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Abstract- We introduce a framework to study fundamental limits of ssdial
coding of Markov sources under an error propagation canstrAn encoder sequen-
tially compresses a sequence of vector-sources that atiallpei.d. but temporally
correlated according to a Markov process. The channeletgs®B packets in a sin-
gle burst, but reveals all other packets to the destinafitwe. destination is required to
reproduce all the source-vectors instantaneously andisséelss manner, except those
sequences that occur in a window of len@h- W following the start of the erasure
burst.

We define a rate-recovery functid¥(B, W), the minimum compression rate that
can be achieved in this framework, and develop upper and lbawnds for first-order
Markov sources. For the special clasdinear diagonally correlated deterministic
sourceswe propose a hew coding technique — prospicient coding -+dtisieves
the rate-recovery function. Finally, a lossy extensionhe tate-recovery function
is also studied for a class of Gaussian sources where thees@mitemporally and
spatially i.i.d. and the decoder aims to recover a collectbpastK sources with a
gquadratic distortion measure. The optimal rate-recovengtion is compared with the
sub-optimal techniques including forward error correttamding (FEC) and Wyner-
Ziv coding, and performance gains are quantified.

1 Introduction

A tradeoff between compression efficiency and error resskds fundamental to any video
compression system. In live video streaming, an encodereés a sequence of correlated
video frames and produces a compressed bit-stream thansntitted to the destination.
If the underlying channel is an ideal bit-pipe, it is well kmo that predictive coding [1]
achieves the optimum compression rate. Unfortunately inynganerging video distribu-
tion networks, such as peer-to-peer systems and mobilersgspacket losses are unavoid-
able. Predictive coding is highly sensitive to such paakesés and can lead to a significant
amount of error propagation. Various techniques are uspaattice to prevent such losses.
Commonly used video coding techniques use a group of pi¢&@#) architecture, where
intra-frames are periodically inserted to limit the effeterror propagation. Forward error
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correction codes can also be applied to compressed bérssréo recover from missing
packets [2, 3]. Modifications to predictive coding, such eakl-DPCM [4], have been
proposed in the literature to deal with packet losses. Thasimess of distributed video
coding techniques in presence of packet losses has beeedsiue.g., [5].

Information theoretic analysis of video coding has reagisignificant attention in re-
centtimes, see e.g., [6, 7, 8] and the references theregselorks focus primarily on the
source coding aspects of video. T¢murce procests a sequence of vectors, each of which
is spatially i.i.d. and temporally correlated. Each soweetor is sequentially compressed
into a bit stream. The destination is required to recoveisthece vectors in a sequential
manner as well. However all of these works assume an ideahehaith no packet losses.
To our knowledge even the effect of a single isolated padsstis not fully understood [9].

In this work we introduce an information theoretic framelwtw characterize the trade-
off between error propagation and compression rate. And=ras revealed source vectors
in a sequential manner and compresses them sequentialighiahnel packets that are then
transmitted over a channel. The concept cdte-recovery functiors introduced and infor-
mation theoretic upper and lower bounds are obtained. Therdmpund is obtained using
a binning based scheme. The lower bound is obtained by dgaavirinteresting connec-
tion to a multi-terminal source coding problem. We introdacspecial class afiagonally
correlated deterministic Markov sourcasd propose a new coding scheme that establishes
the optimality of the lower bound. We also study a family afili. Gaussian sources with
sliding window recovery constraint. The coding scheme mhssources naturally maps to
the deterministic source model and enables us to complebalsacterize the (lossy) rate-
recovery function for this class. Finally performance dfetent sub-optimal systems are
also compared to the optimal tradeoff.

The rest of this paper is organized as follows. Section 2uohes the problem de-
scription. Section 3 presents the main results of the papduding 1) The lower and
upper bound for minimum rate-recovery function for gendtatkov sources, whose proof
sketch is provided in Section 4, 2) The rate-recovery famctor two class of sources, i.e.
the diagonally correlated deterministic Markov which ipksned in details in Section 5
and i.i.d. Gaussian sources with sliding window recoverysti@int. Section 6 includes the
comparison of the rate-recovery function of optimal andedént sub-optimal systems for
the Gaussian case. Section 7 concludes the paper.

2 Problem Statement

Source Model: We consider a semi-infinite stationary vector source p®¢g%}i-o
whose symbols (defined over some finite alphafetre drawn independently across the
spatial dimension and from a first-order Markov chain actbegemporal dimension, i.e.,
for eacht > 1,

n
Pl s =9 | s'1 =51 S2=92-)=[]Pas(sils-1) ¥=>1 (1)
=1

We assume that the underlying random varialle$:~o constitute a time-invariant and

first-order stationary Markov chain with a common marginatribution denoted by, (-).
Channel Model: The channel introduces an erasure burst of &zee. for some

particularj > 0, itintroduces an erasure burst such that xfori € {j,j+1,...,j +B—1}
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Figure 1: Problem Setup

andg; = fj otherwise i.e.,

*, IE[J?J+177J+B_1]
9= {fi, else @)

Rate-Recovery Function: A rateR causal encoder maps the seque{i€g;>o to an
index f; € [1,2"R according to some functiofi= % (%...,sﬂﬂ) for eachi > 0. A memo-
rylessencoder satisfie$i (5, ...,§'") = %i(s) i.e., the encoder does not use the knowledge
of the past sequences.

Upon observing the sequengs; }i>o the decoder is required to perfectly recover all
the source sequences using decoding functions

gnZGI(gOagla7gl)7 I¢{J77J+B+W_1} (3)

wherej denotes the time at which the erasure burst starts in (2 hibwever not required
to produce the source sequences in the window of leBgtiW following the start of an

erasure burst. We call this period the error propagatiordaxwn The setup is shown in
Fig. 1.

ArateR(B,W) is feasible if there exists a sequence of encoding and degdalnctions
and a sequence, that approaches zero as— « such that, Ris" # §") < €, for all i ¢
{J,--, ] +B+W —1}. We seek the minimum feasible ra&éB, W), which we define to be
therate-recoveryfunction.

3 Main Results

In this section we discuss the main results of this paper.

3.1 Upper and Lower Bounds

Theorem 1 For any stationary first-order Markov source process thesregcovery func-
tion satisfies R(B,W) < R(B,W) < R"(B,W) where

1
|(sB; sB+1]s0) = 7——=H(sB+1,58+2,---,B1w+1|%0), (4)

R"(B,W)=H

1
W+1

R™(B,W)=H(s1|s0) + | (s8; sw-+B+1/%0)- (5)

1
W+1



Notice that the upper and lower bound coincideWor= 0 andW — o, yielding the rate-
recovery function in these cases.

The upper bound is obtained via a binning based scheme andn@nyless encoder.
At each time the encoding functiofy is the bin-index of a Slepian-Wolf codebook [10].
Following an erasure burst itj, j + B — 1], the decoder collect§j s, ..., fj;ws and at-
tempts to jointly recover all the underlying sources$ at j + W + B. (It can be shown in a
straightforward way that the two expressions of the uppenbon (4) are equivalent [11].)

The converse is based on connecting the problem to a sowweeny over a periodic
erasure channel and a multi-terminal source coding probieeiaborated in Sec. 4.

3.2 Diagonally Correlated Deterministic Markov Sources
We propose a special class of source models for which therlbawend in (5) is tight.

Definition 1 (Diagonally Correlated Deterministic Sources) The alpbabf adiagonally
correlated deterministic sourcensists of K sub-symbols i.e.,

S =1(5,0--,SK) €S0 xS51X... x5, (6)

where eachs; = {0,1}N is a binary sequence. Suppose that the sub-sequngh>o is
an i.i.d. sequence sampled uniformly owgrand for1l < j <K, the sub-symbd, ; is a
linear deterministic functiohofsi_lvj_l ie.,

S,j=Rjj-1-S-1j-1, 1<j<K. (7)
for fixed matricefR10,R21...,Rk k-1 each of full row-rank i.e.rank(R; j—1) = N;.

Theorem 2 For the class of Diagonally Correlated Deterministic Sasdn Def. 1 the
rate-recovery function is given by:

_ 1
R(B,W) =R (B,W) = H(S]_‘SO) +\N——|—1I (SB;SB+W+1‘50). (8)
In particular the above class of sources establishes th@stitality of the binning
based scheme in general. We propose a coding scheme thiatllgaegploits thenon-
causalknowledge of some future sub-symbols to achieve a lowertrate the binning
based scheme. We call this schepnespicient codingvhich is explained in Section 5.

3.3 Gaussian Sources
Our proposed framework can be easily extended to a contsnedued source process with
a fidelity measure. While a complete treatment of the lossg cabeyond the scope of the
present paper, we study one natural extension of the Didlgddarrelated Source Model
in Def. 1 to a Gaussian sources.

Consider a Gaussian source process that is i.i.d. both ipdeahand spatial dimen-
sions, i.e., at timé, a sequence consisting @Bymbolss, is sampled i.i.d. according to a
zero mean unit variance Gaussian distributi@, 1).

LAl multiplication is over the binary field.



The encoder output at timeis denoted by the indek = F(s§,...,s") € [1,2"F as
before. Attime, upon receiving the channel outputs until timéhe decoder is interested in
reproducing a collection of paktsource$t! = (s s", - s{LK)T within a distortion
vectord = (do,dy,---,dk)".

Thus for anyi > 0 and 0< j <K, if 5 ; is the reconstruction sequencespf; at time

i, we must have thaE Hs{Li —“H\ﬂ < ndj. We will assume thatly <d; <--- <dk

holds.

As before, the channel can introduce an erasure-burst gfi&in an arbitrary interval
[k,k+B—1]. The decoder is not required to output a reproduction of égeiences; for
i € [K,k+B+W —1]. Alossy rate-recovery functicstenoted byR(B,W, d) is the minimum
rate required to satisfy these constraints.

Theorem 3 For the Gaussian source model with a distortion veatet (do, . ..,dx) with
0 < d; < 1, the lossy rate-recovery function is givertby

1 1 1 min{K—-W,B} 1 1
R(B,W,d) = éIog (d_o) +Vm kgl éIog (dvv+k>' 9)

The proof of Theorem 3 is available in [11]. The coding schenvelves mapping the
Gaussian source to a deterministic source in the previam®geria a successively refine-
able code.

4 Proof of Theorem 1

To highlight the main idea behind the converse we considercise wheW = 1 and
B = 1. The formal proof is provided [11]. Only the key ideas arsatided in this paper
due to space constraints. Using the first-order Markov Cheopertysp — s1 — sp — s3
the lower bound (5) can be reduced to:

1 1
R™(B=1W=1) = SH(s1|s0,52) + 5H(ss/s0) (10)

We interpret the two terms in (10). Consideperiodic erasure channelhere every third
packet gets erased i.gy =~ fort =3k, k=0,1,2,.... The destination, upon receiving
g1 = f1 andgy = fo must recovers;) att = 2. At this point, because of the first-order
Markov nature of the source process, it becomes synchrnvzty the encoder i.e., the
effect of earlier erasures is no longer relevant. Thus dtgr¢he erasure at tinte= 3 as

a fresh erasure. Upon receivirig and fs it must recovery att = 5. More generally, it
is able to recovesy, ., att = 3k+ 2 upon sequentially observingsi 1, fsi+2}o<i<k and
missing{ fsi }o<i<k. From the source coding theorem we must have

2kR> H(f1, f2, fa, f5,..., fak_2, fa_1) > H(s3, 0. .., 55 1) (11)
> n(k—1)H(s3|so) (12)

which, upon taking — « yieldsR > 1H (s3|sp).

2If the index of any source sub-sequence is negative, it &dckas an all-zero sequence.
SAll logarithms are taken to base 2.
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Figure 2: A Multi-terminal Source Coding Problem relatedtihe proposed streaming
setup. The erasure at tinte= 3k leads to two virtual decoders with different side-
information.

The above argument only takes into account one constraintienuhere is an erasure,
the decoder needs to recover with= 1. As the lower bound (10) suggests, this approach
alone is not tight. The additional term éH(sl\so,sz) is not captured by this simplistic
argument.

In Fig. 2 we illustrate a multi-terminal source coding prilwith one encoder and two
decoders. The encoder is revealg, ;,s3.,) and produces outputly, 1 and fa, .
Decoder 1 needs to recovel , , given f3 1 and sy while decoder 2 needs to recover
Shyo givensy ; and(fak 1, facy2). As we show in the formal proof, a lower bound for
this system constitutes a lower bound to the streaming enobln particular,

2nR> H(faky1, faks2) > H(facr1, fake2]s31) (13)
= H(faki1, far 2, S ol58k1) — H (S3r 2l a1, Tk 2, S31) (14)
> H(fai1, S5 2/ S31) — Nén (15)
> H (sgcs 2053 1) +H(fakr1]53cs 2, 53_1) — Nén
> H (53t 2/551) +H (fak1] 53k 25 S5k Sk—1) — Neén (16)
> H (831 2/55-1) +H (31 1S5t 20 S5 Sk—1) — 2N€n (17)
> H (s3ics 2053 1) +H (S5 1153k 2 53) — 2n€n (18)
= NnH(s3|sp) + NH(s1|s2, s0) — 2nen (19)

where (15) follows from the fact thaf  , must be recovered frorfsc 1, fak: 2,55, 1) at
decoder 2 hence Fano’s inequality applies and (16) folloas fthe fact that conditioning
reduces entropy. (17) follows from Fano’s inequality apglio decoder 1 and finally (18)
follows from the Markov chain associated with the sourcepss. Dividing throughout by
nin (19) and takingh — o recovers (10). The extension to arbitr&yandB uses similar
ideas and the formal proof is provided in [11].

5 Diagonally Correlated Deterministic Sources

In this section we study a deterministic source model witlpecgl diagonal correlation
structure. While our results can be extended to a larges dasources [11] the coding
scheme is most natural for this class. Furthermore this @&deterministic sources also
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Figure 3: Schematic of Diagonally Correlated Determigisiarkov Source foK = B+
W. The first row constitutes the innovation sub-symbols wagthe remaining rows are
deterministic sub-symbols that follow a diagonal relagsshown in Definition 1.

provides a solution to the Gaussian source model that wecanisider subsequently, thus
yielding a new coding scheme in that case.

Fig. 3 shows the structure of the source o= B+W. Any diagonal in Fig. 3 consists
of linear combinations of the same source sub-symbols. tticp&ar the innovation bits
are introduced on the upper-left most entry of the diagohalve traverse down, each sub-
symbol consists of some fixed linear combinations of thesewvation bits. Furthermore
the sub-symbos j is completely determined given the sub-symgfal j_; for eachj €
{1,...,K}. It can be easily shown that we can tdke= B+ W without loss of generality.

A complete proof of Theorem 2 is provided in the full paper ][IWe only sketch the
main ideas in this short paper. In particular our code cacstyn consists of two steps as
discussed below.

1) Source Re-arrangement The source symbols consisting of innovation and deter-
ministic sub-symbols as in Definition. 1 are first rearranggedroduce an auxiliary set of
codewords

G0 S0 S0

Ci1 SHWW1 Rw4+11S1
ci=|Gz2|=]S+ww+2 | =| Rwi22s2 |, (20)

CiB S+WW+B RwiBBSB

where the last relation follows from definition. Note tha¢ ttodewords; consists of the
innovation symbos; o, as well as symbol§ ww1, - - ., sitww-s that enable the recovery
of symbols insj_ .



2) Slepian-Wolf Coding There is a strong temporal correlation between the auyilia
vector sequence&!'} in (20). Hence we bin codeword sequenc@énto 2'R bins where
Ris as given in (6) and only transmit the bin index of the assted codeword i.ef; =
F (e € {1,2,...,2"R}, whereRis selected to satisfy

W B
(W+1)R=H(Ci,Ci1, .., Gi-wls-B-w-1) = > H(Ciko) + ) H(Ci-wk) (21)
Ko =
B
= (W-+1No+ 5 Nwk, (22)
=

The above expression is equivalent to Theorem 2 as establisf11].

For analysis of the decoder first assume that a burst-erhappens between the inter-
valt € i —B—W,i —W —1] and the decoder is interested in recovesngThe decoder
has access tf for j € {i—W,i—W+1,...,i} as well as the last decoded source sym-
bol si_s_w-1. The decoder first recovers all the auxiliary codeword sysio;} for
j € [i —W,i] from the corresponding bin indices. The constraint in (213rgntees that
this step succeeds with high probability. Next by constamcof c; in (20), the decoder
recovers the lasB sub-symbols i.esjw+1,...,sig+w from ci_w. Finally the remaining
sub-symbolss; o, si 1, . ..,siw are recovered from the innovation part@fci_1,...,ci_w
respectively.

If the erasure burst does not happert ia [i — B—W,i —W — 1] and if the receiver
needs to recoves; then observe that;_1 is guaranteed to be available. In this case the
codewordc; can be recovered directly from the bin indg»xands;_; due to (21), and in
turn the innovation part of; can be recovered. We refer the reader to the full paper [11]
for complete details. The converse follows from Thoeremd.iaralso provided in the full

paper.

6 Theorem 3 (Discussion)

The complete proof of Theorem (3) is available at [11]. Tleist®n contains the compari-
son of the optimal performance of Theorem 3 with the follagvsub-optimal systems.

¢ Still-iImage Compression: In this scheme, the encoder ignores the decoder’'s mem-
ory and at tima > 0 encodes the souragin a memoryless manner and sends the
codewords through the channel. The rate associated toctinesree is

Rsi(d) = 1 (tj;tj) = S Liog (2 (23)
Sl = 1(t,; _k;Z g de
In this scheme, the decoder is able to recover the sourceavbeits codeword is
available, i.e. at all the times except the erasure period.

o Wyner-Ziv Compression: At time i the encoders assumes thatg_1 is already
reconstructed at the receiver within distortahrWith this assumption, it compresses
the sourcetj according to Wyner-Ziv scheme withh as the side-information and
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Figure 4: Comparison of rate-recovery of sub-optimal systéo minimum possible rate-
recovery function for different recovery window length

transmits the codewords through the channel. The rate ®&tiieme is
- B 1 1
Rwz(B,d) =1 (ti;ti|ti_g_1) = %élog a (24)
K= Kk

Note that, if at time, t;_g_1 iS not availablet;_; is available and the decoder can
consider it as side-information to constrticsincel (t;; ti|ti_g—1) > | (ti; ti|ti_1).

e Predictive Coding plus FEC: This scheme consists of predictive coding (DPC) [1]
followed by a Forward Error Correction (FEC) code to compemshe effect of
packet losses of the channel. As the contributioB efrased codewords need to be
recovered usingV/ + 1 available codewords, the rate of this scheme can be comhpute
as follows.

B+W+1

RFEC(B7W7d) = W+1

B+W+1 <1) (25)

|(ti;£i|£i_1) = m |Og d_o

In Fig 4, the rate-recovery functions of explained sub+optischemes are compared
to the minimum rate-recovery function. We assufe 5, B = 2 and the distortion vector
d ={0.1,0.25,0.4,0.55,0.7,0.85}". It can be observed from Fig 4 that ff = 0, Wyner-
Ziv schemes, as expected, is optimal. Note that Predicto@ir@ plus FEC scheme is
commonly used in practice. Fig 4, exhibits the sub-optityadf the scheme even for
reasonably largeV.



7 Conclusion

We introduce an analytical framework to characterize adfumental tradeoff between error
propagation and compression rate for real-time coding ofklasources over erasure
channels. A new concept of a rate-recovery function is thioed and novel lower and
upper bounds are developed.

Optimum rate-recovery function for two families of Markoousces — the determin-
istic diagonally correlated Markov source and i.i.d. Gaussource with sliding window
reconstruction constraint were obtained. The optimalmgdicheme for such sources in-
volves a pre-selection step that improves the performaree @ binning-based scheme.
For the Gaussian case, a number of sub-optimal systems wemgatced to the optimum
rate-recovery function and performance gains were queditifi
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