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Abstract—We revisit two classes of previously proposedobust In this paper, we revisit the MIDAS and PRC code construc-

streaming-erasure codes — MIDAS codes and PRC codes — tions with the aim of reducing the field size. We show that
which guarantee streaming recovery over a class of packet p,, oitaply using Maximum Distance Separable (MDS) codes
erasure channels. We propose a modified construction for ebc . ) . 3

class using diagonally-interleaved MDS codes. Our propode instead of Strongly-MDS cod_es, the field size(¢7™"). The
codes have near identical performance over deterministicrasure  MIDAS code with MDS constituent codes are shown to have
channels, but only require a field size that grows polynomidy the same rate as that with Strongly-MDS constituent codes,

in the delay. In contrast the previous constructions requie that \while PRC code with MDS has a slightly lower rate when
the field size increase exponentially with the delay. We also compared to its Strongly-MDS version.

evaluate the performance of the proposed codes over Gilbert
Elliott channels and show that some penalty does result when II. STREAMING CODES DEEINITION

finite field size is considered. ) ]
We assume the source packets arrive sequentially at the

. INTRODUCTION encoder. In particular, the encoder observes one sourdeaym

In recent years, multimedia applications such as vidé{/] € S at each timei > 0 and generates a channel packet
conferencing, interactive gaming, voice over IP and clowdi] € X' by causally combining the source symbols,
computing have become widespread. Unlike traditionaliappl x[i] = fi(s[0], ..., s[i]). Q)
cations, these require stringent decoding delays andireal- We consider erasure channels where transmitted symbols
sequential encoding. Hence, it is of great importance tesav are either erased[i| = «, or is perfectly receiveg|:] = x[i].
tigate codes and protocols that take delay into considerati The decoder must recover the source symbols within a fixed
In this paper, we focus on low delay streaming erasure codéslay 7. In particular, for eachi > 0, there exists a decoding
at the application layer. In the ultra-low delay regimegtha function:
consider, block codes are generally not suitable as theg hav sli] = g:(y[0],...,y[i + T)). 2
very short block lengths which reduces their error-cofeect q rate of such streamin H(s

)
i . . ; . .  log, | X]
capability. is said to be achievable if there exists a feasible code that

Low-delay streaming codes for channels that only introduggisfies (1) and (2). In the subsequent sections, we disonss
erasure bursts are studied in [1]. These codes, referred W gnijies of streaming codes designed for different classfes

Maximally Short (MS) codes, can correct the maximum possl, ket erasures channels and introduce our proposed nabdifie
ble burst-length for a given rate and delay. However MS COdSﬁproaches.

suffer a significant packet loss rate, in the presence ofrothe
packet loss patterns. In [2], [3], streaming codes desidoed [1l. MIDAS CODES
channels that introduce burst and isolated erasures atiedtu | this section, we consider channels with the following

A tradeoff is established in [2] between the erasure caoect property: in any S||d|ng window of |engtW, the channel can
capabilities of burst and isolated losses. In [3], a neaintgit introduce either a burst of length no more thArerasures or
class of codes - Maximum Distance Span Tradeoff Codgsmaximum of N < B erasures in arbitrary locations. We
(MIDAS) codes - is proposed which uses two layers of paritytenote this channel bg; (N, B, W). Throughout the analysis
checks, one for optimal burst erasure correction and anotly® channell, we selectiV = T + 1 where recall thafl is

forisolated erasures. Another class of codes - Partial g0 the decoding delay. We first consider an upper bound on the
(PRC) codes - that can correct patterns consisting of batit buschievable rate, which was presented in [2].

and isolated erasures in a given window are also proposed. _

One disadvantage of these codes is that both use Strondijeorem 1 (Badr et al. [2]) Any achievable rate for
Maximum Distance Separable (SMDS) codes as constituét/V; B, T + 1), satisfies

codes, which has a field size that increases exponentially in i) B+ N<T+1. ©)
the delay [4]. I-R

g code is defined by=




and furthermoreN < B andB < T. O

Theorem 1 shows that when the rafeand delayT are
fixed there exists a tradeoff between the achievable values
of B and N. We briefly note two families of codes which
are optimal for extreme cases & and N. For the special
case of N = 1, the maximum value oB in (3) is given by
Bt = T -min (3£,1). It is achievable using Maximally
Short Codes (MS) introduced in [1]. For the special case
of B = N, the maximum value ofN in (3) is given by
Nt =(1-R)(T+1). It can be achieved using Maximum
Distance Profile Codes in [5].

For the general choice of parametdssand N, Badr et
al. [3] proposed a class of codes, MIDAS which generalizes
both MS codes and Strongly-MDS codes. MIDAS codes are
shown to achieve a near optimal tradeoff betwéérand B.

The main steps of this construction is as follows:

«» Divide each source symboigi] into two groupsuli] €
FZ andv(i] €

. Apply a rateT i systematic Strongly-MDS code to the

v[-] symbols generatmg the parity-check symhpts] €

FB

. Comblne theu[-] symbols withp”[-] after applying a
shift of T' to the earlier, i.e.q[i] = p[i] + ufi — T].

« Apply another systematic Strongly-MDS code of rate

= to theu[] symbols generating the parity-check

symbolsp¥[-] €

« Concatenate the two streams of parity-check symbols
q[-] andp*[-] to the source symbolgi] to generate the

channel symbol,

x|i]

__BN
T-N+1
FI N7

(uli]. v[i]. ali], p"[i])' (4)
The rate of the code constructed in (4Hs= W

We denote this construction by MIDAS-SMDS. The main dis-
advantage in the above construction is the use of a Strongly-
MDS constituent code. While the Strongly-MDS code has
a random-linear code type behavior, which is desirable, its
required field size [4, Theorem 3.3] grows exponentially in *®
the delayT'. We propose an alternative construction, MIDAS-
MDS, which replaces Strongly-MDS codes with diagonally
interleaved MDS codes. The main advantage of the proposed
construction is that the field size grows &¥(7°). The
encoding steps are as follows:

c FT-B, ®

e Apply a (T, T — B) systematic MDS code to the|[]

symbols with interleaving factor of' — N + 1, gen-
erating(T — N + 1)B parity—check symbolsp®[i] =

(813), - Plr_n1)5-1li)). €., the codeword of such
MDS code starting at;[:] is glven by,
v;i] ' T
Vj(r-N+1) i+ 1]
Vjy2(r-N+1)[i + 2]
cjli] = Vi (r—N+1)(T—B-n[i +T =B —=1] | |
pili+T - B
Pioar-nypli+T = B+1]
L Plha-viyepli+T =1
(8)
for j={0,1,..., T — N}.

Combine theu[-] symbols with the parity-check symbols
p*[-] after applying a shift of” to the earlier, i.e.q[i] =
pU[i] + uli — T).

e Apply a (T + 1,T — N + 1) systematic MDS

code to theu[] symbols with interleaving factor of
B, generating BN parity-check symbols,p“[i] =

(pylil, - .. ' PBN - 1[4]), i.e., the associated codeword start-
ing atw;[7] is given by,
[ w;i] |
uj+pli+1]

wj2p[i + 2]

ujrpr-n[i+T = NJ
pili+T — N +1]
P pli+T — N +2]

; 9)

L Pipw-pli+T]
for j ={0,1,...,B —1}.
Concatenate the parity-check symb@l¥[-] to the pre-

viously generated parity-check symbolg:], i.e., the
channel symbol is given by,
x[i] = (ulil, v[i], ali], p"[i))' (10)

B. Decoding

A. Encoding
« Spit each source symbotgi] into (' — N + 1)T sub-

symbols,s[i| = (so[i], ..., s(r—N+41)y7—1[d])-
« Divide them into two groups,
sli] = (uli], v[i]), (5)
where
uli] = (uoli, ..., ur_ny1)B-1li])

= (soil, .. 3(T7N+1)B—1[i]) (6)

vli] = (voli], - - -, ver—Ny1)(T-B)-1li])
= (sr—~n+1)Blil,- - s sr—nnyT-1li]).  (7)

For the case of burst erasure, we assume the channel intro-
duces an erasure burst of lengshin the intervallé, i+ B—1].
It suffices to show that[i] = (ul[é], v[i]) can be recovered by
time T

The decoder starts by recovering the parity-check symbols
p'[t] for t € [i + B,i+ T — 1] by subtractingu[t — T from
q[t] as they are not erased. However the parity-check symbols
pl[t] fort € [i+T,i+T+ B—1] are considered not available
as they combinai[t — T which are erased. One can see that
for all ¢?[r] codewords forr € {i — (T' = B) +1,...,i +

-1} andy ={0,1,...,T — N} spanning the erased]
sub -symbols in the intervdt,i + B — 1], there are at most
B erasures corresponding to symbols falling in the intervals



li,i+B—1] and[i +T,i+T+B— 1]. Therefore, the symbols ——. it 1] [i+2] [i+3] [i+4]
v[i],...,v[i + B — 1] can be recovered by time+ 7" — 1. uolil] | woli+ 1} uoli + z] uoli + g] uoli + f
1 | uy |2 uy |2 uy |2 uy |2 ul|?
Now, the decoder computes the parity-check synial+ o H i I 1% o {Z I 2} o {Z I 3} o {Z I 4%
T] as it combines’[-] which are either not erased or recovered , . , , ,
in the previous step and subtract it fragfi + 7] to recover e E@ usli+2] | wali 3] usli+ )
uli]. This completes the recovery efi] when the channel ~ “[0 | “ali T | wali 2] ) uali+ 8] uafi 4]
us [7] usi + 1] us i + 2 us[i + 3] us (i + 4]
introduces an erasure burst in the interial + B — 1]. usli] ug[i + 1] |u6 [i +2] | ugli + 3] ugi + 4]
For the isolated erasure capability, we assume the channelu wrli 4 1 T3 wrli 43 wrli 4 4
introducesN erasures in arbitrary positions in the window [; ugli+ 1 ugli + 2 ugli+ 3 ugli + 4
[i, + T]. Similar to the burst case, it ;ufﬁces to show that [ voli + 1] voli + 2] voli + 3] voli + 4]
s[i] = (u[é], v[i]) can be recovered by tim&. The recovery o1li vli+1 vili + 2 vili +3 vili+4
of u[i] andv[i] are done separately. Fefi] it can be verified vali vali+ 1 v2li 42 v2li 43 vali 44
that all codeworde}[r] for r € {i — (' B) +1,...,i} and pyi] pYli+ 1] pyli+2] pyli + 3] pyli + 4]
j=1{0,1,...,T — N} have no more thatv < B erasures. Pl pYli + 1] pYli + 2] pYli + 3] pY[i + 4]
Thus, all sub-symbols of [i] are recovered by timg — 1 palil | pali+d]l | psli+2] b opsli+3] | palitd]
since the parity-check symbojs’[] in the interval[0, T — 1] pslil | psli+1] | fpglid2l | psli+3] | pgli+d]
are available. Fouli], we consider the codewords[r] for pylil | pili+1] | pgle+ 2l pylid 3] pali 4 4]
re{i—(=N),...,i} andj = {0,1,..., B — 1}. Similarly, pf/[l,] pi[ﬁl} pf/[lfz} pi[&g} pf/[l,+4]
all considered codewords have no more tiharerasures and pj[z,] pj hf 1 pj[z, +2 pj[l,+3] pj [%+4]
thusuli] can be recovered by tim& and the claim follows. pz{;} i EIH 235 - % i Zi% i Eiiﬂ
We note that for a given paifNV, B) and a delayl’, both i[i] i[H 1 i[i+2} i[z’+3} i[i+4}
MIDAS-SMDS and MIDAS-MDS codes achieve the same rate pgm pg[i ) pg[i 2] o Jﬁ = ko it
R= #TNNBI However as we argue next, MIDAS-MDS 5’21‘[2'] ié‘[i 1] ié[i +2] 2’21‘ i+ 3] i’lt[i+4}
code requires a much smaller field-size in general. Siittin  pu[;) pyli+ 1] pyli+2] peli+ 3] |p§;[z‘+4} |
each source symbol intd” — N + 1)T" sub-symbols requires peli] puli + 1] pYli+2] pYli + 3] !
that each source symbol consist@f= (T — N + 1)T sub- Py (1] peli+1] peli+2] pEfi+ 3] peli+4

symbols. We therefore need to determine the field size of eaghg| E | MIDAS-MDS code construction for(N, B) =
sub-symbol. Using the well-known fact that én, k) MDS (2,3), a delay of7 = 4 and rateR = 4/9. We note that
codes exists for any field-size which is a prime number grea@ach of the parity-check sub-symbelst] is combined with

thann we note that the field size needed for bOIN T — B) .1t — 4] for j = {0,1,...,8} but are omitted for simplicity.

and(T'+ 1,7 — N +1) MDS codes to exist ig; = p(T'+1)

wherep(n) is the smallest prime greater tharare known to IV. PRC CoDEs

exist. Thus the required field size 4s= i - ¢». Partial Recovery Codes (PRC) considered in this section

C. Example are designed for the channel with the following property: in
Table | illustrates a MIDAS-MDS construction forany sliding window of lengthV, the channel can introduce

(N,B)=(2,3) and T =4 achieving a rate ofR = NO more than a burst of maximum lengthand one isolated

= = 1. The encoding steps are as follows, erasure (before or after the burst). We denote such chagnel b
Bty Y Cu(B, W) The term “partial recovery” is used because these

« Split each source symbali] into (' — N + 1)T = 12
sub-symbols. The firstT’ — N + 1) B = 9 of which are
(uoli], - . ., ugli]) while the last(T — N +1)(T— B) = 3
are (voi], v1[i], v2[i]).

codes do not attempt to recover every erased source packet,
but only recover a subset. In [3], PRC codes are studied for
the special case whélv = co. The channel can introduce one
erasure burst and one isolated erasure anywhere eitheebefo

- Apply a (T.’T N B) = (4, ?) MDS code 10 they sub- or after the burst. We summarize the proposed construction
symbols with an interleaving factor a&f — N +1 =3 below:

as shown using the shaded boxed in Table I. This . ,
generate§T — N + 1)B = 9 parity-check sub-symbols ~ * Divide each source symboigi| into two groupsuli] €

vl s Fy andv[i] € Fy whereu = (B+1)(T—A+1)— (A -
wlil,. . ps i) B- )aLLv_g A+1)((A 13(_1). !

o Combine theu symbolsuy,...,us with the generated Y :
parity-check symbolg® after applying a shift of units ~ * APPly a rate ;= systematic Strongly-MDS code to the
to the former. v[-] symbols generating the parity-check symbpl§] €

o Applya(T+1,7T—N+1) = (5,3) MDS code to the: - ) )
symbols with an interleaving factor @8 = 3 generating ~ * Combine theu] symbols with the parity-check symbols
BN = 6 parity-check sub-symbol&[i, .. ., p[i]) as p![] after applying a shift oA < T to theu[:] symbols,

illustrated by the white boxes in Table. I.
The d di t t ht f d by foll 1Codes designed for chanr@k (B, W) can be modified to correct isolated
e decoding steps are s ralg orwar y 10 meg agrasures by adding an extra layer of parity-check symbatdasi to that in

codewords spanning the erased symbols. the MIDAS construction



i.e., qli] = p'[i] +uli — Al. the v[] symbols with interleaving factor oA — B — 1,
. Apply another systematic Strongly-MDS code of rate  generatingA — B — 1 parity-check symbolsp!''[] =

o1 to thev[:] symbols which generates the parity-check  (p{'[i], - ... p{x_p_1),[i]), i.e., the resulting codeword
symbolsp''[-] € F$ wheres = A — B — 1. would be, i
« Concatenate the two streams of parity-check symbols v;i]
p'[] and p''[-] to the source symbols|i] to generate Vjra-B-nli +1]
vV _B_1|t+2
the channel sym_bol, o ol — 2B nli+2] s
x[i] = (ulil, v[i], qli], p"'[]) (11) :
We refer to the construction in (11) as PRC-SMDS code. Vjp(a— B1)(T-A) [i+T — A
Such construction achieves a rate of, L [z +T—-A+1]
__utv for j = {0,1,.. A B —2}.
2utv+s . Concatenate the parity-check symbeld[-] to the pre-
_ A(T-A)+(B+1) (12) viously generated parity-check symboig], i.e., the
AT-AN)+(B+1)(T-A+2) channel symbol is given by,
Maximizing R by finding the optimalA, one gets, xi] = (s[z‘],q[z‘],p“[i]) . (19)

o (T +2)vT—B—2(T — B)

(13) One can see that the rate of the constructed code in (19) is

- (I'+B+3)VT—B-2(T—-B) given by,
As with the case of MIDAS codes, we propose a construc- (T—A+1)A

tion which replaces Strongly-MDS codes in the PRC-SMDS R = T-ATDATB+ )+ B-B-1) (20)
construction with MDS codes. We denote this construction by Simijlar to the case of PRC-SMDS codes, the optimal value

PRC-MDS code. The detailed enCOdIng steps are as fO”OVHﬁ A (|gnor|ng |nteger effects) for max|m|z|ng the rafcan
be shown to be:

A. Encoding . T(B+1)-/T(B+1)(T-B)
» Spit each source symbotgi] into (T — A + 1)A sub- A= B ' (21)
symbols,sfi] = (solil, . .., sr—a+1)a-1li])- B. Decoding
« Divide them into two groups, We assume the channel introduces an erasure burst of length
sli] = (uli], v[i]), (14)  Bin the intervali, i+ B—1] together with an isolated erasure
where happening at time;. We consider the following cases:
ufi] = (uold], ..., ur—at1)(B+1)-1[il) o ti€i—T,i— (T —A)—1]: In this case, thev[t;] can

(T'—A+2,T—A+1) MDS code by timet; + (T —

50 [z], S S(T—A+1)(B+1)—1[1]) (15) be recovered using the parity-check symho'Y-] of the
] A+2)—1 <. This is because the codeword[r] for

vli] =

UO[’La S U(T—-A+1)(A-B-1)— 1[])

(
= (
(
= (

sr-sn@ il oswosmali). (16) r={t;=T+A,... t;}andj = {0,1,...,A— B -

« Apply a system_atm(_A A - B — 1) MDS code to the 2} have no more than one erasure. Now, the symbols
v[] SymbOIS with interleaving facj[or of" — A + 1, v[i],...,v[i+ B —1] can be recovered using the parity-
g?neratlngl(r - A JE DB +1) panty-check symbpls, check symbolgp![-] of the (A, A — B — 1) MDS code
P[] = (Poli],- - Pir_ag1ys11)-1[i)- The resulting by time i + A — 1. Thus the symbolai], ..., ufi +
codeword of the such MDS code startinguali] is given B — 1] can be recovered at time+ A, ...,i + A +
by, _ ) ; B—1 sequentially by subtracting the correspondify]

vilil parity-check symbols. We note thatfif + A ¢ [i,i +
Vjg(r-atnli+1] B — 1], one can recoveult;], otherwise it is lost.

e t; € i — (T — A),i — 1]: Here, both thev|-] symbols

Vjyo(r—atn)[i + 2]
: of isolated erasure together with that of the erasure burst

Cﬁ'[i] — | vjpr-nsya_Boi+A-B-2] | are recovered using the\, A — B — 1) MDS code. In
p§, i +A—B—1] particular,v[t;] is recovered by time; + A — 1 using the
P oraali + A — Bl associated MDS code, whilgi], ..., v[i+ B—1] are all

s * ) guaranteed to be recovered by timeA— 1 as explained

: in the MIDAS decoder. Now, thei|-] symbols can be
i 7+(T A+1)B[Z+A —1] i recovered sequentially at time- A, ...,i+ A+ B—1.

a7) e t; € [i+ B,i+ A — 1]: The v[] symbols of the erasure
for j ={0,1,...,T — A}. burst can be recovered using th&, A — B — 1) MDS
« Combine theu[] symbols with the parity-check symbols code at time;+ A — 1 since there is no more thad+ 1
p![] after applying a shift of\ to the earlier, i.e.q[i] = erasures in each of the codeword$jr] for r = {i —
p'[i] +ufi — AJ. A+B+2,....i+B—1}andj ={0,1,...,T — A}.

« Apply a systemati¢T — A+2,7—A+1) MDS code to The v[t;] symbol can now be recovered using ¥ —



Achievable rates for PRC-SMDS and PRC-MDS constructions
T T T T T T T
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Fig. 1: Rates for different Channél; codes. u U ou, U,

A+2T-A+1)code by timet; + T —A+1 < ) )
i+A—14+T—A+1=1i+T since allv[-] symbols Fl9: 2: Non-ideal erasure patterns for (a) MIDAS and (b) PRC

are recovered except for one. Now, the decoder can §8des:

back and compute the parity-check symbpl$] in the argument through the following example. We consider both
interval[i+A, i+A+B—1] and subtract them to computeversions of MIDAS codes witiN, B) = (2,4) andT = 6. If
uli],...,ufi+ B —1]. Also, u[t;] can be recovered later the actual channel introduces a burst of lergjth the interval

at timet; + A. [0,2] and one isolated erasure at tinteas shown in Fig. 2,

o t; € i +Ayi+ A+ B — 1]: Similar to the previous a MIDAS-SMDS code can recover all erasuels| symbols
case, thev[-] symbols of the erasure burst are recoverdsy time 5 and then recover tha[-] symbols sequentially and
by timei + A — 1 since the codewords. Now the parityperfect recovery follows. While in the MIDAS-MDS version,
check symbolsp'[] in the intervalli + A,¢; — 1] can the (T, T — B) = (6,2) MDS recoversv[4] at time 9 as
be computed and subtracted to recowéi, ..., u[t; — shown in Fig. 2. This is already after the deadlines(of, s[1]

A — 1]. The v[t;] symbol can be recovered using theinds[2] thus these are not recovered. More generally, when
(T—A+2,T—-A+1)bytimet;+(T—A)+1. Atthis the channel introduces a burst of length in the interval
time the decoder goes back to compute the parity-chefc}ng_ 1] whereN < B, < B and an isolated erasure in the
symbolsp'[] in the intervallt; +1,i+ A+ B —1] and interval [B, + 1,T — [T//B]] MIDAS-SMDS will recover all
subtract them to recover[t; — A+1],...,u[i + B —1]. the erased symbols whereas MIDAS-MDS will fail to recover
Also, u[t;] can be recovered later at timg+ A. We note any of the erased symbols in the burst.

that uft;, — A] can not be recovered since the isolated

erasure at time; erases its repeated version. B. PRC Codes

Unlike the case of MIDAS codes, PRC-MDS codes has We argue that PRC-SMDS codes are more robust when
slightly lower rate than PRC-SMDS codes for a givBrand compared to PRC-MDS codes when the channel introduces
T. Fig. 1 shows the achieved rates of both codesHoct 10, bursts longer than the targeted valugbhfConsider both PRC-

20 and 30 and different values of”. The gap between the SMDS and PRC-MDS codes with = 3 andT" = 12 and
achieved rates of both codes increases itbut decreases & channel introducing a burst of length> B +1 = 4 in
with increasingB. the intervall0, 4] as illustrated in Fig. 2. It can be shown that

Computing the sufficient field size for constructing PRChe value ofA for both codes isl0. For the Strongly-MDS
MDS codes is similar to that of MIDAS-MDS codes. The/ersion, the decoder will use parity-check symbols at tirhe
source vector must consist@f = (T—A+1)A sub-symbols. together with those in the interved, 9] and thep™'[] in the
Also, the(A,A—B—1)and(T—A+2,T—A+1) MDS interval [10, 14] to recover the erased|-] symbols. Now (at
codes can be constructed if the field sige= p(max(A, T — time 15), the decoder can recovaf0], . .., u[4] within delays
A +2)). Thus, for a given paiB and a delayr, a field size Of {15,14,13,12,11}, respectively, i.e., a partial recovery of
of ¢ = q1 - g2 - grows asO(T?) - is sufficient to construct the 2 symbols,s[3] ands[4]. On the other hand, PRC-MDS fails

corresponding PRC-MDS code. to recoverv(4] as the associated diagone][4] has more
than B + 1 erasures at time € {4,10,11,12,13}. Hence,

V. PERFORMANCE INNON-IDEAL ERASURE PATTERNS the entire erasure burst is lost.

In this section, we give some qualitative insights on why
MIDAS and PRC with MDS constituent codes in fact have
an inferior performance than their Strong|y_MDS versions i We consider a Gilbert-Elliott channel model with two states
simulation over Gilbert-Elliott channels. We explain ttig Pbad-state and good-state. The probability that the synol i
considering specific erasure patterns. lost in the bad-state id while that in the good-state is.

In other words, the channel introduces bursts in the bae;sta

A. MIDAS Codes i.i.d. erasures in the good-state and both in the transitimm

We argue that when the channel introduces a burst abad-state to good-state or vice versa.
one isolated erasure, MIDAS-MDS codes are more sensitiveThe Channel and Code parameters used in both experiments
when compared to MIDAS-SMDS codes. We illustrate thiare given in Table. II.

VI. SIMULATION RESULTS



Gilbert Channel —d(,B) = (5 x 10%,0.5), Simulation Length = 10T = 12, Rate = 12/280.52 _, Gilbert Channel ~¢p) = (10°5,0.1), Simulation Length = £0T = 50, Rate = 50/990.51
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~3||"© MS-MDS (N,B) = (1,11) @ MiDAS-MDS (N,B) = (6,43)
104 s MiDAS-MDP (N,B) = (2,9] 3 PRC-MDP {\,N,B) = (47,5,39)|
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(a) Simulation over a Gilbert-Elliott Channel witly, 8) = (5 x 1074,0.5). (b) Simulation over a Gilbert-Elliott Channel witfax, 3) = (10~5,0.1). Al
All codes are evaluated using a decoding delay’cf 12 symbols and a rateodes are evaluated using a decoding delay ef 50 symbols and a rate of
of R =12/23 ~ 0.52. R =50/99 ~ 0.51.

Fig. 3: Simulation Experiments for Gilbert-Elliott Charindodel with different parameters.

Fig. 3(a) Fig. 3(b)

) Bx10-%.05) [ B x10°°,0.0) . M!DAS Cers - Blug Lmes.

Channel Length 107 108 With choosing the right paif N, B), the MIDAS codes
Rate R 12/23 ~ 0.52 50/99 ~ 0.51 has a largeB compared to maximunV codes and larger
Delay T - 12 5 < 50 5 N compared to maximunB codes. Thus, they achieve
Strongly-MDS 6 6 75 55 a better performance than both code_s for some values
MDS 6 6 25 25 of ¢. However, the performance deteriorates faster than
MS-SMDS 1 11 1 49 that of Strongly-MDS codes. This is because of the bad
MS-MDS 1 11 1 49 . .
MIDAS-SMDS > 9 6 43 performance of MIDAS codes against burst plus isolated
MIDAS-MDS 2 9 6 43 erasure patterns introduces by the Gilbert-Elliott channe
PRC-SMDS - - 5 39 in the transition from bad to good states and vice versa
PRC-MDS - - 5 38

as discussed in section V. However, the performance of
TABLE II: Channel and Code Parameters used in Simulations. MIDAS-MDS deteriorates slightly faster than MIDAS-
SMDS codes which is due to an even worse performance

In Fig. 3(a) and Fig. 3(b), we plot the loss rate on the y- When facing a subset of the burst plus isolated erasure

axis versus on the x-axis. The loss rate of the Strongly-MDS  patterns (c.f. V).

version of all codes is shown in solid lines while that of the + PRC Codes- Green Lines

MDS version of the same codes is shown in dashed lines. The PRC codes are designed to recover from burst and

performance of various codes is as follows: isolated erasures with a maximum loss of one symbol.

. Strongly-MDS (Maximum N) Codes- Black Lines This explains the slower deterioration in performance

As discussed earlier, Strongly-MDS codes achieve the \(’:V:(;?S (;?;nﬁi':edloi?egﬂilr?éis %()((:Szzsvtéerin?;e/ztg ":ngRC
maximum value ofN for a given rateR and delayT'. P 9- N

Another way of achieving the sam¥ is splitting each T'=12andN > 2, a PRC code achieveR < 6 which
y ot 9 piiting eac is what an MDS or Strongly-MDS code achieves in this
source symbol intd" — N + 1 sub-symbols and applying

a(T+1,T— N+1) MDS code along the diagonals. Due case. Thus, the performancg of PRC codes is expected to
be close to these constructions. The PRC-SMDS codes
to the large value ofV for both codes, they can recover .
: ) . also outperform PRC-MDS codes due to the better partial
from all erasures in the good-state which explains the recovery property discussed before as well as the slightl
independence on in the interval of interest. The loss y property gntly

probability of these codes is determined by the bursts larger value ofF in Table II.
of length longer thanN. However, one can see that REEERENCES

Strongly-MDS codes has a slightly better performan % - . .
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