systematic Strongly-MDS codes achieve the maxi-

In this section we review previously proposed code cor\}ral:.r:hd;sﬁir\;vcsegn :‘f;vmﬁs:;ig;'g;e;ﬁ?ég:s govv?ﬁvglgtigﬂi’
structions — Baseline Erasure Codes and SCo codes — an . Y an appiica .
our analysis. It will not be included due to space constsaint

study their error correction properties in the present setu _ } .
We will conclude that the rates achieved by these schemed€mma 1: Consider a systematic Strongly-MD@; k, )

do not meet the stated capacity in Therem 1. Nevertheless §Qf€ defined in Theorem 2 that maps source SULUES
proposed codes build upon these ideas, and hence theiwreia © channel ;ymbol&[z] € Fy as illustrated in (11).
is essential before stating the proposed construction. Let x[i] = S[z_] , and suppose that the sub-symbols in

A. Baseline Erasure Codes x[i] = (s1[i],...,suli,pilil,- ... pn_sli])T are transmitted
Classical erasure codes are designed for maximizing thequentially in the intervdk-n, (i+1)n— 1] over the channel.
underlying distance properties. In a streaming setup, iyug
speaking, such codes will be able to recover all the missing
source symbols simultaneously once sufficiently many yarit
checks have been collected. Indeed, the motivation behind
random-linear codesis to guarantee that the underlying system . .
. : time (j 4+ 1)n — 1.
of equations is nearly of a full rank [17]-[19]. Instead o&th .
X L 2) If the channel introduces an erasure-burst of length
random linear codes, we study a class of deterministic codes . :
) . . . sub-symbols in the intervad, B—1], whereB < d; —1,
with maximum distance that are relevant for our streaming .
setup. then all erased source symbols are recovered by time
Consider &n, k,m) convolutional code that maps an input G+ Dn—1.
source strears[i] € F’; to an output[i] € IFj usingamemory  Intuitively property 2 above states that a strongly MDS code

1) For anyj € [0,m] where d; defined in (17), the
following holds: if no more thani; — 1 sub-symbols
are erased in the intervd, ( + 1)n — 1] the source
symbol s[0] = (s1[0],..., sx[0]) can be recovered by

m encoder i.e., does simultaneous recovery of all the erased source symbols
m T in the burst, once sufficiently many parity checks are altgla
x[i] = (Z sffi —1]- Gt> (11) We refer to codes with such a property as Baseline Erasure
t=0 Codes (BEC), and use this throughout the rest of the paper.
where Gy, ..., G,, arek x n matrices with elements iff,. From Property 2, arin, k, T) BEC code, is guaranteed to
The firstj + 1 output symbols can be expressed as, recover from an erasure burst of length channel packets
(x'[0],x"[1],...,x[j] = [sT[0],s"[1],...,s [j]] - G*. (equivalently up tonB sub-symbols) with a delay of if
12 —
where (12) B< (”Tk)M(TJr 1). (18)
Go G ... Gy Using R = £ we have that arin, k,m) BEC code with
s 0 Go Gy BEC B
G =1, . : (13) R _1_M(T+1) (19)

6 . do is feasible.



B. Streaming Codes (SCo) for M =1 packetx[i, j] in slot j of the macro-packet

Unlike the erasure codes in the previous section, Maximaljote that the delay of\/ - T channel packets implies that
Short Codes (MS) introduced in [4] and further generalizetle source packetv[i, j] is recovered at timei + T, 4] for
in [6, Section IV-B] enable sequential recovery in the pnege each; € {1,2,..., M}. Thus the entire source packst] is
of burst-erasures. These codes are constructed for theapeguaranteed to be recovered by at the end of macro-pa¢k@t
case when there is no mis-match between the source ands satisfying the delay constraint. We note that (23) only
channel frame rates i.e}f = 1. A (B,T) SCo code encodes attains the capacity wheB’ = 0 and B < MT. Furthermore
a stream of source packeif] € IFqT into a stream of channel if B > MT the above construction is not feasible and the rate
packetsx[i] € FZ ¥ such that every source symbsjl] can attained is zero.
be recovered with a delay & when the channel introduces
an erasure burst of length at-mdst Note that rate of an SCo V. CODE CONSTRUCTION
code isR = T+B We briefly review the SCo construction
from [6]. The encoding steps are as follows: We first present the encoding and decoding for the case

« Spliteach source symbs}i] € F7 into two groupsufi] € WhenT > b in (7) in Theorem 1. The case wheh = b
F? andvli] € FT-7 as fo||OWS uses a repetition code and will not be treated due to space

constraints.
s[i] = { iy ..., ugli], vili], ..., vr—gli] } (20)

—ufi] —vli] A. Encoding: T > b and B' < 75 M
« Apply a BEC code from the previous sub-section on the Following (7) we need to present a construction that
symbolsv{i] and generate parity-check symbols achievesk = L. We let
+
*z]=Zv*[i—j]-H§, pulil €FE, 1) n=Th, k=T 9

throughout this case. Note that the rdte= % reduces to
where the matrlceH” are (T — B) x B matrices asso- the desired expression.

ciated with the systemanc strongly MDS code (15). The main steps in our encoder are stated below.
» Super-impose tha[;] symbols ontop,[-] and let « Source Splitting: We partition each source vectsfi]
qli] = po[i] + ufi — T7. (22) F* into k sub-symbols and divide them into two groups
The channel input at time is given by x'[i] = UVCCH € Fgv andv¥e[i] € Fg» as follows,
(ufi], v[i), ali))" € FI 2. sli] = (suli], ..., sld])
The decoding of SCo codes proceeds as follows. Suppose = (u1[i], ..., un, [i]),v1[d], ..., vk, [1]) (25)

that an erasure burst happens in the intefval + B — 1].

The decoder first recoveys,[i + B],.... p,[i + T — 1] from where we select wreeld Vet

q[i + B],...,q[i + T — 1] by cancelling the interfering[-]

symbols (c.f. (22)) which have not been erased. Using ptpper ky = Mb, k,=M(T —b). (26)
2 of the BEC code in Lemma 1 it can be verified that the « BEC Parity Checks: Apply a (ky + ku ko, T)
erased symbols|i], ..., v[i+B—1] can be recovered by time BEC code of rate ;Z4- to the sub-stream of
t =i+ T — 1. Once all thev[-] symbols have been recovered,  v°°[-] symbols generating,, parity-check sub-symbols,
the symbolsp[i + T7,...,p[i + T + B — 1] can be computed q**°[i] = (quld], ..., qx,[i]) € Fk+ for each macro-
and cancelled from the associatgl] symbols. Thus each packet. In particular we have that

ufi],...,u[i+B—1] can be recovered at their deadline. Since t

s[i] = (uli], v[4]), this shows that each erased source symbol q"°] ZvvecT 27)

is recovered with a delay df symbols.
Adapting SCo codes for Mis-Matched Case: We now dis- b sk . .
cuss how the SCo codes can be adapted to the mis-matched \t';/]r;eée;:j fogév » are the sub-matrices associated with

case. We propose to split each symbdl] into M sub- Paritv-Check G ion: Combine thew"e bol
symbols, one for each time-slot in the macro-packet and then® grlty— ec engranon. ombine t a [] Symbo's
with the q¥°¢[-] parity-checks after applying a shift af

apply an SCo code to this expanded source stream. 0 the former. i.e
« Assume that eacl|i] € FI™ and split eachs[i] = P

(wli,1],...,wl[i, M]) wherew[i, j] € FX holds. p*[i] = q"[i] + u"*°[i — T, (28)
« Apply a (B, MT) SCo code of rate wherep*°[i] € Fye.
MT T « Re-shaping:In order the construct the macro- packet, we
RSCO = WT+E-T+3 (23) reshapa1*°[i], v¥°°[i] andp"*°[i] into groups each of,
+b+ 57 sub-symbols %eneratlng the matridgsi], V[i] and P[i]
to the source strearfw]-, j]}, where M - T denotes the as |Ilustrated elow. ,
delay in channel-packets. Transmit the associated channel U[;,:] = [ uli, 1] ‘ ‘ ufi, r] % } e Fpxri




Vi = We partition each source vectsfi] € F* into k sub-

[ﬁ ‘ VI 2] ‘ ‘ Vi, M = 2r —1] ‘ ~EATT } symbols and divide them into two groupg®°[i] € Fk« and
Pli, ] = [ p[i,'r0+ 1] ‘ plirl | - ‘ plis 1] } T, v¥e[i] € Fk» as in (25). This time we select

(29) k,=B=Mb+B', k,=M(T+b+1)—2B (35)
where the vectora(i, j], v[i, j] andpli, j] are expressed e generate the parity checi&*[i] = q"°[i]+u¥*[i—T]

via as in the previous sub-section. Thereafter we reshapergecto
uli, 1] v[i, 1] u"[i], v¥e°[i] and p**°[i] into matricesU[i,:], V[i,:] and
ufi, 2] v[i,2] P[i,:] as in (29) and subsequently generate the macro-packet
uvee[fi]= : vVee[il= : X[i,:] asin (33). These steps will not be repeated due to space
uli, 7] v[i, M —2r — 1] constraints.
uli,r + 1] v[i, M — 2r] C. Decoding
p[i, 1]

We consider a channel that introduces a burst of ledgth

pli, 2] bM + B’ starting at theth macro packet. The total number of
p i = : (30) patterns to consider 8/ which corresponds to burst erasures
pli, 7] of length B starting atx[s, j] for j € {1,..., M}.
p[i,” + 1] We begin by considering the patterns with the erasure burst
_ o , _ starting atx|[s, 1] which eraseX[i],...,X[i + b — 1],x[i +
In (29) we definer € N” andr’ € {0,1,...,n -1} via 1],...,x[i + b, B']. We will then discuss the case when the
ku=r-n+7r'. (31) burst-loss begins at[i, j] wherej > 1. The main steps in the
Note thatuli,j] € Fy for eachj € {1,...,r} and decoding are as follows —
uli,r + 1] € IFZ'. The splitting of p¥¢©[i] into pls, j] 1) In each macro-packete [i + b,i + T — 1] recover all
in (29) follows in an analogous manner. In particular we un-erasedq“*°[t] subtracting outu¥*°[t — T] from the
can express associateg¥*°[t] as the former are not erased (c.f. (28)).
pli,jl=uli —T,j] +qli,jl, j=1.2...,7r+1 2) Recover_all erased"e[-] _symbols by macro-packett
(32) T — 1 using the underlying BEC code.

3) Computeq™¢[i+T],...,q"*[i+T+b] as they combine
v¥ee[-] symbols which are either not erased or recovered
in the previous step.

4) Subtractq*°[i +T},...,q"°[i + T + b] from p¥*°[i +

where q[i, j] is a sub-sequence @f**°[i] defined in a
similar manner. In the splitting ofve°[i] into v[i, j| we

note thatvli, 1], v[i, M — 2r] € F?~"" whereasv[i, j] €

Fg’forQSng—%—l.

» Macro-Packet Generation ConcatenateU|s,:|, V]i,: T]""’PVEC[Z‘JF.T.M} to recovenu™*e[i],.. "uvec[iJ“b].
and P[i, ] to construct the channel macro packeli, : respectively within a delay of’ macro packets. At this
as follow< point all the source packets have been recovered with a
X[i,:] = [x[4,1],...,x[i, M]] = delay of T" macro-packets as required.
{ ufi, 1) ‘ ‘ ufi,r] | v+ 1l ‘ vii,2) ‘ It only remains to show the sufficiency of the BEC code in
[V[z’ 1 } the recovery during the second step. This can be established
pli,r+1

o v, M —2r —1] ‘

‘ pli,1] | .by showing that no more thak,T" sub-symbols are lost for
33)" the (k, + k,, k,,T) BEC code(v'*°[t],q"*°[t]) due to the
Note that the channel macro packet at tiinis denoted above erasure burst. The recovery then follows using Prypper
by X[i,:] € ngM and thejth channel packet iX[i,:] 2 of Lemma 1. We separately consider two cases as below.
by x[i, j] € for j € {1,...,M}. 1) B < TLHM: In this case, the code parameters are
Ihosen according to (24) and (26). One needs to count the
otal number of erased sub-symbols amdwg®°[t], gV*°[¢])
for t € [i,7+b] due to the erasure burst of length= bM + B’
. , b starting atx[é, 1]. This burst erases the channel packets,
B. Encoding: T' > b and B' > 75 M X[i,:),...,X[i+b—1,:,x[i+b,1],...,x[i+b, B']. Clearly,
We begin by choosing the following values ofand &: all sub-symbols oftv*°[t], q"°[t]) for ¢ € [i,i + b — 1] are
n=T+b+1, k=MT+b+1)—B (34) erased which are a total ofk,, +k,) = bMT. For the(i+b)th
’ macro packet, the firsB’ channel packets are erased, which
and note that the rat® = ﬁ reduces to the second Cas@orrespond only to sub-symbols in'c[i + b] as B'n < k,

BN RIS

This completes the description of the encoding function f
the first case in (7).

in (7). since B’ < 22 M. Hence, the total number of erased sub-
symbols in(v¥ee[t], q"*°[t]) arebMT = k, T as required.
2The expression assume that—2r > 1. If M —2r = 1 then thev¥°°[4] 2) B > ﬁMZ In this case the code parameters are cho-

symbols will only occupy one single column and the symbolsifif r + 1] . . .
andpli, 7 + 1] may be present in the same column. The analysis also applé@n asimn (34) and (35)' Similar to the previous case, we count

in this case. We can easily show thiat — 2r > 0 in all of our analysis. ~ the number of erased sub-symbols améntf©[t], gV°[t]) for



t € [i,i + b] due to an erasure burst of length= bM + B’ v([i, M —2r] € v¥*°[-] add up ton sub-symbols and the

starting atx[é, 1]. The firstb macro packetX[i,:],..., X[i + claim follows.

b—1,:] are all erased. Thus, the total number of eras¥&€(t| e j={M—r+1,...,M}: Finally, in this case there are
and g**°[t] sub-symbols in this interval i$(k, + k,) = no erasures in the source symbs|§ as only the parity
b(M(T+b+1)—B). In the(i+b)th macro packet, the firgs’ check symbols in the macro packeidre erased. Thus one
channel packets are erased which correspond ta“&lli + b can ignore these erasures, directly move to the erasures
sub-symbols and some of tHev*°[i + b],q"*°[i + b]) sub- in macro packet + 1, and repeat the above argument.

symbols as3’n > k,, sinceB’'(T+b+1) > Mb+B’. Thus, the
number of erased sub-symbols amdng*°[i +b], q°[i + b]) VI. CONVERSE
are B'n — k, = B'(T +b+ 1) — B. Hence, the total number To establish the converse to Theorem 1 for the case when

of erasures amon@v¥e°[t], q*°[t]) for ¢ € [i,i + b] are T > b it suffices to show that
WM(T+b+1)—B)+B(T+b+1)—B=BT =k,T C < min (M(T+b+1) - (bM+B’), T ) @)
as required. MT+b+1) T+b

: - or the first expression, we use the technique of periodic
In the above decoding steps, we only considered bursts thaaFSure channel ( [4], [9], [10]) to derive an upper bound on

start atx[i, 1]. Here, we extend the decoding steps for erasuf& . o :
bursts that start at any channel packet within the macroepaclzhe rate R. Consider periodic bursts each of length with

Consider an erasure burdis of length B = bM + B’ starting gguard _in(;er\f/eilh_oth(b * TI * 1>f? B as shov_vnTin IZig. 13'
atx[i, j] for j = {1,..., M}. We argue that going fronf; ne period of this channel is of lengt)erios =T + b + 1.

to B;,, we do not increase the total number of erased sub® let the f'br(‘:‘; (t))utrstbstart from[(g t] :’rYe regw;e the eraselt(j t
symbols in thev¥ec[i], q**¢[i]) BEC code. Thus the case Wherfcfr;e Szmo [0] 8 he regovere y eden 0 macrot—patctﬁ
i —1is in-fact the worst case. = T + b. Onces|0] has been recovered, we reconstruct the

. . underlying X[0,:] and consider the burst starting at macro-
Note that in going fromB; to B;y, the channel packet acketX|[1,:] and note thas[1] is reconstructed at the end of
x[i, 7] is no longer erased and is available to the decod

. o ) acro packefl’ + 1. Repeating this argument the last erased
From the construction .Of the macro-packefi, ] in (33) it source vectors[b] is recovered at the end of macro packet
takes one of the following forms:

o . b+ T. Thus all ofX[0,:], ..., X[b,:] are now reconstructed at
1}[%]] o J= {1,....r} the end of macro packét+ 1. Thus as shown in Fig. 3, at the
ufi,r + 1] _ start of macro packét+ 7'+ 1 we can have a second erasure
‘ j=r+1l
v[i, 1] burst and repeat the above argument. Thus we can recover all

- - erased source packets from the above periodic erasurealhann

Xl = vl j—r] j={r+2. . M=r=1} e rate of our streaming code must be upper bounded
pli,r +1] j=M—r by the capacity of the periodic erasure channel.
vl[i,j —r] Since the above periodic erasure channel consistg @f +
I;[i, M—j+ '1] j={M—r+1,...,M} b+1) channel packets in each period out of whiBfare erased

.(36) it follows that

_ !
We claim that in each case the number of sub-symbols released C < M(T +b+1) — (bM + B')
by x[i, j] compensates for any additional erasures introduces . _M(T +b+1)
by B;41. In particular note tha;,; can introduce no more which establishes the first part of our upper bound.

thann additional erasures via the last channel packet which T0 establish the second part of the upper bound, note that
is not included in3;. when B’ = 0 i.e., B = bM then in the above argument it

is sufficient to takel,crioqg = 1"+ b. Therefore repeating the

(38)

 j=A{1,...,r}: Inthis case, the revealedi, j] = uli,j] apove argument in this special case we have that
can be subtracted from[i + T, j] to recoverq[i+ T, j] € T
q"°°[] havingn sub-symbols. Thus, compensates for the Co—bmr < 7y (39)
n extra erased sub-symbols. _ Furthermore since the capacity is always a decreasingifumct
e j = r+1: The s sub-symbols ofufi,r + 1] helps in i, p (as the receiver can always simulate a longer erasure
recovering the”' sub-symbols oty[i+ 7', 7+1] € a"“[]. pyrst) it follows that (39) is also an upper bound for any

This together with the revealed — 7' sub-symbols of 5 _ bM + B’ where B’ > 0. This completes the justification
vl[i, 1] € v'*°[:] compensates for the extra erasures and ¢,, (37).

the claim follows. _ It only remains to consider last case with > &L andT" =

« j=A{r+2...,M—r—1}: In this case, the revealed; iy Theorem 1. The periodic erasure channel argument is not
channel packet i[i, j] = v[i,j — 7] € v**’[] and has gnt and therefore we consider the following argument Whic
n sub-symbols. simultaneously considers the effect of two different erasu

« J = M-r: The decoder can subtraei — T',7 + 1] from 1515 \We start by considering a channel that erases the firs
pli,7 + 1] to recover ther’ sub-symbolsqi,r + 1] €

q"°[-]. This together with then — ' sub-symbols of B = bM + B’ channel packets x[i,1],...,x[i + b, B’]}.
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Fig. 3. Periodic erasure channel used in the converse inoe¢t 7=20+T+1
—=b+2T+1
=20+T)+1

Since the delay constraint fefi] is i+7 = i+, the following simultaneously recover all the erased source symbols after the
equation should be satisfied, erasure burst. Since they do not perform sequential regover
H(s[i]|x[i + b, B’ +1],...,x[i + b, M]) = 0. (40) their achievable rates is significantly lower.
In our simulations in Fig. 5, we consider a two-state Gilbert
yannel model. In the bad state, each channel packet is
ets {X[z +b,M — B +1],...,x[i + 20, M]}. To recover |ost with a probability of1 whereas in the good state, the
s[i +b] by macro-packet + 2b the only available symbols are!0SsS pr'o.bability is0. We let o and 8 denote the transition
xli +0,1],...,x[i +b,M — B] probabgjltylfr?mtwe gr?od stlats t:) ttr;]e f)fr\]d state andbwﬁzers
. _ ) respectively for this channel. Note that the average ba
H(s[é + 8lx[i +b, 1), x[i +0,M = B) = 0. (41) ¢ his channel ist whereas the average loss rate k.
thaComblnlng (40) and (41) and using’ < M/2 we have | Fig. 5(a), we selectv = 10~° and j is varied on the
x-axis in the interval0.1, 0.4] which in turn changes the burst
H(s[i), sli-Hblcli+b, 1], . xli+b, M=B), x[i+b, B'+1],..., x[i+b, M) |angth distribution. We further seledt = 10, i.e., 10 channel

h h tandard ioulati it foll ztﬁ t(42) packets are generated for every source packet receive@ at th
rough some standard manipuiations it Tolows tha encoder. We fix the rat®R = 3/5 and the delayl’ = 3

Next we consider the channel erasing the channel pact

H;xgl(:mb 1[]}%‘}')]’){1 ;Hb( ])”73]”‘“”’3 Fioxli M])(43) macro packets. Under these conditions, the BEC code can
= TSt st o= s correct burst erasures of length up Bz = 16, whereas
Therefore we have that a Streaming Code (SCo) achievBsc, = 20. The optimal
2(M — B")H(x) > 2H(s) (44) code achieve® = 24. This gain in the burst-length is reflected
and thus in Fig. 5(a) as one can see that the proposed codes achieve a
H(s) M — B’ smaller loss probability. While the code parameters in FHig) 5
C= MH(x) < M (45) correspond to the first case in (7) the code parameters used in
as required. Fig. 5(b) correspond to the second case in (7). In this case
we selectM = 20, T = 4 and R = 9/14. The achievable
VII. NUMERICAL COMPARISONS ANDSIMULATIONS burst lengths for the BEC and SCo codes &tgpc = 35,

Bgsco = 44 while the optimal codes achievB = 50. We
Fig. 4 illustrates a numerical example comparing capamggam selecty = 10~ and vary;3 on the x-axis as illustrated.
with some baseline schemes. The achievable rate is shown on

the y-axis and the associated erasure burst length is shown VIIl. CONCLUSIONS
on the x-axis. We considet/ = 20 and a delay ofl’ = 5 Motivated by the application to wireless video, we propose
macro packets. We ploB € [40,80] in the left figure and a new family of low-delay streaming codes when the is a
B € [80,120] in the right figure. mismatch between the source frame rate and channel trans-
The capacity in each plot is shown by the blue-curvaission rate. Our proposed codes are optimal over the burst-
marked with squares whereas the red curve marked with sirckrasure channel. We show that a naive extension of preyiousl
denotes the rate achieved by a suitable modification of tree S@roposed streaming codes designed when the source-channel
code [4], [6] which is discussed in Section IV-B. We note thatites are matched can be sub-optimal. We also explicitly
the curves intersect whenevBris an integer multiple of\/, characterize the associated capacity and show that it nsmai
indicating the optimality of the SCo codes for these speciebnstant over a certain interval of burst-lengths, astilhied
values i,e, atB = {40,60,80,100}. Furthermore for burst in Fig. 4. Simulation results over the Gilbert channel asoal
lengths B > MT = 100, SCo codes are not feasible angbresented to show the improvements from the proposed codes
the associated rate is zero. The capacity function is cohstan achievable packet-loss rate.
in the intervalsB € [40,45], [60, 67], [80, 88],[100,110], as In this paper we only focused on the case when the channel
indicated in (10) and monotonically decreasing in the rést & an erasure burst channel. We expect that our constrgction
the intervals. The third class of codes — Baseline Eraswan be naturally extended to the case when the channel
Codes — discussed in Section IV-A are erasure codes that omiiroduces both burst and isolated erasures. Such an edens
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Fig. 4. Achievable rates for different code constructionsd given burst lengtiB and delay ofl’ = 5 macro packets with each having = 20 channel

packets.
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Fig. 5. Gilbert Channel Experiments with different parameilustrating the loss probabilities of different code stnctions.

can be done using a layered approach as was done for the caseate for delay at the transport and application layers, 28].no. 5, pp.

of matched source-channel rates in [6], [7]. This extengon

left for a future investigation.
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