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Abstract- We introduce a framework to study fundamental limits of sequential
coding of Markov sources under an error propagation constraint. An encoder sequen-
tially compresses a sequence of vector-sources that are spatially i.i.d. but temporally
correlated according to a Markov process. The channel erases up toB packets in a sin-
gle burst, but reveals all other packets to the destination.The destination is required to
reproduce all the source-vectors instantaneously and in a lossless manner, except those
sequences that occur in a window of lengthB+W following the start of the erasure
burst.

We define a rate-recovery functionR(B,W), the minimum compression rate that
can be achieved in this framework, and develop upper and lower bounds for first-order
Markov sources. For the special class oflinear diagonally correlated deterministic
sources, we propose a new coding technique — prospicient coding — that achieves
the rate-recovery function. Finally, a lossy extension to the rate-recovery function
is also studied for a class of Gaussian sources where the source is temporally and
spatially i.i.d. and the decoder aims to recover a collection of pastK sources with a
quadratic distortion measure. The optimal rate-recovery function is compared with the
sub-optimal techniques including forward error correction coding (FEC) and Wyner-
Ziv coding, and performance gains are quantified.

1 Introduction
A tradeoff between compression efficiency and error resilience is fundamental to any video
compression system. In live video streaming, an encoder observes a sequence of correlated
video frames and produces a compressed bit-stream that is transmitted to the destination.
If the underlying channel is an ideal bit-pipe, it is well known that predictive coding [1]
achieves the optimum compression rate. Unfortunately in many emerging video distribu-
tion networks, such as peer-to-peer systems and mobile systems, packet losses are unavoid-
able. Predictive coding is highly sensitive to such packet losses and can lead to a significant
amount of error propagation. Various techniques are used inpractice to prevent such losses.
Commonly used video coding techniques use a group of picture(GOP) architecture, where
intra-frames are periodically inserted to limit the effectof error propagation. Forward error
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correction codes can also be applied to compressed bit-streams to recover from missing
packets [2, 3]. Modifications to predictive coding, such as leaky-DPCM [4], have been
proposed in the literature to deal with packet losses. The robustness of distributed video
coding techniques in presence of packet losses has been studied in e.g., [5].

Information theoretic analysis of video coding has received significant attention in re-
cent times, see e.g., [6, 7, 8] and the references therein. These works focus primarily on the
source coding aspects of video. Thesource processis a sequence of vectors, each of which
is spatially i.i.d. and temporally correlated. Each sourcevector is sequentially compressed
into a bit stream. The destination is required to recover thesource vectors in a sequential
manner as well. However all of these works assume an ideal channel with no packet losses.
To our knowledge even the effect of a single isolated packet loss is not fully understood [9].

In this work we introduce an information theoretic framework to characterize the trade-
off between error propagation and compression rate. An encoder is revealed source vectors
in a sequential manner and compresses them sequentially into channel packets that are then
transmitted over a channel. The concept of arate-recovery functionis introduced and infor-
mation theoretic upper and lower bounds are obtained. The upper bound is obtained using
a binning based scheme. The lower bound is obtained by drawing an interesting connec-
tion to a multi-terminal source coding problem. We introduce a special class ofdiagonally
correlated deterministic Markov sourcesand propose a new coding scheme that establishes
the optimality of the lower bound. We also study a family of i.i.d. Gaussian sources with
sliding window recovery constraint. The coding scheme for such sources naturally maps to
the deterministic source model and enables us to completelycharacterize the (lossy) rate-
recovery function for this class. Finally performance of different sub-optimal systems are
also compared to the optimal tradeoff.

The rest of this paper is organized as follows. Section 2 includes the problem de-
scription. Section 3 presents the main results of the paper including 1) The lower and
upper bound for minimum rate-recovery function for generalMarkov sources, whose proof
sketch is provided in Section 4, 2) The rate-recovery function for two class of sources, i.e.
the diagonally correlated deterministic Markov which is explained in details in Section 5
and i.i.d. Gaussian sources with sliding window recovery constraint. Section 6 includes the
comparison of the rate-recovery function of optimal and different sub-optimal systems for
the Gaussian case. Section 7 concludes the paper.

2 Problem Statement
Source Model: We consider a semi-infinite stationary vector source process {sn

t }t≥0

whose symbols (defined over some finite alphabetS ) are drawn independently across the
spatial dimension and from a first-order Markov chain acrossthe temporal dimension, i.e.,
for eacht ≥ 1,

Pr( s
n
t = sn

t | s
n
t−1 = sn

t−1, s
n
t−2 = sn

t−2, . . .) =
n

∏
j=1

p
s1|s0(st, j |st−1, j), ∀t ≥ 1. (1)

We assume that the underlying random variables{st}t≥0 constitute a time-invariant and
first-order stationary Markov chain with a common marginal distribution denoted byps(·).

Channel Model: The channel introduces an erasure burst of sizeB, i.e. for some
particular j ≥ 0, it introduces an erasure burst such thatgi = ? for i ∈ { j, j+1, ..., j+B−1}
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Figure 1: Problem Setup

andgi = fi otherwise i.e.,

gi =

{

?, i ∈ [ j, j +1, . . . , j +B−1]

fi , else.
(2)

Rate-Recovery Function: A rate-R causal encoder maps the sequence{sn
i }i≥0 to an

index fi ∈ [1,2nR] according to some functionfi = Fi
(

sn
0, ...,s

n
i

)

for eachi ≥ 0. A memo-
rylessencoder satisfiesFi

(

sn
0, ...,s

n
i

)

= Fi(s
n
i ) i.e., the encoder does not use the knowledge

of the past sequences.
Upon observing the sequence{gi}i≥0 the decoder is required to perfectly recover all

the source sequences using decoding functions
ŝn
i = Gi(g0,g1, . . . ,gi), i /∈ { j, . . . , j +B+W−1}. (3)

where j denotes the time at which the erasure burst starts in (2). It is however not required
to produce the source sequences in the window of lengthB+W following the start of an
erasure burst. We call this period the error propagation window. The setup is shown in
Fig. 1.

A rateR(B,W) is feasible if there exists a sequence of encoding and decoding functions
and a sequenceεn that approaches zero asn → ∞ such that, Pr(sn

i 6= ŝi
n) ≤ εn for all i /∈

{ j, ..., j +B+W−1}. We seek the minimum feasible rateR(B,W), which we define to be
therate-recoveryfunction.

3 Main Results
In this section we discuss the main results of this paper.

3.1 Upper and Lower Bounds
Theorem 1 For any stationary first-order Markov source process the rate-recovery func-
tion satisfies R−(B,W)≤ R(B,W)≤ R+(B,W) where

R+(B,W)=H(s1|s0)+
1

W+1
I(sB ; sB+1|s0) =

1
W+1

H(sB+1, sB+2, . . . , sB+W+1|s0), (4)

R−(B,W)=H(s1|s0)+
1

W+1
I(sB; sW+B+1|s0). (5)
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Notice that the upper and lower bound coincide forW = 0 andW → ∞, yielding the rate-
recovery function in these cases.

The upper bound is obtained via a binning based scheme and a memoryless encoder.
At each time the encoding functionfi is the bin-index of a Slepian-Wolf codebook [10].
Following an erasure burst in[ j, j +B−1], the decoder collectsf j+B, . . . , f j+W+B and at-
tempts to jointly recover all the underlying sources att = j +W+B. (It can be shown in a
straightforward way that the two expressions of the upper bound in (4) are equivalent [11].)

The converse is based on connecting the problem to a source recovery over a periodic
erasure channel and a multi-terminal source coding problemas elaborated in Sec. 4.

3.2 Diagonally Correlated Deterministic Markov Sources
We propose a special class of source models for which the lower bound in (5) is tight.

Definition 1 (Diagonally Correlated Deterministic Sources) The alphabet of adiagonally
correlated deterministic sourceconsists of K sub-symbols i.e.,

si = (si,0, . . . ,si,K) ∈ S0×S1× . . .×SK, (6)

where eachSi = {0,1}Ni is a binary sequence. Suppose that the sub-sequence{si,0}i≥0 is
an i.i.d. sequence sampled uniformly overS0 and for1 ≤ j ≤ K, the sub-symbolsi, j is a
linear deterministic function1 of si−1, j−1 i.e.,

si, j = R j , j−1 ·si−1, j−1, 1≤ j ≤ K. (7)

for fixed matricesR1,0,R2,1 . . . ,RK,K−1 each of full row-rank i.e.,rank(Rj , j−1) = Nj .

Theorem 2 For the class of Diagonally Correlated Deterministic Sources in Def. 1 the
rate-recovery function is given by:

R(B,W) = R−(B,W) = H(s1|s0)+
1

W+1
I(sB; sB+W+1|s0). (8)

In particular the above class of sources establishes the sub-optimality of the binning
based scheme in general. We propose a coding scheme that carefully exploits thenon-
causalknowledge of some future sub-symbols to achieve a lower ratethan the binning
based scheme. We call this schemeprospicient codingwhich is explained in Section 5.

3.3 Gaussian Sources
Our proposed framework can be easily extended to a continuous valued source process with
a fidelity measure. While a complete treatment of the lossy case is beyond the scope of the
present paper, we study one natural extension of the Diagonally Correlated Source Model
in Def. 1 to a Gaussian sources.

Consider a Gaussian source process that is i.i.d. both in temporal and spatial dimen-
sions, i.e., at timei, a sequence consisting ofn symbolssn

i , is sampled i.i.d. according to a
zero mean unit variance Gaussian distributionN(0,1).

1All multiplication is over the binary field.
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The encoder output at timei is denoted by the indexfi = F (sn
0 , . . . , s

n
i ) ∈ [1,2nR] as

before. At timei, upon receiving the channel outputs until timei, the decoder is interested in
reproducing a collection of pastK sources2 tn

i =
(

s
n
i s

n
i−1 · · · s

n
i−K

)T
within a distortion

vectord = (d0,d1, · · · ,dK)
T .

Thus for anyi ≥ 0 and 0≤ j ≤ K, if ŝn
i− j is the reconstruction sequence ofs

n
i− j at time

i, we must have thatE
[

||sn
i− j − ŝ

n
i− j ||

2
]

≤ ndj . We will assume thatd0 ≤ d1 ≤ ·· · ≤ dK

holds.
As before, the channel can introduce an erasure-burst of lengthB in an arbitrary interval

[k,k+B−1]. The decoder is not required to output a reproduction of the sequencestn
i for

i ∈ [k,k+B+W−1]. A lossy rate-recovery functiondenoted byR(B,W,d) is the minimum
rate required to satisfy these constraints.

Theorem 3 For the Gaussian source model with a distortion vectord = (d0, . . . ,dK) with
0< di ≤ 1, the lossy rate-recovery function is given by3

R(B,W,d) =
1
2

log

(

1
d0

)

+
1

W+1

min{K−W,B}

∑
k=1

1
2

log

(

1
dW+k

)

. (9)

The proof of Theorem 3 is available in [11]. The coding schemeinvolves mapping the
Gaussian source to a deterministic source in the previous section via a successively refine-
able code.

4 Proof of Theorem 1
To highlight the main idea behind the converse we consider the case whenW = 1 and
B = 1. The formal proof is provided [11]. Only the key ideas are described in this paper
due to space constraints. Using the first-order Markov Chainpropertys0 → s1 → s2 → s3

the lower bound (5) can be reduced to:

R−(B= 1,W = 1) =
1
2

H(s1|s0, s2)+
1
2

H(s3|s0) (10)

We interpret the two terms in (10). Consider aperiodic erasure channelwhere every third
packet gets erased i.e.,gk = ? for t = 3k, k = 0,1,2, . . .. The destination, upon receiving
g1 = f1 and g2 = f2 must recoversn

2 at t = 2. At this point, because of the first-order
Markov nature of the source process, it becomes synchronized with the encoder i.e., the
effect of earlier erasures is no longer relevant. Thus it treats the erasure at timet = 3 as
a fresh erasure. Upon receivingf4 and f5 it must recoversn

5 at t = 5. More generally, it
is able to recoversn

3k+2 at t = 3k+2 upon sequentially observing{ f3i+1, f3i+2}0≤i≤k and
missing{ f3i}0≤i≤k. From the source coding theorem we must have

2kR≥ H( f1, f2, f4, f5, . . . , f3k−2, f3k−1)≥ H(sn
2, s

n
5 , . . . , s

n
3k−1) (11)

≥ n(k−1)H(s3|s0) (12)

which, upon takingk→ ∞ yieldsR≥ 1
2H(s3|s0).

2If the index of any source sub-sequence is negative, it is treated as an all-zero sequence.
3All logarithms are taken to base 2.
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Figure 2: A Multi-terminal Source Coding Problem related tothe proposed streaming
setup. The erasure at timet = 3k leads to two virtual decoders with different side-
information.

The above argument only takes into account one constraint — when there is an erasure,
the decoder needs to recover withW = 1. As the lower bound (10) suggests, this approach
alone is not tight. The additional term of1

2H(s1|s0, s2) is not captured by this simplistic
argument.

In Fig. 2 we illustrate a multi-terminal source coding problem with one encoder and two
decoders. The encoder is revealed(sn

3k+1, s
n
3k+2) and produces outputsf3k+1 and f3k+2.

Decoder 1 needs to recoversn
3k+1 given f3k+1 and sn

3k while decoder 2 needs to recover
s

n
3k+2 given sn

3k−1 and( f3k+1, f3k+2). As we show in the formal proof, a lower bound for
this system constitutes a lower bound to the streaming problem. In particular,

2nR≥ H( f3k+1, f3k+2)≥ H( f3k+1, f3k+2|s
n
3k−1) (13)

= H( f3k+1, f3k+2, s
n
3k+2|s

n
3k−1)−H(sn

3k+2| f3k+1, f3k+2, s
n
3k−1) (14)

≥ H( f3k+1, s
n
3k+2|s

n
3k−1)−nεn (15)

≥ H(sn
3k+2|s

n
3k−1)+H( f3k+1|s

n
3k+2, s

n
3k−1)−nεn

≥ H(sn
3k+2|s

n
3k−1)+H( f3k+1|s

n
3k+2, s

n
3k, s

n
3k−1)−nεn (16)

≥ H(sn
3k+2|s

n
3k−1)+H(sn

3k+1|s
n
3k+2, s

n
3k, s

n
3k−1)−2nεn (17)

≥ H(sn
3k+2|s

n
3k−1)+H(sn

3k+1|s
n
3k+2, s

n
3k)−2nεn (18)

= nH(s3|s0)+nH(s1|s2, s0)−2nεn (19)

where (15) follows from the fact thatsn
3k+2 must be recovered from( f3k+1, f3k+2, s

n
3k−1) at

decoder 2 hence Fano’s inequality applies and (16) follows from the fact that conditioning
reduces entropy. (17) follows from Fano’s inequality applied to decoder 1 and finally (18)
follows from the Markov chain associated with the source process. Dividing throughout by
n in (19) and takingn→ ∞ recovers (10). The extension to arbitraryW andB uses similar
ideas and the formal proof is provided in [11].

5 Diagonally Correlated Deterministic Sources
In this section we study a deterministic source model with a special diagonal correlation
structure. While our results can be extended to a larger class of sources [11] the coding
scheme is most natural for this class. Furthermore this class of deterministic sources also
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Figure 3: Schematic of Diagonally Correlated Deterministic Markov Source forK = B+
W. The first row constitutes the innovation sub-symbols whereas the remaining rows are
deterministic sub-symbols that follow a diagonal relationas shown in Definition 1.

provides a solution to the Gaussian source model that we willconsider subsequently, thus
yielding a new coding scheme in that case.

Fig. 3 shows the structure of the source forK = B+W. Any diagonal in Fig. 3 consists
of linear combinations of the same source sub-symbols. In particular the innovation bits
are introduced on the upper-left most entry of the diagonal.As we traverse down, each sub-
symbol consists of some fixed linear combinations of these innovation bits. Furthermore
the sub-symbolsi, j is completely determined given the sub-symbolsi−1, j−1 for each j ∈
{1, . . . ,K}. It can be easily shown that we can takeK = B+W without loss of generality.

A complete proof of Theorem 2 is provided in the full paper [11]. We only sketch the
main ideas in this short paper. In particular our code construction consists of two steps as
discussed below.
1) Source Re-arrangement: The source symbolssi consisting of innovation and deter-
ministic sub-symbols as in Definition. 1 are first rearrangedto produce an auxiliary set of
codewords

ci =















ci,0

ci,1

ci,2
...

ci,B















=















si,0

si+W,W+1

si+W,W+2
...

si+W,W+B















=















si,0

RW+1,1 si,1

RW+2,2 si,2
...

RW+B,B si,B















, (20)

where the last relation follows from definition. Note that the codewordci consists of the
innovation symbolsi,0, as well as symbolssi+W,W+1, . . . ,si+W,W+B that enable the recovery
of symbols insi+W.
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2) Slepian-Wolf Coding: There is a strong temporal correlation between the auxiliary
vector sequences{cn

i } in (20). Hence we bin codeword sequencescn
i into 2nR bins where

R is as given in (6) and only transmit the bin index of the associated codeword i.e.,fi =
F (cn

i ) ∈ {1,2, . . . ,2nR}, whereR is selected to satisfy

(W+1)R≥ H(ci ,ci−1, ...,ci−W|si−B−W−1) =
W

∑
k=0

H(ci−k,0)+
B

∑
k=1

H(ci−W,k) (21)

= (W+1)N0+
B

∑
k=1

NW+k, (22)

The above expression is equivalent to Theorem 2 as established in [11].
For analysis of the decoder first assume that a burst-erasurehappens between the inter-

val t ∈ [i −B−W, i −W−1] and the decoder is interested in recoveringsi . The decoder
has access tof j for j ∈ {i −W, i −W+1, . . . , i} as well as the last decoded source sym-
bol si−B−W−1. The decoder first recovers all the auxiliary codeword symbols {c j} for
j ∈ [i −W, i] from the corresponding bin indices. The constraint in (21) guarantees that
this step succeeds with high probability. Next by construction of c j in (20), the decoder
recovers the lastB sub-symbols i.e.,si,W+1, . . . ,si,B+W from ci−W. Finally the remaining
sub-symbolssi,0,si,1, . . . ,si,W are recovered from the innovation part ofci ,ci−1, . . . ,ci−W

respectively.
If the erasure burst does not happen int ∈ [i −B−W, i −W− 1] and if the receiver

needs to recoversi then observe thatsi−1 is guaranteed to be available. In this case the
codewordci can be recovered directly from the bin indexfi andsi−1 due to (21), and in
turn the innovation part ofsi can be recovered. We refer the reader to the full paper [11]
for complete details. The converse follows from Thoerem 1 and is also provided in the full
paper.

6 Theorem 3 (Discussion)
The complete proof of Theorem (3) is available at [11]. This section contains the compari-
son of the optimal performance of Theorem 3 with the following sub-optimal systems.

• Still-Image Compression: In this scheme, the encoder ignores the decoder’s mem-
ory and at timei ≥ 0 encodes the sourceti in a memoryless manner and sends the
codewords through the channel. The rate associated to this scheme is

RSI(d) = I(ti ; t̂i) =
K

∑
k=0

1
2

log

(

1
dk

)

(23)

In this scheme, the decoder is able to recover the source whenever its codeword is
available, i.e. at all the times except the erasure period.

• Wyner-Ziv Compression: At time i the encoders assumes thatti−B−1 is already
reconstructed at the receiver within distortiond. With this assumption, it compresses
the sourceti according to Wyner-Ziv scheme witĥti as the side-information and
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Figure 4: Comparison of rate-recovery of sub-optimal systems to minimum possible rate-
recovery function for different recovery window lengthW.

transmits the codewords through the channel. The rate of this scheme is

RWZ(B,d) = I(ti; t̂i |t̂i−B−1) =
B

∑
k=0

1
2

log

(

1
dk

)

(24)

Note that, if at timei, t̂i−B−1 is not available,̂ti−1 is available and the decoder can
consider it as side-information to constructt̂i sinceI(ti; t̂i |t̂i−B−1)≥ I(ti ; t̂i |t̂i−1).

• Predictive Coding plus FEC: This scheme consists of predictive coding (DPC) [1]
followed by a Forward Error Correction (FEC) code to compensate the effect of
packet losses of the channel. As the contribution ofB erased codewords need to be
recovered usingW+1 available codewords, the rate of this scheme can be computed
as follows.

RFEC(B,W,d) =
B+W+1

W+1
I(ti; t̂i |t̂i−1) =

B+W+1
2(W+1)

log

(

1
d0

)

(25)

In Fig 4, the rate-recovery functions of explained sub-optimal schemes are compared
to the minimum rate-recovery function. We assumeK = 5, B= 2 and the distortion vector
d = {0.1,0.25,0.4,0.55,0.7,0.85}T. It can be observed from Fig 4 that forW = 0, Wyner-
Ziv schemes, as expected, is optimal. Note that Predictive Coding plus FEC scheme is
commonly used in practice. Fig 4, exhibits the sub-optimality of the scheme even for
reasonably largeW.
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7 Conclusion
We introduce an analytical framework to characterize a fundamental tradeoff between error
propagation and compression rate for real-time coding of Markov sources over erasure
channels. A new concept of a rate-recovery function is introduced and novel lower and
upper bounds are developed.

Optimum rate-recovery function for two families of Markov sources — the determin-
istic diagonally correlated Markov source and i.i.d. Gaussian source with sliding window
reconstruction constraint were obtained. The optimal coding scheme for such sources in-
volves a pre-selection step that improves the performance over a binning-based scheme.
For the Gaussian case, a number of sub-optimal systems were compared to the optimum
rate-recovery function and performance gains were quantified.
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