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Abstract—We revisit two classes of previously proposedrobust
streaming-erasure codes — MIDAS codes and PRC codes —
which guarantee streaming recovery over a class of packet
erasure channels. We propose a modified construction for each
class using diagonally-interleaved MDS codes. Our proposed
codes have near identical performance over deterministic erasure
channels, but only require a field size that grows polynomially
in the delay. In contrast the previous constructions require that
the field size increase exponentially with the delay. We also
evaluate the performance of the proposed codes over Gilbert-
Elliott channels and show that some penalty does result when
finite field size is considered.

I. I NTRODUCTION

In recent years, multimedia applications such as video
conferencing, interactive gaming, voice over IP and cloud
computing have become widespread. Unlike traditional appli-
cations, these require stringent decoding delays and real-time
sequential encoding. Hence, it is of great importance to inves-
tigate codes and protocols that take delay into consideration.
In this paper, we focus on low delay streaming erasure codes
at the application layer. In the ultra-low delay regimes that we
consider, block codes are generally not suitable as they have
very short block lengths which reduces their error-correction
capability.

Low-delay streaming codes for channels that only introduce
erasure bursts are studied in [1]. These codes, referred to as
Maximally Short (MS) codes, can correct the maximum possi-
ble burst-length for a given rate and delay. However MS codes
suffer a significant packet loss rate, in the presence of other
packet loss patterns. In [2], [3], streaming codes designedfor
channels that introduce burst and isolated erasures are studied.
A tradeoff is established in [2] between the erasure correction
capabilities of burst and isolated losses. In [3], a near optimal
class of codes - Maximum Distance Span Tradeoff Codes
(MIDAS) codes - is proposed which uses two layers of parity-
checks, one for optimal burst erasure correction and another
for isolated erasures. Another class of codes - Partial Recovery
(PRC) codes - that can correct patterns consisting of both burst
and isolated erasures in a given window are also proposed.
One disadvantage of these codes is that both use Strongly-
Maximum Distance Separable (SMDS) codes as constituent
codes, which has a field size that increases exponentially in
the delay [4].

In this paper, we revisit the MIDAS and PRC code construc-
tions with the aim of reducing the field size. We show that
by suitably using Maximum Distance Separable (MDS) codes
instead of Strongly-MDS codes, the field size isO(T 3). The
MIDAS code with MDS constituent codes are shown to have
the same rate as that with Strongly-MDS constituent codes,
while PRC code with MDS has a slightly lower rate when
compared to its Strongly-MDS version.

II. STREAMING CODES: DEFINITION

We assume the source packets arrive sequentially at the
encoder. In particular, the encoder observes one source symbol
s[i] ∈ S at each timei ≥ 0 and generates a channel packet
x[i] ∈ X by causally combining the source symbols,

x[i] = fi(s[0], . . . , s[i]). (1)
We consider erasure channels where transmitted symbols

are either erasedy[i] = ⋆, or is perfectly receivedy[i] = x[i].
The decoder must recover the source symbols within a fixed
delayT . In particular, for eachi ≥ 0, there exists a decoding
function:

s[i] = gi(y[0], . . . ,y[i+ T ]). (2)

The rate of such streaming code is defined byR = H(s)
log2 |X |

is said to be achievable if there exists a feasible code that
satisfies (1) and (2). In the subsequent sections, we discusstwo
families of streaming codes designed for different classesof
packet erasures channels and introduce our proposed modified
approaches.

III. MIDAS C ODES

In this section, we consider channels with the following
property: in any sliding window of lengthW , the channel can
introduce either a burst of length no more thanB erasures or
a maximum ofN ≤ B erasures in arbitrary locations. We
denote this channel byCI(N,B,W ). Throughout the analysis
of ChannelI, we selectW = T + 1 where recall thatT is
the decoding delay. We first consider an upper bound on the
achievable rate, which was presented in [2].

Theorem 1 (Badr et al. [2]). Any achievable rate for
CI(N,B, T + 1), satisfies

(

R

1−R

)

B +N ≤ T + 1. (3)



and furthermoreN ≤ B andB ≤ T . �

Theorem 1 shows that when the rateR and delayT are
fixed there exists a tradeoff between the achievable values
of B and N . We briefly note two families of codes which
are optimal for extreme cases ofB andN . For the special
case ofN = 1, the maximum value ofB in (3) is given by
B+ = T · min

(

1−R
R

, 1
)

. It is achievable using Maximally
Short Codes (MS) introduced in [1]. For the special case
of B = N , the maximum value ofN in (3) is given by
N+ = (1−R)(T + 1). It can be achieved using Maximum
Distance Profile Codes in [5].

For the general choice of parametersB and N , Badr et
al. [3] proposed a class of codes, MIDAS which generalizes
both MS codes and Strongly-MDS codes. MIDAS codes are
shown to achieve a near optimal tradeoff betweenN andB.
The main steps of this construction is as follows:

• Divide each source symbolss[i] into two groupsu[i] ∈
F
B
q andv[i] ∈ F

T−B
q .

• Apply a rateT−B
T

systematic Strongly-MDS code to the
v[·] symbols generating the parity-check symbolsp

v[·] ∈
F
B
q .

• Combine theu[·] symbols withp
v[·] after applying a

shift of T to the earlier, i.e.,q[i] = p
v[i] + u[i− T ].

• Apply another systematic Strongly-MDS code of rate
T−N+1
T+1 to theu[·] symbols generating the parity-check

symbolspu[·] ∈ F

BN

T−N+1

q .
• Concatenate the two streams of parity-check symbols

q[·] andpu[·] to the source symbolss[i] to generate the
channel symbol,

x[i] = (u[i],v[i],q[i],pu[i])
† (4)

The rate of the code constructed in (4) isR = T

T+B+ NB

T−N+1

.

We denote this construction by MIDAS-SMDS. The main dis-
advantage in the above construction is the use of a Strongly-
MDS constituent code. While the Strongly-MDS code has
a random-linear code type behavior, which is desirable, its
required field size [4, Theorem 3.3] grows exponentially in
the delayT . We propose an alternative construction, MIDAS-
MDS, which replaces Strongly-MDS codes with diagonally
interleaved MDS codes. The main advantage of the proposed
construction is that the field size grows asO(T 3). The
encoding steps are as follows:

A. Encoding

• Spit each source symbolss[i] into (T − N + 1)T sub-
symbols,s[i] = (s0[i], . . . , s(T−N+1)T−1[i]).

• Divide them into two groups,
s[i] = (u[i],v[i]), (5)

where
u[i] = (u0[i], . . . , u(T−N+1)B−1[i])

= (s0[i], . . . , s(T−N+1)B−1[i]) (6)

v[i] = (v0[i], . . . , v(T−N+1)(T−B)−1[i])

= (s(T−N+1)B[i], . . . , s(T−N+1)T−1[i]). (7)

• Apply a (T, T − B) systematic MDS code to thev[·]
symbols with interleaving factor ofT − N + 1, gen-
erating (T − N + 1)B parity-check symbols,pv[i] =
(pv0[i], . . . , p

v
(T−N+1)B−1[i]), i.e., the codeword of such

MDS code starting atvj [i] is given by,

c
v
j [i] =

































vj [i]
vj+(T−N+1)[i+ 1]
vj+2(T−N+1)[i+ 2]

...
vj+(T−N+1)(T−B−1)[i+ T −B − 1]

pvj [i+ T −B]
pv
j+(T−N+1)[i+ T −B + 1]

...
pv
j+(T−N+1)(B−1)[i+ T − 1]

































,

(8)
for j = {0, 1, . . . , T −N}.

• Combine theu[·] symbols with the parity-check symbols
p
v[·] after applying a shift ofT to the earlier, i.e.,q[i] =

p
v[i] + u[i − T ].

• Apply a (T + 1, T − N + 1) systematic MDS
code to theu[·] symbols with interleaving factor of
B, generatingBN parity-check symbols,pu[i] =
(pu0 [i], . . . , p

u
BN−1[i]), i.e., the associated codeword start-

ing at uj[i] is given by,

c
u
j [i] =

































uj[i]
uj+B [i+ 1]
uj+2B[i + 2]

...
uj+B(T−N)[i+ T −N ]

puj [i+ T −N + 1]
puj+B [i+ T −N + 2]

...
pu
j+B(N−1)[i+ T ]

































, (9)

for j = {0, 1, . . . , B − 1}.
• Concatenate the parity-check symbolsp

u[·] to the pre-
viously generated parity-check symbolsq[·], i.e., the
channel symbol is given by,

x[i] = (u[i],v[i],q[i],pu[i])† (10)

B. Decoding

For the case of burst erasure, we assume the channel intro-
duces an erasure burst of lengthB in the interval[i, i+B−1].
It suffices to show thats[i] = (u[i],v[i]) can be recovered by
time T .

The decoder starts by recovering the parity-check symbols
p
I[t] for t ∈ [i+B, i+ T − 1] by subtractingu[t− T ] from

q[t] as they are not erased. However the parity-check symbols
p
I[t] for t ∈ [i+T, i+T+B−1] are considered not available

as they combineu[t− T ] which are erased. One can see that
for all cvj [r] codewords forr ∈ {i − (T − B) + 1, . . . , i +
B − 1} and j = {0, 1, . . . , T − N} spanning the erasedv[·]
sub-symbols in the interval[i, i + B − 1], there are at most
B erasures corresponding to symbols falling in the intervals



[i, i+B−1] and[i+T, i+T+B−1]. Therefore, the symbols
v[i], . . . ,v[i +B − 1] can be recovered by timei+ T − 1.

Now, the decoder computes the parity-check symbolp
I[i+

T ] as it combinesv[·] which are either not erased or recovered
in the previous step and subtract it fromq[i + T ] to recover
u[i]. This completes the recovery ofs[i] when the channel
introduces an erasure burst in the interval[i, i+B − 1].

For the isolated erasure capability, we assume the channel
introducesN erasures in arbitrary positions in the window
[i, i + T ]. Similar to the burst case, it suffices to show that
s[i] = (u[i],v[i]) can be recovered by timeT . The recovery
of u[i] andv[i] are done separately. Forv[i] it can be verified
that all codewordscvj [r] for r ∈ {i− (T −B)+ 1, . . . , i} and
j = {0, 1, . . . , T − N} have no more thanN ≤ B erasures.
Thus, all sub-symbols ofv[i] are recovered by timeT − 1
since the parity-check symbolspv[·] in the interval[0, T − 1]
are available. Foru[i], we consider the codewordscuj [r] for
r ∈ {i− (−N), . . . , i} and j = {0, 1, . . . , B − 1}. Similarly,
all considered codewords have no more thanN erasures and
thusu[i] can be recovered by timeT and the claim follows.

We note that for a given pair(N,B) and a delayT , both
MIDAS-SMDS and MIDAS-MDS codes achieve the same rate
R = T

T+B+ NB

T−N+1

. However as we argue next, MIDAS-MDS

code requires a much smaller field-size in general. Splitting
each source symbol into(T −N +1)T sub-symbols requires
that each source symbol consist ofq1 = (T −N + 1)T sub-
symbols. We therefore need to determine the field size of each
sub-symbol. Using the well-known fact that an(n, k) MDS
codes exists for any field-size which is a prime number greater
thann we note that the field size needed for both(T, T −B)
and(T +1, T −N +1) MDS codes to exist isq2 = p(T +1)
wherep(n) is the smallest prime greater thann are known to
exist. Thus the required field size isq = q1 · q2.

C. Example

Table I illustrates a MIDAS-MDS construction for
(N,B) = (2, 3) and T = 4 achieving a rate ofR =

T

T+B+ NB

T−N+1

= 4
9 . The encoding steps are as follows,

• Split each source symbols[i] into (T − N + 1)T = 12
sub-symbols. The first(T −N + 1)B = 9 of which are
(u0[i], . . . , u8[i]) while the last(T −N+1)(T −B) = 3
are(v0[i], v1[i], v2[i]).

• Apply a (T, T − B) = (4, 1) MDS code to thev sub-
symbols with an interleaving factor ofT − N + 1 = 3
as shown using the shaded boxed in Table I. This
generates(T −N + 1)B = 9 parity-check sub-symbols
(pv0[i], . . . , p

v
8[i]).

• Combine theu symbolsu0, . . . , u8 with the generated
parity-check symbolspv after applying a shift ofT units
to the former.

• Apply a (T +1, T −N +1) = (5, 3) MDS code to theu
symbols with an interleaving factor ofB = 3 generating
BN = 6 parity-check sub-symbols(pu0 [i], . . . , p

u
5 [i]) as

illustrated by the white boxes in Table. I.
The decoding steps are straight forward by following all
codewords spanning the erased symbols.

[i] [i+ 1] [i+ 2] [i+ 3] [i+ 4]

u0[i] u0[i+ 1] u0[i+ 2] u0[i+ 3] u0[i+ 4]

u1[i] u1[i+ 1] u1[i+ 2] u1[i+ 3] u1[i+ 4]
u2[i] u2[i+ 1] u2[i+ 2] u2[i+ 3] u2[i+ 4]

u3[i] u3[i+ 1] u3[i+ 2] u3[i+ 3] u3[i+ 4]

u4[i] u4[i+ 1] u4[i+ 2] u4[i+ 3] u4[i+ 4]
u5[i] u5[i+ 1] u5[i+ 2] u5[i+ 3] u5[i+ 4]

u6[i] u6[i+ 1] u6[i+ 2] u6[i+ 3] u6[i+ 4]

u7[i] u7[i+ 1] u7[i+ 2] u7[i+ 3] u7[i+ 4]
u8[i] u8[i+ 1] u8[i+ 2] u8[i+ 3] u8[i+ 4]

v0[i] v0[i+ 1] v0[i+ 2] v0[i+ 3] v0[i+ 4]

v1[i] v1[i+ 1] v1[i+ 2] v1[i+ 3] v1[i+ 4]
v2[i] v2[i+ 1] v2[i+ 2] v2[i+ 3] v2[i+ 4]

pv
0
[i] pv

0
[i+ 1] pv

0
[i+ 2] pv

0
[i+ 3] pv

0
[i+ 4]

pv
1
[i] pv

1
[i+ 1] pv

1
[i+ 2] pv

1
[i+ 3] pv

1
[i+ 4]

pv
2
[i] pv

2
[i+ 1] pv

2
[i+ 2] pv

2
[i+ 3] pv

2
[i+ 4]

pv
3
[i] pv

3
[i+ 1] pv

3
[i+ 2] pv

3
[i+ 3] pv

3
[i+ 4]

pv
4
[i] pv

4
[i+ 1] pv

4
[i+ 2] pv

4
[i+ 3] pv

4
[i+ 4]

pv
5
[i] pv

5
[i+ 1] pv

5
[i+ 2] pv

5
[i+ 3] pv

5
[i+ 4]

pv
6
[i] pv

6
[i+ 1] pv

6
[i+ 2] pv

6
[i+ 3] pv

6
[i+ 4]

pv
7
[i] pv

7
[i+ 1] pv

7
[i+ 2] pv

7
[i+ 3] pv

7
[i+ 4]

pv
8
[i] pv

8
[i+ 1] pv

8
[i+ 2] pv

8
[i+ 3] pv

8
[i+ 4]

pu
0
[i] pu

0
[i+ 1] pu

0
[i+ 2] pu

0
[i+ 3] pu

0
[i+ 4]

pu
1
[i] pu

1
[i+ 1] pu

1
[i+ 2] pu

1
[i+ 3] pu

1
[i+ 4]

pu
2
[i] pu

2
[i+ 1] pu

2
[i+ 2] pu

2
[i+ 3] pu

2
[i+ 4]

pu
3
[i] pu

3
[i+ 1] pu

3
[i+ 2] pu

3
[i+ 3] pu

3
[i+ 4]

pu
4
[i] pu

4
[i+ 1] pu

4
[i+ 2] pu

4
[i+ 3] pu

4
[i+ 4]

pu
5
[i] pu

5
[i+ 1] pu

5
[i+ 2] pu

5
[i+ 3] pu

5
[i+ 4]

TABLE I: MIDAS-MDS code construction for(N,B) =
(2, 3), a delay ofT = 4 and rateR = 4/9. We note that
each of the parity-check sub-symbolspvj [t] is combined with
uj[t− 4] for j = {0, 1, . . . , 8} but are omitted for simplicity.

IV. PRC CODES

Partial Recovery Codes (PRC) considered in this section
are designed for the channel with the following property: in
any sliding window of lengthW , the channel can introduce
no more than a burst of maximum lengthB and one isolated
erasure (before or after the burst). We denote such channel by
CII(B,W )1. The term “partial recovery” is used because these
codes do not attempt to recover every erased source packet,
but only recover a subset. In [3], PRC codes are studied for
the special case whenW = ∞. The channel can introduce one
erasure burst and one isolated erasure anywhere either before
or after the burst. We summarize the proposed construction
below:

• Divide each source symbolss[i] into two groupsu[i] ∈
F
u
q andv[i] ∈ F

v
q whereu = (B+1)(T −∆+1)− (∆−

B − 1) andv = (T −∆+ 1)(∆−B − 1).
• Apply a rate v

v+u
systematic Strongly-MDS code to the

v[·] symbols generating the parity-check symbolsp
I[·] ∈

F
u
q .

• Combine theu[·] symbols with the parity-check symbols
p
I[·] after applying a shift of∆ ≤ T to theu[·] symbols,

1Codes designed for channelCII(B,W ) can be modified to correct isolated
erasures by adding an extra layer of parity-check symbols similar to that in
the MIDAS construction



i.e., q[i] = p
I[i] + u[i−∆].

• Apply another systematic Strongly-MDS code of rate
v

v+s
to thev[·] symbols which generates the parity-check

symbolspII[·] ∈ F
s
q wheres = ∆−B − 1.

• Concatenate the two streams of parity-check symbols
p
I[·] and p

II[·] to the source symbolss[i] to generate
the channel symbol,

x[i] =
(

u[i],v[i],q[i],pII[i]
)†

(11)

We refer to the construction in (11) as PRC-SMDS code.
Such construction achieves a rate of,

R =
u+ v

2u+ v + s

=
∆(T −∆) + (B + 1)

∆(T −∆) + (B + 1)(T −∆+ 2)
(12)

Maximizing R by finding the optimal∆, one gets,

R⋆ =
(T + 2)

√
T −B − 2(T −B)

(T + B + 3)
√
T −B − 2(T −B)

. (13)

As with the case of MIDAS codes, we propose a construc-
tion which replaces Strongly-MDS codes in the PRC-SMDS
construction with MDS codes. We denote this construction by
PRC-MDS code. The detailed encoding steps are as follows:

A. Encoding

• Spit each source symbolss[i] into (T − ∆ + 1)∆ sub-
symbols,s[i] = (s0[i], . . . , s(T−∆+1)∆−1[i]).

• Divide them into two groups,
s[i] = (u[i],v[i]), (14)

where
u[i] = (u0[i], . . . , u(T−∆+1)(B+1)−1[i])

= (s0[i], . . . , s(T−∆+1)(B+1)−1[i]) (15)

v[i] = (v0[i], . . . , v(T−∆+1)(∆−B−1)−1[i])

= (s(T−∆+1)(B+1)[i], . . . , s(T−∆+1)∆−1[i]). (16)
• Apply a systematic(∆,∆ − B − 1) MDS code to the

v[·] symbols with interleaving factor ofT − ∆ + 1,
generating(T − ∆ + 1)(B + 1) parity-check symbols,
p
I[·] = (pI0[i], . . . , p

I
(T−∆+1)(B+1)−1[i]). The resulting

codeword of the such MDS code starting atvj [i] is given
by,

c
I
j [i] =

































vj [i]
vj+(T−∆+1)[i+ 1]
vj+2(T−∆+1)[i+ 2]

...
vj+(T−∆+1)(∆−B−2)[i+∆−B − 2]

pIj[i+∆−B − 1]
pI
j+(T−∆+1)[i+∆−B]

...
pI
j+(T−∆+1)B[i+∆− 1]

































,

(17)
for j = {0, 1, . . . , T −∆}.

• Combine theu[·] symbols with the parity-check symbols
p
I[·] after applying a shift of∆ to the earlier, i.e.,q[i] =

p
I[i] + u[i−∆].

• Apply a systematic(T −∆+2, T −∆+1) MDS code to

the v[·] symbols with interleaving factor of∆−B − 1,
generating∆ − B − 1 parity-check symbols,pII[·] =
(pII0 [i], . . . , p

II
(∆−B−1)−1[i]), i.e., the resulting codeword

would be,

c
II
j [i] =



















vj [i]
vj+(∆−B−1)[i+ 1]
vj+2(∆−B−1)[i+ 2]

...
vj+(∆−B−1)(T−∆)[i+ T −∆]

pIj [i+ T −∆+ 1]



















, (18)

for j = {0, 1, . . . ,∆−B − 2}.
• Concatenate the parity-check symbolsp

II[·] to the pre-
viously generated parity-check symbolsq[·], i.e., the
channel symbol is given by,

x[i] =
(

s[i],q[i],pII[i]
)

. (19)
One can see that the rate of the constructed code in (19) is

given by,

R =
(T −∆+ 1)∆

(T −∆+ 1)(∆ +B + 1) + (∆−B − 1)
. (20)

Similar to the case of PRC-SMDS codes, the optimal value
of ∆ (ignoring integer effects) for maximizing the rateR can
be shown to be:

∆⋆ =
T (B + 1)−

√

T (B + 1)(T −B)

B
. (21)

B. Decoding

We assume the channel introduces an erasure burst of length
B in the interval[i, i+B−1] together with an isolated erasure
happening at timeti. We consider the following cases:

• ti ∈ [i− T, i− (T −∆)− 1]: In this case, thev[ti] can
be recovered using the parity-check symbolsp

II[·] of the
(T −∆+ 2, T −∆+ 1) MDS code by timeti + (T −
∆+2)− 1 ≤ i. This is because the codewordsc

II
j [r] for

r = {ti − T + ∆, . . . , ti} and j = {0, 1, . . . ,∆ − B −
2} have no more than one erasure. Now, the symbols
v[i], . . . ,v[i+B− 1] can be recovered using the parity-
check symbolspI[·] of the (∆,∆ − B − 1) MDS code
by time i + ∆ − 1. Thus the symbolsu[i], . . . ,u[i +
B − 1] can be recovered at timei + ∆, . . . , i + ∆ +
B−1 sequentially by subtracting the correspondingp

II[·]
parity-check symbols. We note that ifti + ∆ /∈ [i, i +
B − 1], one can recoveru[ti], otherwise it is lost.

• ti ∈ [i − (T − ∆), i − 1]: Here, both thev[·] symbols
of isolated erasure together with that of the erasure burst
are recovered using the(∆,∆ − B − 1) MDS code. In
particular,v[ti] is recovered by timeti+∆−1 using the
associated MDS code, whilev[i], . . . ,v[i+B−1] are all
guaranteed to be recovered by timei+∆−1 as explained
in the MIDAS decoder. Now, theu[·] symbols can be
recovered sequentially at timei+∆, . . . , i+∆+B− 1.

• ti ∈ [i+B, i+∆− 1]: Thev[·] symbols of the erasure
burst can be recovered using the(∆,∆ − B − 1) MDS
code at timei+∆−1 since there is no more thanB+1
erasures in each of the codewords,c

I
j [r] for r = {i −

∆+B + 2, . . . , i+B − 1} andj = {0, 1, . . . , T −∆}.
The v[ti] symbol can now be recovered using the(T −
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Fig. 1: Rates for different ChannelCII codes.

∆ + 2, T − ∆ + 1) code by timeti + T − ∆ + 1 ≤
i +∆ − 1 + T −∆+ 1 = i + T since allv[·] symbols
are recovered except for one. Now, the decoder can go
back and compute the parity-check symbolsp

I[·] in the
interval[i+∆, i+∆+B−1] and subtract them to compute
u[i], . . . ,u[i+B− 1]. Also, u[ti] can be recovered later
at time ti +∆.

• ti ∈ [i + ∆, i + ∆ + B − 1]: Similar to the previous
case, thev[·] symbols of the erasure burst are recovered
by time i+∆− 1 since the codewords. Now the parity-
check symbolspI[·] in the interval [i + ∆, ti − 1] can
be computed and subtracted to recoveru[i], . . . ,u[ti −
∆ − 1]. The v[ti] symbol can be recovered using the
(T −∆+2, T −∆+1) by time ti+(T −∆)+1. At this
time the decoder goes back to compute the parity-check
symbolspI[·] in the interval[ti + 1, i+∆+B − 1] and
subtract them to recoveru[ti−∆+1], . . . ,u[i+B− 1].
Also,u[ti] can be recovered later at timeti+∆. We note
that u[ti − ∆] can not be recovered since the isolated
erasure at timeti erases its repeated version.

Unlike the case of MIDAS codes, PRC-MDS codes has
slightly lower rate than PRC-SMDS codes for a givenB and
T . Fig. 1 shows the achieved rates of both codes forB = 10,
20 and 30 and different values ofT . The gap between the
achieved rates of both codes increases withT but decreases
with increasingB.

Computing the sufficient field size for constructing PRC-
MDS codes is similar to that of MIDAS-MDS codes. The
source vector must consist ofq1 = (T−∆+1)∆ sub-symbols.
Also, the(∆,∆−B− 1) and(T −∆+2, T −∆+1) MDS
codes can be constructed if the field sizeq2 = p(max(∆, T −
∆+2)). Thus, for a given pairB and a delayT , a field size
of q = q1 ·q2 - grows asO(T 3) - is sufficient to construct the
corresponding PRC-MDS code.

V. PERFORMANCE INNON-IDEAL ERASURE PATTERNS

In this section, we give some qualitative insights on why
MIDAS and PRC with MDS constituent codes in fact have
an inferior performance than their Strongly-MDS versions in
simulation over Gilbert-Elliott channels. We explain thisby
considering specific erasure patterns.

A. MIDAS Codes

We argue that when the channel introduces a burst and
one isolated erasure, MIDAS-MDS codes are more sensitive
when compared to MIDAS-SMDS codes. We illustrate this
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Fig. 2: Non-ideal erasure patterns for (a) MIDAS and (b) PRC
codes.

argument through the following example. We consider both
versions of MIDAS codes with(N,B) = (2, 4) andT = 6. If
the actual channel introduces a burst of length3 in the interval
[0, 2] and one isolated erasure at time4 as shown in Fig. 2,
a MIDAS-SMDS code can recover all erasuesv[·] symbols
by time 5 and then recover theu[·] symbols sequentially and
perfect recovery follows. While in the MIDAS-MDS version,
the (T, T − B) = (6, 2) MDS recoversv[4] at time 9 as
shown in Fig. 2. This is already after the deadline ofs[0], s[1]
and s[2] thus these are not recovered. More generally, when
the channel introduces a burst of lengthBp in the interval
[0, Bp−1] whereN < Bp < B and an isolated erasure in the
interval [Bp +1, T − ⌈T/B⌉] MIDAS-SMDS will recover all
the erased symbols whereas MIDAS-MDS will fail to recover
any of the erased symbols in the burst.

B. PRC Codes

We argue that PRC-SMDS codes are more robust when
compared to PRC-MDS codes when the channel introduces
bursts longer than the targeted value ofB. Consider both PRC-
SMDS and PRC-MDS codes withB = 3 and T = 12 and
a channel introducing a burst of length5 > B + 1 = 4 in
the interval[0, 4] as illustrated in Fig. 2. It can be shown that
the value of∆ for both codes is10. For the Strongly-MDS
version, the decoder will use parity-check symbols at time15
together with those in the interval[5, 9] and thepII[·] in the
interval [10, 14] to recover the erasedv[·] symbols. Now (at
time 15), the decoder can recoveru[0], . . . ,u[4] within delays
of {15, 14, 13, 12, 11}, respectively, i.e., a partial recovery of
2 symbols,s[3] ands[4]. On the other hand, PRC-MDS fails
to recoverv[4] as the associated diagonalcIj [4] has more
than B + 1 erasures at timet ∈ {4, 10, 11, 12, 13}. Hence,
the entire erasure burst is lost.

VI. SIMULATION RESULTS

We consider a Gilbert-Elliott channel model with two states,
bad-state and good-state. The probability that the symbol is
lost in the bad-state is1 while that in the good-state isε.
In other words, the channel introduces bursts in the bad-state,
i.i.d. erasures in the good-state and both in the transitionfrom
bad-state to good-state or vice versa.

The Channel and Code parameters used in both experiments
are given in Table. II.



1 2 3 4 5 6 7 8 9 10

x 10
−3

10
−5

10
−4

10
−3

10
−2

ε

Lo
ss

 P
ro

ba
bi

lit
y

Gilbert Channel − (α,β) = (5 x 10−4,0.5), Simulation Length = 107, T = 12, Rate = 12/23 ≈ 0.52

 

 

Uncoded
MDP (N= B = 6)
MDS (N = B = 6)
MS−MDP (N,B) = (1,11)
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MiDAS−MDP (N,B) = (2,9)
MiDAS−MDS (N,B) = (2,9)

(a) Simulation over a Gilbert-Elliott Channel with(α, β) = (5× 10−4, 0.5).
All codes are evaluated using a decoding delay ofT = 12 symbols and a rate
of R = 12/23 ≈ 0.52.
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MDP (N= B = 25)
MDS (N = B = 25)
MS−MDP (N,B) = (1,49)
MS−MDS (N,B) = (1,49)
MiDAS−MDP (N,B) = (6,43)
MiDAS−MDS (N,B) = (6,43)
PRC−MDP (∆,N,B) = (47,5,39)
PRC−MDS (∆,N,B) = (48,5,38)

(b) Simulation over a Gilbert-Elliott Channel with(α, β) = (10−5, 0.1). All
codes are evaluated using a decoding delay ofT = 50 symbols and a rate of
R = 50/99 ≈ 0.51.

Fig. 3: Simulation Experiments for Gilbert-Elliott Channel Model with different parameters.

Fig. 3(a) Fig. 3(b)
(α, β) (5× 10−4, 0.5) (5× 10−5, 0.1)
Channel Length 107 108

RateR 12/23 ≈ 0.52 50/99 ≈ 0.51
Delay T 12 50

N B N B
Strongly-MDS 6 6 25 25
MDS 6 6 25 25
MS-SMDS 1 11 1 49
MS-MDS 1 11 1 49
MIDAS-SMDS 2 9 6 43
MIDAS-MDS 2 9 6 43
PRC-SMDS - - 5 39
PRC-MDS - - 5 38

TABLE II: Channel and Code Parameters used in Simulations.

In Fig. 3(a) and Fig. 3(b), we plot the loss rate on the y-
axis versusε on the x-axis. The loss rate of the Strongly-MDS
version of all codes is shown in solid lines while that of the
MDS version of the same codes is shown in dashed lines. The
performance of various codes is as follows:

• Strongly-MDS (Maximum N ) Codes- Black Lines
As discussed earlier, Strongly-MDS codes achieve the
maximum value ofN for a given rateR and delayT .
Another way of achieving the sameN is splitting each
source symbol intoT −N+1 sub-symbols and applying
a (T+1, T−N+1) MDS code along the diagonals. Due
to the large value ofN for both codes, they can recover
from all erasures in the good-state which explains the
independence onε in the interval of interest. The loss
probability of these codes is determined by the bursts
of length longer thanN . However, one can see that
Strongly-MDS codes has a slightly better performance
which is due to its capability of partial recovery when
the channel introduces bursts longer thanN .

• Maximally Short (Maximum B) Codes- Red Lines
Maximally Short (MS) codes can be considered as a
special case of MIDAS codes with nopu[·] parity-check
symbols added. One can see that for both MS-SMDS
and MS-MDS codes, there is a noticeable increase in the
loss rate in the interval ofε considered. The packet loss
probability increases in proportion toε2 asN = 1 for
these codes.

• MIDAS Codes - Blue Lines
With choosing the right pair(N,B), the MIDAS codes
has a largerB compared to maximumN codes and larger
N compared to maximumB codes. Thus, they achieve
a better performance than both codes for some values
of ε. However, the performance deteriorates faster than
that of Strongly-MDS codes. This is because of the bad
performance of MIDAS codes against burst plus isolated
erasure patterns introduces by the Gilbert-Elliott channel
in the transition from bad to good states and vice versa
as discussed in section V. However, the performance of
MIDAS-MDS deteriorates slightly faster than MIDAS-
SMDS codes which is due to an even worse performance
when facing a subset of the burst plus isolated erasure
patterns (c.f. V).

• PRC Codes- Green Lines
PRC codes are designed to recover from burst and
isolated erasures with a maximum loss of one symbol.
This explains the slower deterioration in performance
when compared to MIDAS codes. We note that PRC
codes are not plotted in Fig. 3(a) as forR = 12/23 and
T = 12 andN ≥ 2, a PRC code achievesB ≤ 6 which
is what an MDS or Strongly-MDS code achieves in this
case. Thus, the performance of PRC codes is expected to
be close to these constructions. The PRC-SMDS codes
also outperform PRC-MDS codes due to the better partial
recovery property discussed before as well as the slightly
larger value ofB in Table II.
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