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Abstract—We study a two-terminal secret-key
generation problem over a two-way, approximately
reciprocal, block-fading channel. The channel gains
between the legitimate terminals are not revealed to
any terminal, whereas the channel gains of the eaves-
dropper are revealed perfectly to the eavesdropper.
We study a separation based scheme that involves a
training phase followed by a communication phase
within each block. The training phase generates
correlated estimates of the channel state sequence be-
tween the two terminals, whereas the communication
phase generates correlated source sequences between
the two terminals. A portion of the secret-key is gen-
erated from the correlated channel state sequences by
creating omniscience between the legitimate terminals
and the remainder of the secret-key is generated from
the correlated source sequences. An upper bound on
the secret-key capacity is also established by reducing
the setup to a coherent channel by providing genie-
aided side information to the receivers. We observe
that the diffrence between the upper and lower bound
decreases as 1

T
in the high signal-to-noise-ratio (SNR)

regime. Numerical results indicate that the proposed
scheme achieves significant gains over the commonly
used training-only schemes even for moderate SNR.

I. INTRODUCTION

Channel reciprocity is an inherent feature in
time-division-duplex systems. In recent years there
has been a growing interest in using reciprocity
for secret-key generation. Indeed a number of ex-
perimental as well as analytical studies [1]–[6],
demonstrate its viability in various wireless sys-
tems. However the associated information-theoretic
limits still remain to be established.

While the information theoretic framework for
secure communication was established by Shan-
non [7], the problem of secret-key generation from
common randomness between two legitimate ter-
minals has been studied relatively recently [8],
[9]. The common randomness can arise due to
observations of correlated source signals or due
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to communication over a noisy channel. In the
source model, the legitimate terminals, say A and
B, and an eavesdropping terminal, say E, observe
N i.i.d. copies of random variables xA, xB and
xE respectively, which are sampled from a joint
distribution p(xA, xB , xE). In addition, a public
channel of unlimited capacity is also available. Ter-
minals A and B are required to generate a shared
secret-key at the end of the communication which
must be concealed from E. In the channel model,
terminal A communicates with terminal B (and
is eavesdropped by terminal E) over a (one-way)
discrete memoryless broadcast channel. Note that
this model can be reduced to the source model by
transmitting i.i.d. source symbols over the channel.
This method is referred to as source-emulation and
is known to be optimal in some special cases.
See also e.g., [10]–[14] and references therein for
further extensions on secret-key generation.

There has been a growing interest in applying
the secret-key generation framework in wireless
fading channels. See e.g., [15]–[25]. However only
reference [18] studies a setup directly relevant to
the channel reciprocity systems. The authors study
a two-way, non-coherent, block fading channel with
perfect reciprocity in uplink and downlink. Under
the restricted class of training-only scheme, the
authors establish the maximum secret-key rate. Fur-
thermore they also study a two-phase scheme where
part of the coherence block is used for training and
the remainder is used for secure-message transmis-
sion using a wiretap code. However the message
transmission should be done without any rate or
power allocation, which significantly restricts the
achievable rate.

In the present paper we study a setup simi-
lar to [18] but assume only imperfect reciprocity,
i.e., we assume that the channel gains in uplink
and downlink are correlated, but the correlation
coefficient is not unity. In general achieving per-



fect channel reciprocity in baseband is challenging
because different terminals use different I/Q mix-
ers, amplifiers and path lengths in the RF chains.
While closed-loop calibration can be performed
(see e.g. [26]) such methods can become chal-
lenging if the calibration needs to be done in the
open air. Hence we believe that our assumption of
imperfect reciprocity may perhaps be more realistic
in practice. Nevertheless we note that while our
lower bound can also be applied to the case of
perfect reciprocity, and improves upon [18], our
proposed upper bound becomes degenerate in that
case.

We propose a separation based transmission
scheme,f where part of the coherence block is
used for training and the remaining part is used
for source-emulation. Unlike message transmission,
the use of source emulation yields positive rates
even when power adaptation across the channel
gains is not performed. This observation allows us
to improve the results in [18]. The upper bound is
based on a genie aided scheme where we reveal the
respective channel gains to the legitimate terminals
and then obtain an upper bound in the resulting
coherent model. We further show that the gap
between our upper and lower bounds decays as
1
T in the high signal-to-noise-ratio regime, thus
establishing the near optimality of the proposed
two-phase scheme in this operating regime. To
our knowledge this provides the first asymptotic
capacity result on secret-key generation in a two-
way non-coherent channel model.

II. SYSTEM MODEL AND MAIN RESULTS

We consider a setup with two legitimate ter-
minals A and B and one eavesdropper E. The
terminals A and B communicate over a two-way
non-coherent wireless channel:

yA(t) = hBA(t)xB(t) + nA(t) (1)
yB(t) = hAB(t)xA(t) + nB(t) (2)

zAE(t) = gAE(t)xA(t) + nAE(t) (3)
zBE(t) = gBE(t)xB(t) + nBE(t) (4)

where t ∈ {1, . . . , N} denotes the time index,
yA(t) and yB(t) denote the output symbols at ter-
minals A and B and {zAE(t), zBE(t)} denote the
output symbols at terminal E. The input symbols
generated by terminals A and B at time t are
denoted by xA(t) and xB(t) respectively and are
required to satisfy the average power constraints:

1

N

N∑
t=1

E[|xA(t)|2] ≤ P, 1

N

N∑
t=1

E[|xB(t)|2] ≤ P

For convenience we assume that the channel
gains (gAE , gBE) are sampled independently of
(hAB , hBA). In the proposed block-fading model,
the channel gains (hAB , hBA, gAE , gBE) are drawn
from a distribution p(hAB , hBA)p(gAE , gBE) once
every T consecutive symbols and stay constant
over this period i.e., the channel gains remain
constant in the interval t ∈ [iT + 1, (i + 1)T ] for
i = 0, 1, . . . , NT − 1. We assume that the channel
gains hAB(t) and hBA(t) are not revealed to any
of the terminals apriori, whereas the channel gains
(gAE(t), gBE(t)) are revealed to the eavesdropper
terminal.

Remark 1: While we assume that the channel
gains of the eavesdropper are independent, our
upper and lower bounds naturally extend when the
channel gains are drawn from a joint distribution
p(hAB , hBA, gAE , gBE). Note that we assume a
full duplex channel model in (1), (2) as both
terminals A and B transmit and receive at the same
time. The “half-duplex” case where only one of
the terminals can transmit at a give time is also
of interest, but will not be treated in this paper.
Finally note that the eavesdropper observes the
transmission from the two terminals A and B over
non-interfering links (c.f. (3), (4)). An eavesdropper
who observes a superposition of the two signals can
only be weaker than the proposed eavesdropper.

We will denote the sequence of length N observed
by terminal A by yNA and use a similar notation
for other input and output channel symbols. The
sequence h̄KAB is used to denote the K = N

T unique
coefficients on the channel between A to B and a
similar notation is used for the other channel gains.
However we will also use the notation hAB(i) to
denote the channel gain at time i, which maps to
the b iT c + 1 index in the sequence h̄KAB . We will
use the notation z(t) = {zAE(t), zBE(t)} to denote
both the output symbols at terminal E and g(i) ,
(gAE(i), gBE(i)).

Definition 1 (Secret-Key Capacity): A feasi-
ble secret-key generation protocol is defined as
follows. Terminals A and B sample independent
random variables mA and mB from a product
distribution p(mA)p(mB). At time t, terminals A
and B generate the symbols xA(t) = fA(mA, y

t−1
A )

and xB(t) = fB(mB , y
t−1
B ). At the end of N

channel uses, the terminals A and B generate secret
keys kA and kB respectively using the functions
kA = KA(yNA ,mA) and kB = KB(yNB ,mB). We
require that Pr(kA 6= kB) ≤ εN and furthermore
1
N I(kA; zN , gK) ≤ εN for some sequence εN that
goes to zero as N → ∞. The largest achievable
rate R = 1

NH(kA) is denoted as the secret-key
capacity.
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Fig. 1. Separation-based approach for secret-key generation. In
each coherence block of length T symbols, the first symbol is
dedicated to training and a power P1 is used. The remaining
T − 1 symbols are used for source emulation. Each symbol is
sampled i.i.d. from CN (0, P2) in this phase.

III. MAIN RESULTS

We establish upper and lower bounds on the
secret-key capacity for the two-way non-coherent
channel model in section II.

Theorem 1: An upper-bound on the secret-key
capacity of the two-way non-coherent public fading
channel is given by C ≤ R+ where

R+ =
1

T
I(hAB ; hBA)+

max
{P (hAB)}∈PAB

I(xA; yB |zAE , gAE , hAB)

+ max
{P (hBA)}∈PBA

I(xB ; yA|zBE , gBE , hBA), (5)

where the above expression is evaluated for

xA ∼ CN (0, P (hAB)), xB ∼ CN (0, P (hBA)),

and the set PAB is the set of all non-negative power
allocation functions PhAB

that satisfy the average
power constraint E[P (hAB)] ≤ P and the set PBA
is defined similarly.

Remark 2: The upper bound expression (5)
in Theorem 1 has a natural interpretation. The
term 1

T I(hAB ; hBA) is the contribution arising
from reciprocal channel gains. The conditional mu-
tual information terms are the contributions arising
from the fading channel model in forward and
reverse links respectively, when the fading gains
(hAB , hBA) are revealed to the eavesdropper. The
upper bound is obtained by taking the sum of these
three terms.

Our proposed coding scheme involves a sep-
aration based approach. As shown in Fig. 1, the
first symbol in each coherence block is reserved
for sending a training symbol and a total power of
P1 is used in this phase. This allows the terminals
B and A to generate linear minimum mean squared
error estimates of the channel gains hAB and hBA
respectively i.e.,

ĥAB = αhAB + nAB (6)

ĥBA = αhBA + nBA, (7)

where α = P1

P1+1 and nAB and nBA both have the
distribution CN (0, 1 − α) and are independent of
the channel gains hAB and hBA respectively.

For the reminder of coherence block, both the
terminals transmit i.i.d. symbols from CN (0, P2) to
generate correlated source sequences. At the end of
this communication secret-keys are generated from
the estimated channel sequences and the correlated
source sequences.

We first provide a lower bound by assuming
that the public-messages for secret-key generation
are transmitted over an external public discussion
channel. The resulting rate-expression is simpler
and has a form similar to (5).

Theorem 2: An achievable secret-key rate
when an additional public discussion channel of
arbitrarily high rate is available communication is
given by

R−PD =
1

T
I(ĥAB ; ĥBA)+

T − 1

T
I(xA; yB |ĥAB , ĥBA, zAE , gAE)+

T − 1

T
I(xB ; yA|ĥAB , ĥBA, zBE , gBE), (8)

where we evaluate the expression for xA ∼
CN (0, P2) and xB ∼ CN (0, P2) and ĥAB and ĥBA
are specified in (6) and (7) respectively and the
variables P1 and P2 are non-negative and satisfy
the relation

P1 + (T − 1)P2 ≤ TP. (9)

Remark 3: The expression in (8) has a form
that is very similar to the upper bound expression
in (5). It differs in the following respects: (i) the
channel gains hAB and hBA are replaced by their
estimates ĥAB and ĥBA respectively; (ii) the con-
ditional mutual information terms are additionally
scaled by a factor of

(
1− 1

T

)
; (iii) power allocation

accross the channel gains is not performed in the
lower bound expression.

An explicit evaluation of the lower bound
when that the channel gains hAB and hBA are
jointly Gaussian, zero mean random variables with
a cross-correlation of ρ is as follows.

Proposition 1: An achievable secret-key rate
when terminals A and B have access to a public
discussion channel is given by:

R−PD =
1

T
R−P,T +

T − 1

T

(
R−P,AB +R−P,BA

)
(10)

where the expressions for R−P,T , R
−
P,AB and R−P,BA

are given by:

R−P,T = − log
(
1− α2ρ2

)
(11)
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Fig. 2. Extension of the proposed coding scheme in absence
of public discussion. A total of K coherence blocks are used
for training and source emulation. Thereafter a total of ε1K
coherence blocks are used for transmission of the public mes-
sage associated with the channel sequences and another ε2K
coherence blocks are used for the transmission of the public
message associated with the source sequences.

R−P,AB = E

[
log

(
1+

P2|hAB |2

1 + P2|gAE |2

)]
− log

(
1+

P2

1 + P1

)
(12)

R−P,BA = E

[
log

(
1+

P2|hBA|2

1 + P2|gBE |2

)]
− log

(
1+

P2

1 + P1

)
. (13)

�

We next consider the case when the public dis-
cussion channel is not present. In this scenario, we
need to use the communication channel for sending
the public messages during the key-generation step.
As shown in Fig. 2, we accomplish this by using
additional coherence blocks for sending the public
messages of the channel and source sequences.
We also need to quantize the source sequences to
satisfy the rate constraint imposed by the channel.

Theorem 3: An achievable secret-key rate in
the absence of public discussion for the two-way
reciprocal fading channel is:

R− =
1

1 + ε1 + ε2

(
1

T
RI +

T − 1

T
RII

)
. (14)

We provide the expressions for RI and RII below,
both of which depend on ε1 and ε2.

RI = I(uA; ĥBA)+I(uBA; ĥAB)−I(uAB ; uBA)
(15)

where the random variables uAB and uBA satisfy
the Markov chain

uAB → ĥAB → ĥBA → uBA, (16)

and the rate constraints

I(uAB ; ĥAB |ĥBA) ≤ (T − 1)ε1Rc(P ), (17)

I(uBA; ĥBA|ĥAB) ≤ (T − 1)ε1Rc(P ), (18)

where Rc(P ) is an achievable rate for the non-
coherent block fading channel [27].

The rate expression for RII is expressed as
RII = R−AB +R−BA, where

R−AB = I(vB ; xA|u)− I(vB ; zAE , gAE |u), (19)

R−BA = I(vA; xB |u)− I(vA; zBE , gBE |u) (20)

where the random variable u , (uAB , uBA). The
random variables vA and vB in (20) and (19) satisfy
the following Markov Conditions

vA → yA → (u, xB), vB → yB → (u, xA). (21)

as well as the rate constraints:

I(vA; yA|u, xB) ≤ ε2Rc(P ), (22)
I(vB ; yB |u, xA) ≤ ε2Rc(P ). (23)

�

We further evaluate the rate expression in
Theorem 3 for a Gaussian test channel:

uAB = ĥAB + qAB , uBA = ĥBA + qBA (24)

where qAB , qBA ∼ CN (0, Q1) are Gaussian ran-
dom variables independent of all other variables.
Similarly we let

vA = yA + wA, vB = yB + wB (25)

where wA,wB ∼ CN (0, Q2) are Gaussian random
variables independent of all other variables.

Proposition 2: An achievable secret-key rate
in the absence of public discussion for the two-way
reciprocal fading channel is given by:

R− =
1

1+ε1+ε2

{
1

T
RI(ε1, P1) +

T − 1

T
RII(ε2, P2)

}
(26)

where P1 and P2 are non-negative and satisfy (9)
and ε1 and ε2 are non-negative constants that will
be specified in the sequel. The rate expressions RI

and RII are as follows.

RI(ε1, P1) =−2 log

(
1− α2ρ2

1 + Q1

α

)
+log

1− α2ρ2(
1 + Q1

α

)2


(27)

where α = P1

1+P1
and Q1 satisfies

log

(
1 +

α(1− α2ρ2)

Q1

)
≤ ε1TRc(P ). (28)

The expression for RII satisfies

RII(ε2, P2)=

{
R−AB(ε2, P2)+R−BA(ε2, P2)

}
,

(29)



R−AB(ε2, P2)=E

[
log

(
1 +

P2|hAB |2

(1 +Q2)(1 + P2|gAE |2)

)]
− log

(
σ2
ABP2

1 +Q2
+ 1

)
, (30)

R−BA(ε2, P2)=E

[
log

(
1+

P2|hBA|2

(1 +Q2)(1 + P2|gBE |2)

)]
− log

(
σ2
BAP2

1 +Q2
+ 1

)
, (31)

where

σ2
AB = σ2

BA = 1− α2

Q1 + α
(32)

and Q2 satisfies

log

(
1 +

σ2
ABP2 + 1

Q2

)
≤ ε2Rc(P ). (33)

�

Remark 4: The rate achieved in Prop 2 re-
duces to the rate achieved using public discussion
in Prop. 1 when we take Q1 = Q2 = 0. In partic-
ular when Q1 = 0 note that the expression for
RI in (27) immediately reduces to (10). Further-
more (32) reduces to

σ2
AB = σ2

BA =
1

1 + P1
. (34)

Substituting Q2 = 0, and (34) in (30) and (31)
we obtain (12) and (13) respectively. Thus the
rate expressions in Prop. 2 are consistent with the
expressions in Prop. 1 when quantization noise is
introduced in (24) and (25).

We also observe that the upper and lower
bounds are close in the high signal-to-noise-ratio
(SNR) regime.

Corollary 1: In the high SNR regime the up-
per and lower bounds satisfy the following relation:

lim
P→∞

R+(P )−R−PD(P ) =
1

T
γ (35)

lim
P→∞

R+(P )−R−(P ) =
1

T
γ (36)

where R+, R−PD and R− are given by (5), (10)
and (26) respectively and

γ ,E

[
log

(
1 +
|hAB |2

|gAE |2

)]
+E

[
log

(
1 +
|hBA|2

|gBE |2

)]
(37)

is a constant that only depends on the distributions
p(hAB)p(gAE) and p(hBA)p(gBE).

We omit the proof of Corollary 1 due to space
constraints.

Numerical Comparison:

Fig. 3 shows the bounds on secret-key capacity
as a function of SNR when the coherence period
T = 10, while Fig. 4 shows the bounds as a
function of the coherence period T when SNR =
35 dB. In Fig. 3 we fix the correlation coefficient
in uplink and downlink gains to ρ = 0.95 while
in Fig. 4 it is fixed to ρ = 0.99. In both cases,
we observe that the gap between the upper and
lower bound (with public discussion channel) is
small. Intuitively the range of SNR considered
is sufficiently large so that the penalty due to
channel estimation vanishes. However the penalty
arising from the overhead associated with the trans-
mission of public messages is not negligible in
this range and hence there is a significant gap
between the upper bound and the lower bound in
Theorem 3. The lowermost (horizontal) curve is an
upper bound on the rate of a training based scheme
Rtraining = − 1

T log(1−ρ2). It is clear that training-
only schemes are in general inefficient even when
the overhead information for transmitting public
messages is accounted for. In particular, we see that
while the rate of the training based scheme decays
to zero as the coherence period goes to infinity,
whereas the rate of the remaining schemes does
not exhibit this phenomenon.

IV. PROOF OF THEOREM 1

In this section we provide a proof of Theo-
rem 1. From the Fano’s inequality and the secrecy
constraint we have that

NR ≤ I(kA; kB)− I(kA; zN , ḡK) + 2nεn (38)

≤ I(kA; kB |zN , ḡK) + 2nεn (39)

where εn → 0 as n → ∞. In the following
steps the term εn will be suppressed. Since kA =
fA(mA, y

N
A ) and kB = fB(mB , y

N
B ), using the

data-processing inequality and the chain rule of
mutual information, we have:

NR ≤ I(mA, h̄
K
BA, y

N
A ;mB , h̄

K
AB , y

N
B |zN , ḡK)

= I(mA, h̄
K
BA, y

N
A ;mB , h̄

K
AB , y

N−1
B |zN , ḡK)+

I(mA, h̄
K
BA, y

N
A ; yB(N)|zN , ḡK ,mB , h̄

K
AB , y

N−1
B )

= I(mA, h̄
K
BA, y

N−1
A ;mB , h̄

K
AB , y

N−1
B |zN , ḡK)+

I(yA(N);mB , h̄
K
AB , y

N−1
B |zN , ḡK ,mA, h̄

K
BA, y

N−1
A )+

I(mA, h̄
K
BA, y

N−1
A ; yB(N)|zN , ḡK ,mB , h̄

K
AB , y

N−1
B )+

I(yA(N); yB(N)|zN, ḡK ,mB , h̄
K
AB , y

N−1
B ,mA, h̄

K
BA,y

N−1
A ).

(40)

We bound each of the four terms in (40).

We can show that:

I(mA, h̄
K
BA, y

N−1
A ;mB , h̄

K
AB , y

N−1
B |zN , ḡK)
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Fig. 3. Bounds on the SK capacity as a function of SNR for a
coherence period of T = 10.
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Fig. 4. Bounds on the SK capacity as a function of coherence
period for SNR = 30dB.

≤ I(mA, h̄
K
BA, y

N−1
A ;mB , h̄

K
AB , y

N−1
B |zN−1, ḡK)

(41)

by following an argument as in [8]. We
omit the details due to space constraint. Since
(yA(N), zBE(N)) are independent of all other ran-
dom variables given (xB(N), hBA(N), gBE(N))
we can show that

I(yA(N);mB , h̄
K
AB , y

N−1
B |zN , ḡK ,mA, h̄

K
BA, y

N−1
A )

≤ I(yA(N); xB(N)|zBE(N), gBE(N), hBA(N)).
(42)

and likewise

I(mA, h̄
K
BA, y

N−1
A ; yB(N)|zN , ḡK ,mB , h̄

K
AB , y

N−1
B )

≤ I(xA(N); yB(N)|zAE(N), hAB(N), gAE(N)).
(43)

Finally using the fact that xA(N) and xB(N) are
functions of (mA, y

N−1
BA ) and (mB , y

N−1
AB ) respec-

tively we can show that the last term in (40) equals
zero. Thus substituting (41), (42) and (43) into (40)
we have that

NR ≤ I(mA, h̄
K
BA, y

N−1
A ;mB , h̄

K
AB , y

N−1
B |zN−1, ḡK)

+ I(yA(N); xB(N)|zBE(N), gBE(N), hBA(N))

+ I(xA(N); yB(N)|zAE(N), hAB(N), gAE(N))
(44)

Recursively applying the same steps we have that

NR ≤ I(mA, h̄
K
BA; h̄KAB ,mB |ḡK)+

N∑
i=1

I(xB(i); yA(i)|zBE(i), gBE(i), hBA(i))+

N∑
i=1

I(xA(i); yB(i)|zAE(i), gAE(i), hAB(i))

(45)
= KI(hBA; hAB)+

N∑
i=1

I(xB(i); yA(i)|zBE(i), gBE(i), hBA(i))+

N∑
i=1

I(xA(i); yB(i)|zAE(i), gAE(i), hAB(i))

(46)

where in (46) we use the fact that (mA,mB) are
mutually independent and independent of the chan-
nel gains and furthermore (h̄KAB , h̄

K
BA) are indepen-

dent of ḡK . Finally to establish the upper bound (5)
suppose that we assign a power Pi(hAB) when the
channel gain at time i equals hAB . Using the fact
that a Gaussian input distribution maximizes the
conditional mutual information terms in (46) we
have:

I(xA(i); yB(i)|zAE(i), gAE(i), hAB(i))

≤ E
[
log

(
1 +

Pi(hAB)|hAB |2

1 + Pi(hAB)|gAE |2

)]
. (47)

Thus we have that
N∑
i=1

I(xA(i); yB(i)|zAE(i), gAE(i), hAB(i))

≤
N∑
i=1

E

[
log

(
1 +

Pi(hAB)|hAB |2

1 + Pi(hAB)|gAE |2

)]
(48)

≤ E

[
N∑
i=1

log

(
1 +

Pi(hAB)|hAB |2

1 + Pi(hAB)|gAE |2

)]
(49)

≤ NE

[
log

(
1 +

1
N

∑N
i=1 Pi(hAB)|hAB |2

1 + 1
N

∑N
i=1 Pi(hAB)|gAE |2

)]
(50)

= NE

[
log

(
1 +

P (hAB)|hAB |2

1 + P (hAB)|gAE |2

)]
, (51)

= NI(xA; yB |zAE , gAE , hAB) (52)

where P (hAB) , 1
N

∑N
i=1 Pi(hAB) is the average



power allocated when the fading state equals hAB
and (50) uses the fact that the function f(x) =

log
(

1 + ax
1+bx

)
is a concave function in x and

hence Jensen’s inequality applies. In a similar fash-
ion we can show that

N∑
i=1

I(xB(i); yA(i)|zBE(i), gBE(i), hBA(i))

≤ NE
[
log

(
1 +

P (hBA)|hBA|2

1 + P (hBA)|gBE |2

)]
. (53)

= NI(xB ; yA|zBE , gBE , hBA) (54)

The upper bound (5) follows by substituting in (52)
and (54) into (46). This completes the proof of
Theorem 1.

V. PROOF OF THEOREM 2

We first sketch the proof of Theorem 2 where
we assume the availability of a public discussion
channel. As stated before the coding scheme is a
separation based scheme. It divides each coherence
block into two parts as follows: (a) Training: In
each coherence block, the first symbol is used to
transmit a pilot symbol:

xA(iT + 1) = xB(iT + 1) =
√
P1,

i = 0, . . . ,
N

T
− 1. (55)

The legitimate receivers B and A use the corre-
sponding output symbols yB(iT+1) and yA(iT+1)
for estimating the underlying channel gains ĥAB
and ĥBA respectively in (6) and (7) respectively.

(b) Source Emulation: The remainder of the
coherence block is used to transmit i.i.d. Gaussian
symbols i.e.,

xA(t) ∼ CN (0, P2), xB(t) ∼ CN (0, P2),

∀t ∈ [1, N ], t 6= iT + 1. (56)

For our analysis we use the notation x̄A(t)
to denote the (vector) sequence of T − 1 transmit-
ted Gaussian symbols in coherence block t. and
let ȳB(t) denote the corresponding output symbol
vector in block t. We execute this transmission
over K coherence blocks. At the end of this we
observe that terminal A has an estimate ĥKBA of the
channel sequence, transmitted a source sequence
x̄KA on the forward channel and observed ȳKA over
the reverse channel. Likewise terminal B has es-
timated ĥKAB , observed ȳKA and transmitted x̄KB .
The eavesdropper has been revealed (gKA , g

K
B ), and

observes (z̄KA , z̄
K
B ) over its two channels in (3), (4).

The secret-key generation proceeds in the fol-
lowing phases. In the first phase both the terminals

transmit the bin index of their respective chan-
nel sequences over the public discussion channel,
in order to generate a common knowledge of
(ĥKAB , ĥ

K
BA). A secret-key of rate

R−T =
1

T
I(ĥAB ; ĥBA) (57)

is generated in this phase. In the second phase
terminal A sends the bin index of the sequence
ȳKA over the public discussion channel so that
terminal B can reconstruct this sequence using
(x̄KB , ĥ

K
AB , ĥ

K
BA) as side information. A secret-key

of rate

R−BA =
T − 1

T

{
I(yA; xB , ĥAB , ĥBA)

− I(yA; zB , gB , ĥAB , ĥBA)

}
(58)

=
T − 1

T
I(yA; xB |ĥAB , ĥBA, zB , gB) (59)

is achieved. In a similar fashion by binning the
sequence ȳKB we can achieve the rate of

R−AB =
T − 1

T
I(yB ; xA|ĥAB , ĥBA, zA, gA). (60)

The overall-key rate that is achieved is given by the
sum of (57), (59) and (60).

The proof of the secrecy analysis is omitted
due to space constraints. The proof of Prop. 1
follows by evaluating or bounding the associated
mutual information expression for Gaussian input
distributions. We skip the derivations due to space
constraints.

VI. PROOF OF THEOREM 3

In absence of the discussion channel, we use
the separation based scheme involving training and
communication phases as in (55) and (56) respec-
tively over K coherence blocks. At the end of
this we have the same set of source and channel
sequences as in the previous section. Thereafter
we use ε1 ·K coherence blocks for generating the
secret-key from the channel sequences and another
ε2 ·K coherence blocks for generating the secret-
key from the source sequences. Due to this over-
head, the total rate achieved is scaled by a factor
of 1

1+ε1+ε2
as in (26).

In the secret-key generation phase we suit-
ably quantize each of the channel-state and source
sequences to satisfy the rate constraint for public
messages. Terminal A quantizes the sequence ĥKBA
to a codeword uKBA using a Gaussian codebook
associated with the test channel for uBA in (24). A
Wyner-Ziv codebook is applied such that terminal
B can recover the codeword sequence given the
side information ĥKAB and the bin-index. The rate of



this codebook must satisfy (18) and the associated
secret-key rate is given by

R−T,A =
1

T
I(uBA; ĥAB). (61)

Likewise, terminal B quantizes the sequence
ĥKAB to a codeword uKAB in a Gaussian codebook
associated with the test channel for uAB in (24)
and a Wyner-Ziv codebook of rate (17) is applied.
The resulting secret-key rate is given by

R−T,B =
1

T

{
I(uAB ; ĥBA)− I(uAB ; uBA)

}
.

(62)

The rate-expression for RI in (15) follows by
combining the contributions from (19) and (20).
To generate secret-key from the source sequences,
terminal A maps the sequence ȳKA to a codeword
vKA using the test channel for vA in (25). A Wyner-
Ziv codebook is applied to generate a bin index
of vKA , such that terminal B can use it and the
side information sequence (x̄KB , u

K) to decode vKA .
The rate of the Wyner-Ziv codebook must satisfy
the rate constraint (22) and the associated secret-
key rate is given by (19). Likewise the Wyner-Ziv
codebook on the reverse channel must satisfy the
rate constraint (23) and the associated rate of the
secret-key is given by (20)

We omit the secrecy analysis and a more
detailed description of the proposed scheme due
to space constraints.

The proof of Prop. 2 follows by explicitly eval-
uating or bounding the mutual information terms in
Theorem 3 and will not be included due to space
constraints.
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