
1

The Degraded Gaussian Diamond-Wiretap

Channel
Si-Hyeon Lee and Ashish Khisti

Electrical and Computer Engineering, University of Toronto, Toronto, Canada

Email: sihyeon.lee@utoronto.ca, akhisti@comm.utoronto.ca

Abstract

We establish upper and lower bounds on the secrecy capacity of the degraded Gaussian diamond-

wiretap channel, and identify several ranges of channel parameters where these bounds coincide. We

consider the following two scenarios: 1) common randomness is available at the source and the two

relays and 2) randomness is available only at the source and there is no randomness at the relays. Our

upper bound, which is tighter than the cut-set bound, is established by taking into account the correlation

between the two relay signals and the availability of randomness at each encoder. It generalizes the

techniques recently developed for the case without secrecy constraint. For the lower bound, we propose

two types of coding schemes: 1) a decode-and-forward scheme where the relays cooperatively transmit

the message and the fictitious message and 2) a partial DF scheme incorporated with multicoding in

which each relay sends an independent partial message and the whole or partial fictitious message using

dependent codewords.

Index Terms

Wiretap channel, diamond channel, diamond-wiretap channel, multicoding

I. INTRODUCTION

The diamond channel introduced by Schein [1] consists of a broadcast channel (BC) from a source to

two relays and a multiple access channel (MAC) from the two relays to a destination. The capacity of the

diamond channel is not known in general. In this paper we will focus on the diamond channel having BC

with two orthogonal links and Gaussian MAC [2], [3]. In this setup, there is a tension between increasing

This work was supported by QNRF, a member of Qatar Foundation, under NPRP project 5-401-2-161.
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the amount of information sent over the BC and increasing the coherent combining gain for the MAC. Two

coding schemes corresponding to the extremes would be partial decode-and-forward, where independent

partial messages are sent to the relays, and decode-and-forward (DF), where the whole message is sent

to each of the relays. By incorporating multicoding at the source, [2], [3] proposed a coding scheme

in which the relays send independent partial messages using dependent codewords and showed that this

coding scheme strictly outperforms the DF and partial DF in some regimes. Furthermore, [3] established

an upper bound by taking into account the correlation between the two relay signals, which is strictly

tighter than the cutset bound. This upper bound was shown to coincide with the lower bound of [2], [3]

for some channel parameters.

In this paper, we consider the degraded Gaussian diamond-wiretap channel presented in Fig. 1 and

present lower and upper bounds on the secrecy capacity by exploiting the correlation between the two

relay signals. We identify several ranges of channel parameters where these bounds coincide with useful

intuitions and investigate the effect of the presence of an eavesdropper on the capacity. While the degraded

case is somewhat restrictive, it is a natural first step to studying general diamond-wiretap channel. Note

that even for the seemingly simpler case of multiple access-wiretap channel, the sum secrecy capacity

has been characterized only for the degraded Gaussian case [4]. The general case is considerably more

challenging and only the sum-secure degrees of freedom are known [5]. One practical justification for

the degraded model is the side channel attack [6] where the eavesdropper attacks by probing the physical

signals leaked from the legitimate destination and thus observes a degraded signal. In the presence of

an eavesdropper, the technique of utilizing randomness is widely used to confuse the eavesdropper. We

consider the following two scenarios regarding the availability of randomness: 1) a common randomness

of rate R′ is available at the source and the two relays and 2) a randomness of rate R′ is available

only at the source and there is no available randomness at the relays. See [7], [8] for the related works

assuming restricted randomness at encoders. Finally we note that while there has been a significant prior

work on wiretap-relay channels, see e.g., [9]–[15] and references therein, to the best of our knowledge

the diamond-wiretap channel has not been considered before.

For the upper bound, we generalize the upper bound on the capacity of the diamond channel [3]

and the upper bound on the sum secrecy capacity of the multiple access-wiretap channel [4]. For the

lower bound, we propose two types of coding schemes: 1) a decode-and-forward (DF) scheme where

the relays cooperatively transmit the message and the fictitious message and 2) a partial DF scheme

incorporated with multicoding in which each relay sends an independent partial message and the whole

or partial fictitious message using dependent codewords. If there is no secrecy constraint, our partial DF
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Fig. 1. Physically degraded diamond-wiretap channel

scheme incorporated with multicoding falls back to that in [2], [3]. Interestingly, in the presence of the

eavesdropper, the availability of randomness at the encoders is shown to affect the optimal selection of

correlation coefficient between the two relay signals in our proposed schemes.

The remaining this paper is organized as follows. In Section II, we formally present the model of

the degraded Gaussian diamond-wiretap channel. Our main results on the secrecy capacity are given in

Section III. In Section IV, we derive our upper and lower bounds on the secrecy capacity. We conclude

this paper in Section V.

II. MODEL

Consider the degraded Gaussian diamond-wiretap channel in Fig. 1 that consists of a source, two relays,

a legitimate destination, and an eavesdropper. The source is connected to two relays through orthogonal

links of capacities C1 and C2 and there is no direct link from the source to the legitimate destination

or eavesdropper. The channel outputs Y and Z at the legitimate destination and the eavesdropper,

respectively, are given as Y = X1 + X2 + NY and Z =
√
gY + NZ , where g ∈ [0, 1), X1 and X2

are the channel inputs from relay 1 and relay 2, respectively, NY is the Gaussian noise with zero mean

and unit variance at the legitimate destination, and NZ is the Gaussian noise with zero mean and variance

of 1− g at the eavesdropper. NY and NZ are assumed to be independent. The transmit power constraint

at relay k = 1, 2 is given as 1
n

∑n
i=1X

2
k,i ≤ Pk, where n denotes the number of channel uses. Note

that the channel output at the eavesdropper is a physically degraded version of the channel output at the

legitimate destination.

We consider the following two scenarios regarding the availability of randomness. In the first scenario,

a common fictitious message M of rate R′, i.e., M ∼ Unif[1 : 2nR
′
]1 is available at the source and the

1[i : j] for two integers i and j denotes the set {i, i+ 1, . . . , j}.
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Fig. 2. Stochastically degraded diamond-wiretap channel

two relays. In this case, a (2nR, n) secrecy code consists of a message W ∼ Unif[1 : 2nR], an encoding

function at the source that maps (W,M) ∈ [1 : 2nR] × [1 : 2nR
′
] to (J1, J2) ∈ [1 : 2nC1 ] × [1 : 2nC2 ],

an encoding function at relay k = 1, 2 that maps (Jk,M) ∈ [1 : 2nCk ] × [1 : 2nR
′
] to Xn

k ∈ X nk ,

and a decoding function at the legitimate destination that maps Y n ∈ Yn to Ŵ ∈ [1 : 2nR]. In the

second scenario, a fictitious message M of rate R′ is available only at the source and the encoding at

the two relays is restricted to be deterministic. In this case, the encoding function at relay k = 1, 2 maps

Jk ∈ [1 : 2nCk ] to Xn
k ∈ X nk .

For both scenarios, the probability of error is given as P (n)
e = P (Ŵ 6= W ). A secrecy rate of R

is said to be achievable if there exists a sequence of (2nR, n) codes such that limn→∞ P
(n)
e = 0 and

limn→∞ 1
nI(W ;Zn) = 0. The secrecy capacity is the supremum of all achievable secrecy rates. Let C(1)

S

and C(2)
S denote the secrecy capacity for the first scenario and for the second scenario, respectively.

Remark 1: Because the legitimate destination and the eavesdropper do not cooperate, the secrecy

capacity in Fig. 1 is the same as that of stochastically degraded case in Fig. 2, in which Z is given as

Z =
√
gX1 +

√
gX2 +N ′Z , where N ′Z has zero mean and unit variance and is independent of NY .

III. MAIN RESULTS

In this section, we present main results of this paper on the secrecy capacity of the degraded Gaussian

diamond-wiretap channel described in Section II. For the brevity of presentation, let us define the

following functions:

f1(ρ) = C1 +
1

2
log(1 + (1− ρ2)P2) (1a)

f2(ρ) = C2 +
1

2
log(1 + (1− ρ2)P1) (1b)

f3(ρ) = C1 + C2 −
1

2
log(

1

1− ρ2
) (1c)
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f4(ρ) =
1

2
log(1 + P1 + P2 + 2ρ

√
P1P2) (1d)

f5(ρ) =
1

2
log(1 + g(P1 + P2 + 2ρ

√
P1P2)) (1e)

f6(ρ) =
1

2
log

(
1 + g(P1 + P2 + 2ρ

√
P1P2)

1 + g(1− ρ2)P2

)
(1f)

f7(ρ) =
1

2
log

(
1 + g(P1 + P2 + 2ρ

√
P1P2)

1 + g(1− ρ2)P1

)
, (1g)

where the domain of f1, f2, f3, f6, and f7 is [−1, 1] and that of f4 and f5 is [−ρ̄, 1] for ρ̄ = P1+P2

2
√
P1P2

.2

The following two theorems give upper and lower bounds on C(1)
S , respectively, whose proofs are in

Section IV.

Theorem 1: For R′ ≥ 0, C(1)
S is upper-bounded by

min(max(S1, S2),max(S3, S4)),

where

S1 = max
0≤ρ≤ρ∗

min(f1(ρ), f2(ρ), f3(ρ), f4(ρ))

S2 = max
ρ∗<ρ≤1

min(f1(ρ), f2(ρ), f3(0), f4(ρ))

S3 = max
0≤ρ≤ρ∗

min(f1(ρ), f2(ρ), f3(0),
f3(ρ) + f4(ρ)

2
, f4(ρ)− f5(ρ))

S4 = max
ρ∗<ρ≤1

min(f1(ρ), f2(ρ), f3(0), f4(ρ)− f5(ρ))

for ρ∗ =
√

1 + 1
4P1P2

− 1
2
√
P1P2

. We note that the functions fk’s for k ∈ [1 : 5] are defined in (1).

Theorem 2: For ρ ∈ [−1, 1] and R′ ≥ f5(ρ), C(1)
S is lower-bounded by

max(R
(1)
DF(ρ), R

(1)
PDF−M(ρ)),

where

R
(1)
DF(ρ) = min(C1, C2, f4(ρ)− f5(ρ))

R
(1)
PDF−M(ρ) = min(f1(ρ), f2(ρ), f3(ρ), f4(ρ)− f5(ρ)).

We note that the functions fk’s for k ∈ [1 : 5] are defined in (1).

In Theorem 1, we note that the upper bound max(S1, S2) is the same as that in [3] that assumes no

secrecy constraint. This is natural because the secrecy capacity is upper-bounded by the capacity without

secrecy constraint, which is not affected by the common randomness at the encoders. To derive the upper

2By convention, we assume that f3(ρ) becomes negative infinity when |ρ| = 1.
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bound max(S3, S4), we generalize the bounding techniques [3] and [4] taking into account the secrecy

constraint and the available randomness at the encoders.

In Theorem 2, R(1)
DF(ρ) is achieved by using a DF scheme where the source sends the message to

both relays and the relays cooperatively transmit the message and the common fictitious message over

the wiretap channel. On the other hand, R(1)
PDF−M(ρ) is achieved by a partial DF incorporated with

multicoding (PDF-M) where each relay sends an independent partial message and the common fictitious

message using dependent codewords. The source performs multicoding as follows: the message w is

represented as two partial messages (w1, w2), a codebook for relay k = 1, 2 consisting of independently

generated xnk sequences is constructed for each wk and m, and the source finds a jointly typical sequence

pair (xn1 (w1,m, l1), xn2 (w2,m, l2)) and sends (wk, lk) to relay k for k = 1, 2. A more detailed explanation

for the PDF-M scheme is given in Section IV. Let R(1)
PDF = R

(1)
PDF−M(0) denote the partial DF (PDF)

rate without multicoding at the source.

To compare our lower and upper bounds, let us consider sufficiently large R′ and symmetric channel

parameters, i.e., P1 = P2 = P and C1 = C2 = C for some nonnegative P and C. It can be easily proved

that 1) the PDF scheme, which achieves3 min(f3(0), f4(0)−f5(0)), is optimal for C ≤ 1
2(f4(0)−f5(0)),

i.e., the BC cut is the bottleneck, and 2) the DF scheme, which achieves min(C, f4(1)−f5(1)), is optimal

for C ≥ f4(1)− f5(1), i.e., the MAC cut is the bottleneck. When neither the BC cut nor the MAC cut is

the bottleneck, the PDF-M scheme strictly outperforms the PDF and DF schemes for some range of C

as shown in Fig. 3. For example, when P = 1 and g = 0.1, the PDF-M scheme strictly outperforms the

PDF and DF schemes for 0.33 < C < 0.89. Furthermore, Fig. 3 shows that the PDF bound gets close

to the upper bound in Theorem 1 as P increases. The following theorem states that the PDF scheme is

indeed asymtotically optimal as P1 or P2 tends to infinity, whose proof is relegated to the end of this

section.

Theorem 3: For the first scenario with R′ ≥ f5(0) and P1 → ∞ or P2 → ∞,4 the PDF scheme is

asymptotically optimal.

Next, the following two theorems give upper and lower bounds on C
(2)
S , respectively, whose proofs

are in Section IV.

Theorem 4: For R′ ≥ 0, C(2)
S is upper-bounded by

max(T1, T2, T3),

3For P1 = P2, C1 = C2 = C, and ρ = 0, f1(0) and f2(0) become redundant.
4C1 and C2 are not necessarily fixed and can be arbitrary functions of P1 and P2.
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Fig. 3. Bounds for the first scenario when (a) P = 1, g = 0.1 and (b) P = 10, g = 0.1.

where

T1 = max
−ρ̄≤ρ<0

min(f1(0), f2(0), f3(0), f4(ρ))− f5(ρ)

T2 = max
0≤ρ≤ρ∗

min(f1(ρ), f2(ρ), f3(ρ), f4(ρ))− f5(ρ)

T3 = max
ρ∗<ρ≤1

min(f1(ρ), f2(ρ), f3(0), f4(ρ))− f5(ρ).

We note that the functions fk’s for k ∈ [1 : 5] are defined in (1), ρ̄ = P1+P2

2
√
P1P2

, and ρ∗ =
√

1 + 1
4P1P2

−
1

2
√
P1P2

.

Theorem 5: For ρ ∈ [−1, 1] such that R′ ≥ f5(ρ), C(2)
S is lower-bounded by

max(R
(2)
DF(ρ), R

(2)
PDF−DF−M(ρ), R

(2)
PDF−PDF−M(ρ)),
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where

R
(2)
DF(ρ) = min(C1, C2, f4(ρ))− f5(ρ)

R
(2)
PDF−DF−M(ρ) = min(f1(ρ), f2(ρ), f3(ρ)− f5(ρ), f4(ρ))− f5(ρ)

R
(2)
PDF−PDF−M(ρ) = (min(f1(ρ), f2(ρ), f3(ρ), f4(ρ))− f5(ρ)) · 1C1>f6(ρ),C2>f7(ρ).

We note that the functions fk’s for k ∈ [1 : 7] are defined in (1).

Note that in both the upper and lower bounds for the first scenario, the term f5(ρ), which corresponds

to the required rate of randomness to confuse the eavesdropper, appears only with f4(ρ), which signifies

the amount of information sent through the MAC. In contrast, in both the upper and lower bounds for

the second scenario, because the fictitious message has to be sent through the BC, f5(ρ) appears in

common for all terms. This affects sufficient ranges of correlation coefficient for the lower bounds for

large enough R′ as remarked in the following.

Remark 2: For large enough R′, sufficient ranges of correlation coefficient ρ for the lower bounds in

Theorem 2 and Theorem 5 are different. For the first scenario, note that the DF rate is maximized at

ρ = 1 and that it is enough to consider nonnegative ρ for the PDF-M scheme. On the other hand, for

the second scenario, because the minus term −f5(ρ) is common for all terms, considering smaller ρ can

be beneficial by decreasing f5(ρ) and we need consider all −1 ≤ ρ ≤ 1.

In the DF scheme for the second scenario, the source sends to both relays the fictitious message as

well as the message. Hence, R(2)
DF is obtained from R

(1)
DF by replacing C1 and C2 by C1 − f5(ρ) and

C2−f5(ρ), respectively. For a partial DF scheme incorporated with multicoding for the second scenario,

a straightforward extension from that for the first scenario is to let the source send the fictitious message

m as well as the partial message wk and the relay codeword index lk to relay k for k = 1, 2. Since

each relay decodes a partial genuine message and a whole fictitious message, we call this scheme as

PDF-DF-M scheme. Note that R(2)
PDF−DF−M(ρ) is obtained by replacing C1 and C2 by C1 − f5(ρ) and

C2 − f5(ρ), respectively, in R(1)
PDF−M. However, since the same fictitious message is sent to both relays,

there exists inefficiency in the use of the BC. To resolve this inefficiency, we let each of relay codebooks

be indexed by independent partial fictitious message, i.e., codebook for relay k = 1, 2 is constructed for

each (wk,mk) by representing m as two partial fictitious messages (m1,m2). By using this PDF-PDF-M

scheme where each relay decodes a partial genuine message and a partial fictitious message, we show

that R(2)
PDF−PDF−M(ρ) is achievable, which has f3(ρ) intead of f3(ρ) − f5(ρ) in R

(2)
PDF−DF−M(ρ). We

note that having independent fictitious message at each relay reduces the achievable rate region over

the MAC, which results in additional contraints C1 > f6(ρ) and C2 > f7(ρ) in R
(2)
PDF−PDF−M(ρ).
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Fig. 4. For sufficiently large R′, g = 0.1, C1 = C, C2 = C + 2, P1 = 10, and P2 = 1, R(2)
PDF−DF−M(ρ) is strictly higher

than R(2)
PDF−PDF−M(ρ) for some range of C.

Nevertheless, as long as C1 = C2, R(2)
PDF−PDF−M(ρ) is always higher than or equal to R(2)

PDF−DF−M(ρ)

because f3(ρ) > 2f5(ρ), which should be satisfied if R(2)
PDF−DF−M(ρ) > 0, implies C1 > f6(ρ) and

C2 > f7(ρ). If C1 6= C2, R(2)
PDF−DF−M(ρ) can be strictly higher than R

(2)
PDF−PDF−M(ρ) as illustrated

in Fig. 4. Let R(2)
PDF−DF = R

(2)
PDF−DF−M(0) and R

(2)
PDF−PDF = R

(2)
PDF−PDF−M(0) denote the rates of

PDF-DF and PDF-PDF schemes (without multicoding).

Similarly as for the first scenario, let us consider sufficiently large R′ and symmetric channel parameters.

Since C1 = C2, we only consider the DF, PDF-PDF-M, and PDF-PDF schemes for the lower bounds. It

can be easily proved that the DF scheme, which achieves maxρ∈[−1,1] min(C, f4(ρ))− f5(ρ), is optimal

for C ≥ f4(1), i.e., the MAC cut is the bottleneck. We can see in Fig. 5 that the PDF-PDF rate coincides

with the PDF-PDF-M rate at one point. This is because a negative correlation between the two relay

signals is helpful for small C due to the reason in Remark 2, i.e., the BC cut is the bottleneck, and

positive correlation becomes beneficial as C increases, i.e., the MAC cut becomes bottleneck. Fig. 5 also

shows that the PDF-PDF-M rate is zero up to some threshold value of C due to the constraint C > f6(ρ)

in R
(2)
PDF−PDF−M(ρ) and the threshold value decreases as P decreases. Indeed, we can prove that the

threshold value tends to zero as P tends to zero. Furthermore, Fig. 5 shows that the PDF-PDF-M rate

coincides with the upper bound in Theorem 4 for some range of C, e.g., 1.1 < C < 2.18 when P = 10

and g = 0.1. The following theorem gives a condition where the PDF-PDF-M rate coincides with the

upper bound in Theorems 4, whose proof is relegated to the end of this section.

Theorem 6: For the second scenario with sufficiently large R′ and symmetric channel parameters, the
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Fig. 5. Bounds for the second scenario when (a) P = 1, g = 0.1 and (b) P = 10, g = 0.1.

PDF-PDF-M rate in Theorem 5 coincide with the upper bound in Theorem 4, and the secrecy capacity

is given as f3(ρ′)− f5(ρ′) for

1

4
log(1 + 2P ) ≤ C ≤ 1

4
log(1 + 2(1 + ρ∗)P ) +

1

4
log(

1

1− ρ∗2
) (2)

such that that at least one of f1(ρ∗)− f5(ρ∗) ≤ f3(ρ′)− f5(ρ′) and f3(0)− f5(ρ∗) ≤ f3(ρ′)− f5(ρ′) is

satisfied, where ρ∗ =
√

1 + 1
4P1P2

− 1
2
√
P1P2

and ρ′ ∈ [0, ρ∗] is such that f3(ρ′) = f4(ρ′).5

Theorem 6 indicates that the upper and lower bounds in Theorems 4 and 5 coincide for 1.1 < C < 2.18

when P = 10 and g = 0.1 and for 1.91 < C < 3.82 when P = 100 and g = 0.1.

Remark 3: For g = 0, the bounds in Theorems 1-5 fall back to those in [3].

5We note that under the condition (2), ρ′ ∈ [0, ρ∗] such that f3(ρ′) = f4(ρ
′) exists.
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Now, a natural question is how the presence of an eavesdropper affects the capacity. We partially

answer this question by comparing our results with the lower and upper bounds in [3] that are derived

without secrecy constraint. Note that when there is no secrecy constraint, the availability of randomness

at the encoders does not affect the capacity. Hence, the capacity without secrecy constraint is higher

than or equal to the secrecy capacity with secrecy constraint both for the first and the second scenarios.

We compare the bounds in Fig. 6 for sufficiently large R′ and symmetric channel parameters. First, as

illustrated in Fig. 6-(a), the upper bound without secrecy constraint and the lower bound for the first

scenario coincide up to C ≤ 1
2(f4(0) − f5(0)). This indicates that, when there is a sufficient amount

of common randomness between the source and the relays, there is no decrease in capacity due to an

eavesdropper for some range of C. On the other hand, for the same channel parameters, Fig. 6-(b) shows

that the lower bound without secrecy constraint is strictly higher than the upper bound for the second

scenario for all range of C > 0. This indicates that, when there is no randomness at the relays, the secrecy

capacity for the second scenario can be strictly smaller than the capacity without secrecy constraint for

all range of C.

Proof of Theorem 3: The bound in Theorem 1 is further upper-bounded as follows:

min(max(S1, S2),max(S3, S4)) ≤ max(S3, S4)

(a)

≤ max
0≤ρ≤1

min(f1(0), f2(0), f3(0), f4(ρ)− f5(ρ)),

where (a) is because f1(ρ) and f2(ρ) are decreasing functions of ρ ∈ [0, 1]. Furthermore, for any

ρ ∈ [0, 1], we have

lim
P1→∞ or P2→∞

f4(ρ)− f5(ρ) = lim
P1→∞ or P2→∞

1

2
log

1 + P1 + P2 + 2ρ
√
P1P2

1 + g(P1 + P2 + 2ρ
√
P1P2)

=
1

2
log

1

g

= lim
P1→∞ or P2→∞

f4(0)− f5(0).

Hence, the secrecy capacity for the first scenario when P1 → ∞ or P2 → ∞ is asymtotically upper-

bounded by

lim
P1→∞ or P2→∞

min(f1(0), f2(0), f3(0), f4(0)− f5(0)),

which is clearly achievable by the PDF scheme.
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Fig. 6. Comparison with the lower and upper bounds without secrecy constraint when P = 10 and g = 0.1.

Proof of Theorem 6: Let us first show that max(T1, T2) = f3(ρ′) − f5(ρ′). For symmetric channel

parameters, T1 and T2 can be rewritten as follows:

T1 = max
−1≤ρ<0

min(f3(0), f4(ρ))− f5(ρ)

T2 = max
0≤ρ≤ρ∗

min(f3(ρ), f4(ρ))− f5(ρ).

Let us define functions f35(ρ) and f45(ρ) of ρ ∈ [−1, ρ∗] as follows:

f35(ρ) =

f3(0)− f5(ρ) if − 1 ≤ ρ < 0

f3(ρ)− f5(ρ) otherwise
, f45(ρ) = f4(ρ)− f5(ρ).

Note that we can rewrite the condition in (2) as f35(0) ≥ f45(0) and f35(ρ∗) ≤ f45(ρ∗). Since f35(ρ)

and f45(ρ) are monotonically decreasing function and monotonically increasing function of ρ ∈ [−1, ρ∗],
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respectively, the condition in (2) implies that there exists ρ′ ∈ [0, ρ∗] such that f35(ρ′) = f45(ρ′). Hence,

we have max(T1, T2) = max−1≤ρ≤ρ∗ min(f35(ρ), f45(ρ)) = f35(ρ′) = f3(ρ′)− f5(ρ′).

Now, let us show max(f35(ρ′), T3) = f35(ρ′). Since both f1(ρ)−f5(ρ) and f3(0)−f5(ρ) for ρ ∈ [ρ∗, 1]

have the maximum at ρ = ρ∗, we have

max(f35(ρ′), T3) ≤ max(f35(ρ′),min(f1(ρ∗)− f5(ρ∗), f3(0)− f5(ρ∗))) = f35(ρ′)

if f1(ρ∗)− f5(ρ∗) ≤ f3(ρ′)− f5(ρ′) or f3(0)− f5(ρ∗) ≤ f3(ρ′)− f5(ρ′). Hence, under the conditions in

Theorem 6, the upper bound in Theorem 4 becomes f3(ρ′)− f5(ρ′).

Now, it remains to show f3(ρ′)− f5(ρ′) is achievable. We have

R
(2)
PDF−PDF−M(ρ′) = (f3(ρ′)− f5(ρ′)) · 1C>f6(ρ′)

(a)
= f3(ρ′)− f5(ρ′)

where (a) is because f3(ρ′) = f4(ρ′) and f3(ρ′)− f5(ρ′) = f4(ρ′)− f5(ρ′) > 0 imply C > f6(ρ′). This

completes the proof.

IV. DERIVATION OF UPPER AND LOWER BOUNDS ON THE SECRECY CAPACITY

In this section, we prove the upper and lower bounds on the secrecy capacity presented in Section III.

A. Proof of Theorem 1

We note that the upper bound max(S1, S2), which the same as the upper bound in [3] on the capacity

without secrecy constraint, is easily obtained by noting that the secrecy capacity is upper-bounded by

the capacity without secrecy constraint and that common randomness at the encoders does not affect the

capacity when there is no secrecy constraint. Nevertheless, we provide a direct proof for the upper bound

max(S1, S2) as well as the upper bound max(S3, S4) since it can be useful for bounding in other related

problems.

The proof generalizes those in [3] and [4] taking into account the secrecy constraint and the available

randomness at the encoders. For k ∈ [1 : 2] and i ∈ [1 : n], let Pk,i = E(X2
k,i) and let λi = E(X1,iX2,i)√

P1,iP2,i

.

Let λa ∈ [0, 1] and λb ∈ [0, 1] be such that λ2
aP1 = 1

n

∑n
i=1 λ

2
iP1,i and λ2

bP2 = 1
n

∑n
i=1 λ

2
iP2,i. We use

εn to denote a function of n such that εn tends to zero as n tends to infinity.
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By applying similar bounding techniques as in [3], we have

nR = H(W )

(a)

≤ I(W ; J1, Y
n,M) + nεn

(b)
= I(W ; J1, Y

n|M) + nεn

≤ H(J1) + I(W ;Y n|J1,M) + nεn

(c)

≤ H(J1) + I(W ;Y n|J1,M,Xn
1 ) + nεn

≤ H(J1) + I(W,Xn
2 ;Y n|J1,M,Xn

1 ) + nεn

≤ nC1 + I(Xn
2 ;Y n|Xn

1 ) + nεn

≤ nC1 +

n∑
i=1

I(X2,i;Yi|X1,i) + nεn

(d)

≤ nC1 +

n∑
i=1

log(1 + (1− λ2
i )P2,i) + nεn

(e)

≤ nC1 + n log(
1

n

n∑
i=1

(1 + (1− λ2
i )P2,i)) + nεn

(f)

≤ nC1 + n log(1 + (1− λ2
b)P2) + nεn (3)

for sufficiently large n, where (a) is from the Fano’s inequality, (b) is because W and M are independent,

(c) is because Xn
1 is a function of J1 and M , (d) is because the Gaussian distribution maximizes the

differential entropy given the power constaint, (e) is due to the concavity of the logarithm function, and

(f) is from the definition of λb. Similarly, we can obtain

nR ≤ nC2 + n log(1 + (1− λ2
a)P1) + nεn (4)

for sufficiently large n.
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We also have for sufficiently large n,

nR = H(W )

(a)

≤ I(W ;Y n,M) + nεn

(b)
= I(W ;Y n|M) + nεn

(c)
= I(Xn

1 , X
n
2 ;Y n|M) + nεn (5)

≤ H(Xn
1 , X

n
2 |M) + nεn

≤ H(Xn
1 |M) +H(Xn

2 |M)− I(Xn
1 ;Xn

2 |M) + nεn

≤ nC1 + nC2 − I(Xn
1 ;Xn

2 |M) + nεn, (6)

where (a) is from the Fano’s inequality, (b) is because W and M are independent, and (c) is because

Xn
1 and Xn

2 are functions of M and W and the Markov relationship W − (M,Xn
1 , X

n
2 )− Y n holds.

Furthermore, for any random variable Ui generated through a conditional pmf p(ui|x1,i, x2,i, yi), we

have

I(Xn
1 ;Xn

2 |M)

=I(Xn
1 , X

n
2 ;Un|M)− I(Xn

1 ;Un|Xn
2 ,M)− I(Xn

2 ;Un|Xn
1 ,M) + I(Xn

1 ;Xn
2 |Un,M)

≥I(Xn
1 ,X

n
2 ;Un|M)−I(Xn

1 ;Un|Xn
2 )−I(Xn

2 ;Un|Xn
1 ). (7)

By applying the above lower bound to (6), we obtain

nR ≤ nC1 + nC2 − I(Xn
1 , X

n
2 ;Un|M) + I(Xn

1 ;Un|Xn
2 ) + I(Xn

2 ;Un|Xn
1 ) + nεn. (8)
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For sufficiently large n, we have

nR = H(W )

(a)

≤ H(W |Zn) + nεn

(b)

≤ H(W |Zn)−H(W |Y n, Zn) + 2nεn

= I(W ;Y n|Zn) + 2nεn

≤ I(Xn
1 , X

n
2 ;Y n|Zn) + 2nεn

(c)

≤ I(Xn
1 , X

n
2 ;Y n)− I(Xn

1 , X
n
2 ;Zn) + 2nεn (9)

= h(Y n)− h(Zn) + 2nεn

(d)

≤ h(Y n)− n

2
log(g2

2

n
h(Y n) + 2πe(1− g)) + 2nεn, (10)

where (a) is from the secrecy constraint, (b) is due to the Fano’s inequality, (c) is due to the degradedness

of the channel, and (d) is from the entropy power inequality. We note that (10) is a nondecreasing function

of h(Y n). h(Y n) is further upper-bounded as follows:

h(Y n) ≤
n∑
i=1

h(Yi)

≤
n∑
i=1

1

2
log(2πe)(1 + P1,i + P2,i + 2λi

√
P1,iP2,i)

≤ n

2
log(2πe)(

1

n

n∑
i=1

(1 + P1,i + P2,i + 2λi
√
P1,iP2,i))

≤ n

2
log(2πe)(1 + P1 + P2 +

2

n

n∑
i=1

√
λ2
iP1,iP2,i).

From the Cauchy-Schwarz inequality, we have

1

n

n∑
i=1

√
λ2
iP1,iP2,i ≤

√√√√(
1

n

n∑
i=1

λ2
iP1,i)(

1

n

n∑
i=1

P2,i)

≤
√
λ2
aP1P2.

Similarly, we have 1
n

∑n
i=1

√
λ2
iP1,iP2,i ≤

√
λ2
bP1P2. Hence, we obtain

h(Y n) ≤ n

2
log(2πe)(1 + P1 + P2 + 2 min(λa, λb)

√
P1P2). (11)
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Now we are ready to prove Theorem 1. Define µ ∈ [0, 1] and ν ∈ [0, 1] as follows. First, µ is determined

from h(Y n|M). µ = 0 if

1

n
h(Y n|M) ≤ 1

2
log(2πe)(1 + P1 + P2). (12)

Otherwise, µ is such that

1

n
h(Y n|M) =

1

2
log(2πe)(1 + P1 + P2 + 2µ

√
P1P2). (13)

Next, ν is determined from h(Y n). ν = 0 if

1

n
h(Y n) ≤ 1

2
log(2πe)(1 + P1 + P2). (14)

Otherwise, ν is such that

1

n
h(Y n) =

1

2
log(2πe)(1 + P1 + P2 + 2ν

√
P1P2). (15)

Let us first show that

R ≤ max(S1, S2) + εn. (16)

If µ = 0, from (3), (4), (6), (5), and (12), we have R ≤ min(f1(0), f2(0), f3(0), f4(0)) + εn. Consider

µ > 0. From h(Y n|M) ≤ h(Y n), (13), and (11), we have µ ≤ min(λa, λb). Then, from (3), (4), (6),

(5), and (13), we obtain R ≤ min(f1(µ), f2(µ), f3(0), f4(µ)) + εn. If µ further satisfies 0 < µ ≤ ρ∗,

we let Ui = Yi + Vi, where Vi is an i.i.d. Gaussian random variable with zero mean and variance of

γ =
√
P1P2( 1

µ − µ)− 1.6 Then, the mutual information terms in (8) are bounded as follows:

I(Xn
1 , X

n
2 ;Un|M)

≥ h(Un|M)− n

2
log(2πe)(1 + γ)

(a)

≥ n

2
log(2

2

n
h(Y n|M) + 2πeγ)− n

2
log(2πe)(1 + γ)

=
n

2
log

1 + γ + P1 + P2 + 2µ
√
P1P2

1 + γ
(17)

I(Xn
1 ;Un|Xn

2 ) ≤ n

2
log

1 + γ + (1− γ2)P1

1 + γ
(18)

I(Xn
2 ;Un|Xn

1 ) ≤ n

2
log

1 + γ + (1− γ2)P2

1 + γ
, (19)

6For 0 < µ ≤ ρ∗, γ is nonnegative.
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where (a) is from the conditional entropy power inequality. Substituting the above bounds to (8), we

obtain R ≤ f3(µ) + εn. Hence, we have R ≤ min(f1(µ), f2(µ), f3(µ), f4(µ)) + εn for 0 < µ ≤ ρ∗. This

concludes the proof of (16).

Now, let us show

R ≤ max(S3, S4) + 2εn. (20)

If ν = 0, from (3), (4), (6), (10), and (14), we have R ≤ min(f1(0), f2(0), f3(0), f4(0)− f5(0)) + 2εn.

Consider ν > 0. From (15) and (11), we have ν ≤ min(λa, λb). Then, from (3), (4), (6), (10), and (15),

we obtain R ≤ min(f1(µ), f2(µ), f3(0), f4(ν) − f5(ν)) + 2εn. If ν further satisfies 0 < ν ≤ ρ∗, we

consider the following bound by adding the inequalities (5) and (8):

2nR ≤ nC1 + nC2 + I(Xn
1 , X

n
2 ;Y n|M)− I(Xn

1 , X
n
2 ;Un|M)

+ I(Xn
1 ;Un|Xn

2 ) + I(Xn
2 ;Un|Xn

1 ) + 2nεn

≤ nC1 + nC2 + I(Xn
1 , X

n
2 ;Y n|Un,M)

+ I(Xn
1 ;Un|Xn

2 ) + I(Xn
2 ;Un|Xn

1 ) + 2nεn

≤ nC1 + nC2 + I(Xn
1 , X

n
2 ;Y n|Un)

+ I(Xn
1 ;Un|Xn

2 ) + I(Xn
2 ;Un|Xn

1 ) + 2nεn

(a)

≤ nC1 + nC2 + I(Xn
1 , X

n
2 ;Y n)− I(Xn

1 , X
n
2 ;Un)

+ I(Xn
1 ;Un|Xn

2 ) + I(Xn
2 ;Un|Xn

1 ) + 2nεn, (21)

where (a) holds when (Xn
1 , X

n
2 ) − Y n − Un. We let Ui = Yi + V ′i , where V ′i is an i.i.d. Gaussian

random variable with zero mean and variance of γ′ =
√
P1P2( 1

ν − ν) − 1. Then, by substituting (15)

and similar bounds as in (17)-(19) to (21), we obtain R ≤ f3(ν)+f4(ν)
2 + εn. Hence, we have R ≤

min(f1(ν), f2(ν), f3(0), f3(ν)+f4(ν)
2 , f4(ν) − f5(ν)) + 2εn for 0 < ν ≤ ρ∗. This concludes the proof of

(20).

B. Proof of Theorem 2

Let us first assume that the channel from the relays to the legitimate destination and the eavesdropper

is a discrete memoryless channel with a conditional pmf p(y, z|x1, x2). Fix p(x1, x2) and let

R′ = I(X1, X2;Z)− δ(ε). (22)

Fix ε > 0. We use δ(ε) to denote a function of ε such that δ(ε) tends to zero as ε tends to zero.
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In the DF scheme, the source sends the message to both relays, which requires R < min(C1, C2). Once

the relays share both the message and the fictitious message, we can treat the channel from the relays to

the legitimate destination and the eavesdropper as a classical wiretap channel [16], [17] with randomness

of rate R′ in (22) and hence the secrecy rate of R < I(X1, X2;Y ) − I(X1, X2;Z) is achievable. By

combining two inequalities for R, we conclude the following secrecy rate is achievable:

min(C1, C2, I(X1, X2;Y )− I(X1, X2;Z)). (23)

The PDF-M scheme is described in the following.

• Codebook generation: We represent the message w ∈ [1 : 2nR] as the partial message pair (w1, w2) ∈

[1 : 2nR1 ]× [1 : 2nR2 ] for some R1 ≥ 0 and R2 ≥ 0 such that

R1 +R2 = R, (24)

i.e., Wk for k ∈ [1 : 2] is uniformly distributed over [1 : 2nRk ] and W1 and W2 are independent.

Consider R̃k ≥ 0 for k ∈ [1 : 2]. For each k ∈ [1 : 2] and (wk,m, lk) ∈ [1 : 2nRk ]× [1 : 2nR
′
]× [1 :

2nR̃k ], generate xnk(wk,m, lk) independently according to
∏n
i=1 p(xk,i).

• Encoding at the source: For message (w1, w2) and fictitious message m, the source finds an (l1, l2)

such that

(xn1 (w1,m, l1), xn2 (w2,m, l2)) ∈ T (n)
ε .

For k ∈ [1 : 2], the source sends (wk, lk) to relay k.

• Encoding at relay k ∈ [1 : 2]: Note that fictitious message m is given at relay k. After receiving

(wk, lk) from the source, relay k sends xnk(wk,m, lk).

• Decoding at the legitimate destination: The legitimate destination finds (ŵ1, ŵ2, m̂, l̂1, l̂2) such that

(xn1 (ŵ1, m̂, l̂1), xn2 (ŵ2, m̂, l̂2), yn) ∈ T (n)
ε .

The legitimate destination declares that (ŵ1, ŵ2) is the message.

• Error analysis: From the mutual covering lemma [18], the encoding error at the source averaged

over the codebooks tends to zero as n tends to infinity if

R̃1 + R̃2 > I(X1;X2) + δ(ε). (25)

For k ∈ [1 : 2], the transmission of (wk, lk) from the source to relay k requires

Rk + R̃k < Ck. (26)
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From the standard error analysis, the decoding error at the legitimate destination averaged over the

codebooks tends to zero as n tends to infinity if

R1 + R̃1 < I(X1;Y |X2) + I(X1;X2)− δ(ε) (27)

R2 + R̃2 < I(X2;Y |X1) + I(X1;X2)− δ(ε) (28)

R1 +R2 +R′ + R̃1 + R̃2 < I(X1, X2;Y ) + I(X1;X2)− δ(ε). (29)

• Secrecy analysis: We can show limn→∞ 1
nI(W ;Zn|C) ≤ δ(ε) + ε if (22) and the following inequal-

ities are satisfied.

R̃1 < I(X1;Z|X2) + I(X1;X2)− δ(ε) (30)

R̃2 < I(X2;Z|X1) + I(X1;X2)− δ(ε) (31)

R′ + R̃1 + R̃2 < I(X1, X2;Z) + I(X1;X2)− δ(ε) (32)

See Section IV-E for the detail.

Therefore, there exists a sequence of codes such that P (n)
e tends to zero and 1

nI(W ;Zn) ≤ δ(ε) + ε

as n tends to infinity if (22), (24)-(32) are satisfied. By performing Fourier-Mozkin elimination to (22),

(24)-(32) and by taking ε→ 0, the PDF-M rate of

min(C1 + I(X2;Y |X1), C2 + I(X1;Y |X2), C1 + C2 − I(X1;X2), I(X1, X2;Y )− I(X1, X2;Z))

(33)

is obtained. From the standard discretization procedure [19], R(1)
DF(ρ) and R

(1)
PDF−M(ρ) are obtained by

evaluating (23) and (33) for the degraded Gaussian diamond-wiretap channel discussed in Section II and

a jointly Gaussian distribution p(x1, x2) such that xk for k ∈ [1 : 2] has zero mean and variance of Pk

and the correlation coefficient between X1 and X2 is ρ ∈ [−1, 1].
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C. Proof of Theorem 4

We note that the upper bound (9) continues to hold when the fictitious message is given only at the

source. Then, we have

nR ≤ I(Xn
1 , X

n
2 ;Y n)− I(Xn

1 , X
n
2 ;Zn) + nεn (34)

≤ I(Xn
1 , X

n
2 ; J1, Y

n)− I(Xn
1 , X

n
2 ;Zn) + nεn

≤ H(J1) + I(Xn
1 , X

n
2 ;Y n|J1)− I(Xn

1 , X
n
2 ;Zn) + nεn

(a)

≤ H(J1) + I(Xn
2 ;Y n|J1, X

n
1 )− I(Xn

1 , X
n
2 ;Zn) + nεn

≤ nC1 + I(Xn
2 ;Y n|Xn

1 )− I(Xn
1 , X

n
2 ;Zn) + nεn

(b)

≤ nC1 + n log(1 + (1− λ2
b)P2)− I(Xn

1 , X
n
2 ;Zn) + nεn (35)

where λb is defined in the proof of Theorem 1, (a) is because Xn
1 is a function of J1, and (b) is from

some similar steps as in the derivation of (3). Similarly, we can obtain

nR ≤ nC2 + n log(1 + (1− λ2
a)P1)− I(Xn

1 , X
n
2 ;Zn) + nεn, (36)

where λa is defined in the proof of Theorem 1.

For any random variable Ui generated through a conditional pmf p(ui|x1,i, x2,i, yi), we have

nR ≤ I(Xn
1 , X

n
2 ;Y n)− I(Xn

1 , X
n
2 ;Zn) + nεn

≤ H(Xn
1 , X

n
2 )− I(Xn

1 , X
n
2 ;Zn) + nεn

≤ H(Xn
1 ) +H(Xn

2 )− I(Xn
1 ;Xn

2 )− I(Xn
1 , X

n
2 ;Zn) + nεn

(a)

≤ nC1 + nC2 − I(Xn
1 ;Xn

2 )− I(Xn
1 , X

n
2 ;Zn) + nεn (37)

(b)

≤ nC1 + nC2 − I(Xn
1 , X

n
2 ;Un) + I(Xn

1 ;Un|Xn
2 )

+ I(Xn
2 ;Un|Xn

1 )− I(Xn
1 , X

n
2 ;Zn) + nεn, (38)

where (a) is because Xn
k is a function of Jk for k ∈ [1 : 2] and (b) is from some similar steps as in the

derivation of (7).

Note that we have the following lower and upper bounds on 1
nh(Y n):

1

n
h(Y n) ≥ 1

n
h(Y n|Xn

1 , X
n
2 ) =

1

n
h(Nn

Y ) =
1

2
log(2πe)

1

n
h(Y n) ≤ 1

2
log(2πe)(1 + P1 + P2 + 2

√
P1P2).
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Hence, there exists ρ ∈ [−ρ̄, 1] such that

1

n
h(Y n) =

1

2
log(2πe)(1 + P1 + P2 + 2ρ

√
P1P2). (39)

Then, we have the following lower bound on I(Xn
1 , X

n
2 ;Zn):

I(Xn
1 , X

n
2 ;Zn) ≥ n

2
log(1 + g(P1 + P2 + 2ρ

√
P1P2)) (40)

from the entropy power inequality.

Now, we are ready to prove Theorem 4. First consider ρ ∈ [−ρ̄, 0). Then, from (34)-(37), (39), and

(40), we have R ≤ min(f1(0), f2(0), f3(0), f4(ρ)) − f5(ρ) + εn. Next, consider ρ ∈ [0, 1]. Then, due

to similar reasons as in the proof of Theorem 1, we have ρ ≤ min(λa, λb). Then, from (34)-(37), (39),

and (40), we have R ≤ min(f1(ρ), f2(ρ), f3(0), f4(ρ))− f5(ρ) + εn. Now, assume that ρ further satisfies

ρ ∈ [0, ρ∗]. We choose Ui = Yi + Ṽi, where Ṽi is an i.i.d. Guassian random variable with zero mean and

variance of γ̃ =
√
P1P2(1

ρ − ρ)− 1. Then, by substituting (40) and similar bounds as (17)-(19) to (38),

we obtain R ≤ f3(ρ)− f5(ρ) + εn. Hence, we have R ≤ min(f1(ρ), f2(ρ), f3(ρ), f4(ρ))− f5(ρ) + εn for

ρ ∈ [0, ρ∗]. This concludes the proof of Theorem 4.

D. Proof of Theorem 5

As in the proof of Theorem 2, we first assume that the channel from the relays to the legitimate

destination and the eavesdropper is a discrete memoryless channel with a conditional pmf p(y, z|x1, x2).

Fix p(x1, x2) and ε > 0. Let

R′ = I(X1, X2;Z)− δ(ε). (41)

For the DF scheme, by letting the source send both the message and the fictitious message to the relays,

an achievable secrecy rate of

min(C1 −R′, C2 −R′, I(X1, X2;Y )− I(X1, X2;Z)) (42)

is obtained from (23) by replacing C1 and C2 by C1 −R′ and C2 −R′, respectively.

Similarly, for the PDF-DF-M scheme, by letting the source send the fictitious message as well as the

partial message and the relay codeword index to relay k for k = 1, 2 in the PDF-M scheme for the first

scenario, an achievable secrecy rate of

min(C1 + I(X2;Y |X1)−R′, C2 + I(X1;Y |X2)−R′,

C1 + C2 − I(X1;X2)− 2R′, I(X1, X2;Y )− I(X1, X2;Z)) (43)
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is obtained from (33) by replacing C1 and C2 by C1 −R′ and C2 −R′, respectively.

The PDF-PDF-M scheme is described in the following.

• Codebook generation: We represent the message w ∈ [1 : 2nR] and the fictitious message m ∈ [1 :

2nR
′
] as a partial message pair (w1, w2) ∈ [1 : 2nR1 ] × [1 : 2nR2 ] and a partial fictitious message

pair (m1,m2) ∈ [1 : 2nR
′
1 ]× [1 : 2nR

′
2 ], respectively, for some nonnegative rates R1, R2, R

′
1, and R′2

such that

R1 +R2 = R, R′1 +R′2 = R′. (44)

Consider R̃k ≥ 0 for k ∈ [1 : 2]. For each k ∈ [1 : 2] and (wk,mk, lk) ∈ [1 : 2nRk ]× [1 : 2nR
′
k ]× [1 :

2nR̃k ], generate xnk(wk,mk, lk) independently according to
∏n
i=1 p(xk,i).

• Encoding at the source: For message (w1, w2) and fictitious message (m1,m2), the source finds an

(l1, l2) such that

(xn1 (w1,m1, l1), xn2 (w2,m2, l2)) ∈ T (n)
ε .

For k ∈ [1 : 2], the source sends (wk,mk, lk) to relay k.

• Encoding at relay k ∈ [1 : 2]: After receiving (wk,mk, lk) from the source, relay k sends xnk(wk,mk, lk).

• Decoding at the legitimate destination: The legitimate destination finds (ŵ1, ŵ2, m̂1, m̂2, l̂1, l̂2) such

that

(xn1 (ŵ1, m̂1, l̂1), xn2 (ŵ2, m̂2, l̂2), yn) ∈ T (n)
ε .

The legitimate destination declares (ŵ1, ŵ2) is the message.

• Error analysis: From the mutual covering lemma, the encoding error at the source averaged over the

codebooks tends to zero as n tends to infinity if

R̃1 + R̃2 > I(X1;X2) + δ(ε). (45)

For k ∈ [1 : 2], the transmission of (wk,mk, lk) from the source to relay k requires

Rk +R′k + R̃k < Ck. (46)

From the standard error analysis, the decoding error at the legitimate destination averaged over the

codebooks tends to zero as n tends to infinity if

R1 +R′1 + R̃1 < I(X1;Y |X2) + I(X1;X2)− δ(ε) (47)

R2 +R′2 + R̃2 < I(X2;Y |X1) + I(X1;X2)− δ(ε) (48)

R1 +R2 +R′1 +R′2 + R̃1 + R̃2 < I(X1, X2;Y ) + I(X1;X2)− δ(ε). (49)
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• Secrecy analysis: We can show limn→∞ 1
nI(W ;Zn|C) ≤ δ(ε) + ε if (41) and the following inequal-

ities are satisfied.

R′1 + R̃1 < I(X1;Z|X2) + I(X1;X2)− δ(ε) (50)

R′2 + R̃2 < I(X2;Z|X1) + I(X1;X2)− δ(ε) (51)

R′1 +R′2 + R̃1 + R̃2 < I(X1, X2;Z) + I(X1;X2)− δ(ε) (52)

See Section IV-E for the detail.

Therefore, there exists a sequence of codes such that P (n)
e tends to zero and 1

nI(W ;Zn) ≤ δ(ε) + ε

as n tends to infinity if (41), (44)-(52) are satisfied. By performing Fourier-Mozkin elimination to (41),

(44)-(52) and by taking ε→ 0, a secrecy rate of

min(C1 + I(X2;Y |X1), C2 + I(X1;Y |X2), C1 + C2 − I(X1;X2), I(X1, X2;Y ))− I(X1, X2;Z)

(53)

subject to the constraints

C1 > I(X1;Z), C2 > I(X2;Z) (54)

is obtained. From the standard discretization procedure, R(2)
DF(ρ), R(2)

PDF−DF−M(ρ), and R(2)
PDF−PDF−M(ρ)

are obtained by evaluating (42), (43), (53), and (54) for the degraded Gaussian diamond-wiretap channel

discussed in Section II and a jointly Gaussian distribution p(x1, x2) such that xk for k ∈ [1 : 2] has zero

mean and variance of Pk and the correlation coefficient between X1 and X2 is ρ ∈ [−1, 1].

E. Secrecy analysis

Let C denote the random codebook. For message W , fictitious message M , and chosen relay codeword

indices L = (L1, L2), we have

H(W |Zn, C) = H(W,M,L|Zn, C)−H(M,L|W,Zn, C)
(a)

≥ H(W,M,L|Zn, C)− nε

= H(W,M,L|C)− I(W,M,L;Zn|C)− nε

≥ H(W ) + nR′ − I(W,M,L,Xn
1 , X

n
2 , C;Zn)− nε

= H(W ) + nR′ − I(Xn
1 , X

n
2 ;Zn)− nε

≥ H(W ) + nR′ − nI(X1, X2;Z)− nε

= H(W )− nδ(ε)− nε
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for sufficiently lage n, where (a) is because the eavesdropper who already knows W and Zn can decode

M and L with high probability when (30)-(32) are satisfied for the first scenario and when (50)-(52) are

satisfied for the second scenario. Hence, we have limn→∞ 1
nI(W ;Zn|C) ≤ δ(ε) + ε.

V. CONCLUSION

In this paper, we derived nontrivial upper and lower bounds on the secrecy capacity of the degraded

Gaussian diamond-wiretap channel under two scenarios regarding the availability of randomness.

Our upper bound was obtained by taking into account the correlation between the two relay signals and

the availability of randomness at each encoder, which generalizes both the upper bound on the capacity

of the diamond channel without secrecy constraint [3] and the upper bound on the sum secrecy capacity

of the MAC wiretap channel [4]. For the lower bound, we proposed DF scheme and partial DF scheme

incorporated with multicoding that is called PDF-M scheme for the first scenario and PDF-DF-M and

PDF-PDF-M schemes for the second scenario depending on whether the relay decodes the whole or partial

fictitious message. In the first scenario, PDF-M scheme with strictly positive correlation coefficient was

shown to outperform DF and PDF (without multicoding) schemes for some channel parameters. We also

showed that the PDF scheme is asymptotically optimal for the first scenario when at least one of relay

power constraint tends to infinity. For the second scenario, we presented a condition for channel parameters

where the PDF-PDF-M scheme is optimal. Furthermore, because the fictitious message has to be sent

through the BC for the second scenario, it was shown to be befinicial to consider negative correlation

in all DF, PDF-DF-M, PDF-PDF-M schemes when the BC cut becomes the bottleneck. Furthermore, we

investigated the effect of the presence of an eavesdropper on the capacity. If there is a sufficient amount

of common randomness between the source and the relays, it was shown that there is no decrease in

capacity due to an eavesdropper for some range of C.

As a final remark, it seems to be straightforward to combine our DF scheme and partial DF scheme

incorporated with multicoding by using superposition coding, but the resultant rate expression would be

rather complicated with less useful insights.
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