Multiple Access Channels with Intermittent Feedback and Side Information

Ashish Khisti
University of Toronto

Joint Work with Amos Lapidoth (ETH-Zürich)

ISIT, 2013
July 12th 2013

Problem Setup

Multiple Access Channel with Intermittent Feedback

Problem Setup

Multiple Access Channel with Intermittent Feedback

- Intermittent Feedback

$$
z(i)= \begin{cases}y(i) & s(i)=1 \\ \star & s(i)=0\end{cases}
$$

Problem Setup

Multiple Access Channel with Intermittent Feedback

- Intermittent Feedback

$$
z(i)= \begin{cases}y(i) & s(i)=1 \\ \star & s(i)=0\end{cases}
$$

- State Sequence: s^{n} i.i.d. $\operatorname{Pr}(s(i)=0)=\beta$

Problem Setup

Multiple Access Channel with Intermittent Feedback

- Intermittent Feedback

$$
z(i)= \begin{cases}y(i) & s(i)=1 \\ \star & s(i)=0\end{cases}
$$

- State Sequence: s^{n} i.i.d. $\operatorname{Pr}(s(i)=0)=\beta$
- Encoding Functions: $x_{k}(i)=f_{k}\left(w_{k}, z^{i-1}, s^{i-1}\right), k=1,2$
- Decoding Function: $\left(\hat{w}_{1}, \hat{w}_{2}\right)=g_{n}\left(y^{n}, s^{n}\right)$

Problem Setup

Multiple Access Channel with Intermittent Feedback

- Intermittent Feedback

$$
z(i)= \begin{cases}y(i) & s(i)=1 \\ \star & s(i)=0\end{cases}
$$

- State Sequence: s^{n} i.i.d. $\operatorname{Pr}(s(i)=0)=\beta$
- Encoding Functions: $x_{k}(i)=f_{k}\left(w_{k}, z^{i-1}, s^{i-1}\right), k=1,2$
- Decoding Function: $\left(\hat{w}_{1}, \hat{w}_{2}\right)=g_{n}\left(y^{n}, s^{n}\right)$
- Gaussian MAC: $y(i)=x_{1}(i)+x_{2}(i)+n(i)$,
$E\left[x_{k}^{2}\right] \leq P_{k}, n(i) \sim \mathcal{N}(0,1)$

Sum-Rate

- No-Feedback: (Ahlswede '71, Liao '72)
- Perfect Feedback: (Ozarow '83)

Sum-Rate

- No-Feedback: (Ahlswede '71, Liao '72)
- Perfect Feedback: (Ozarow '83)

Independent Gaussian Inputs

Jointly Gaussian Inputs

Sum-Rate

- No-Feedback: (Ahlswede '71, Liao '72)
- Perfect Feedback: (Ozarow '83)

$$
\beta \in(0,1): \quad R_{1}+R_{2} \xrightarrow[\geq]{?}(1-\beta) \cdot R_{\mathrm{sum}}^{\mathrm{cut}-\mathrm{set}}+\beta \cdot R_{\mathrm{sum}}^{\mathrm{no-fb}}
$$

Sum-Rate

- No-Feedback: (Ahlswede '71, Liao '72)
- Perfect Feedback: (Ozarow '83)

$$
\beta \in(0,1): \quad R_{1}+R_{2} \xrightarrow[\geq]{?}(1-\beta) \cdot R_{\mathrm{sum}}^{\mathrm{cut}-\mathrm{set}}+\beta \cdot R_{\mathrm{sum}}^{\mathrm{no-fb}}
$$

Sum-Rate

- No-Feedback: (Ahlswede '71, Liao '72)
- Perfect Feedback: (Ozarow '83)

$$
\beta \in(0,1): \quad R_{1}+R_{2} \stackrel{?}{\leq}(1-\beta) \cdot R_{\mathrm{sum}}^{\mathrm{cut}-\mathrm{set}}+\beta \cdot R_{\mathrm{sum}}^{\mathrm{no}-\mathrm{fb}}
$$

Intermittent Feedback: Outer Bound

Theorem

Any achievable rate pair $\left(R_{1}, R_{2}\right)$ satisfies:

$$
\left(R_{1}, R_{2}\right) \in \bigcap_{\substack{\sigma_{1}^{2} \geq 0, \sigma_{2}^{2} \geq 0 \\ \sigma_{1}^{2}+\sigma_{2}^{2}=1}} \mathcal{C}\left(\sigma_{1}^{2}, \sigma_{2}^{2}\right)
$$

where $\mathcal{C}\left(\sigma_{1}^{2}, \sigma_{2}^{2}\right)$ is defined by:

$$
\begin{aligned}
R_{1} & \leq \frac{\beta}{2} \log \left(1+P_{1}\right)+\frac{\bar{\beta}}{2} \log \left(1+\frac{P_{1}}{\sigma_{1}^{2}}\right) \\
R_{2} & \leq \frac{\beta}{2} \log \left(1+P_{2}\right)+\frac{\bar{\beta}}{2} \log \left(1+\frac{P_{2}}{\sigma_{2}^{2}}\right) \\
R_{1}+R_{2} & \leq \frac{\beta}{2} \log \left(1+P_{1}+P_{2}\right)+\frac{\bar{\beta}}{2}\left[\log \left(1+\frac{P_{1}}{\sigma_{1}^{2}}\right)+\log \left(1+\frac{P_{2}}{\sigma_{2}^{2}}\right)\right] \\
\text { for every } & \sigma_{1}^{2} \geq 0, \sigma_{2}^{2} \geq 0 \text { with } \sigma_{1}^{2}+\sigma_{2}^{2}=1 \text { and } \bar{\beta} \triangleq(1-\beta) .
\end{aligned}
$$

Intermittent Feedback: Outer Bound

Theorem

Any achievable rate pair $\left(R_{1}, R_{2}\right)$ satisfies:

$$
\left(R_{1}, R_{2}\right) \in \bigcap_{\substack{\sigma_{1}^{2} \geq 0, \sigma_{2}^{2} \geq 0 \\ \sigma_{1}^{2}+\sigma_{2}^{2}=1}} \mathcal{C}\left(\sigma_{1}^{2}, \sigma_{2}^{2}\right)
$$

where $\mathcal{C}\left(\sigma_{1}^{2}, \sigma_{2}^{2}\right)$ is defined by:

$$
\begin{aligned}
R_{1} & \leq \frac{\beta}{2} \log \left(1+P_{1}\right)+\frac{\bar{\beta}}{2} \log \left(1+\frac{P_{1}}{\sigma_{1}^{2}}\right) \\
R_{2} & \leq \frac{\beta}{2} \log \left(1+P_{2}\right)+\frac{\bar{\beta}}{2} \log \left(1+\frac{P_{2}}{\sigma_{2}^{2}}\right) \\
R_{1}+R_{2} & \leq \frac{\beta}{2} \log \left(1+P_{1}+P_{2}\right)+\frac{\bar{\beta}}{2}\left[\log \left(1+\frac{P_{1}}{\sigma_{1}^{2}}\right)+\log \left(1+\frac{P_{2}}{\sigma_{2}^{2}}\right)\right] \\
\text { for every } & \sigma_{1}^{2} \geq 0, \sigma_{2}^{2} \geq 0 \text { with } \sigma_{1}^{2}+\sigma_{2}^{2}=1 \text { and } \bar{\beta} \triangleq(1-\beta) .
\end{aligned}
$$

Intermittent Feedback: Outer Bound

Two-Phase MAC:

n

Feedback Phase
No Feedback Phase

$$
(1-\beta) n \quad \beta n
$$

Achievable Sum-Rate: $R_{1}+R_{2}=\bar{\beta} \cdot R_{\text {sum }}^{\text {cut-set }}+\beta \cdot R_{\text {sum }}^{\text {No-Feedback }}$
Upper Bound: $R_{1}+R_{2} \leq \bar{\beta} \cdot R_{\text {sum }}^{\text {parallel }}+\beta \cdot R_{\text {sum }}^{\mathrm{No}-\text { Feedback }}$

Intermittent Feedback: Outer Bound

Two-Phase MAC:

n

Feedback Phase
No Feedback Phase

$$
(1-\beta) n \quad \beta n
$$

Achievable Sum-Rate: $R_{1}+R_{2}=\bar{\beta} \cdot R_{\text {sum }}^{\text {cut-set }}+\beta \cdot R_{\text {sum }}^{\text {No-Feedback }}$
Upper Bound: $R_{1}+R_{2} \leq \bar{\beta} \cdot R_{\text {sum }}^{\text {parallel }}+\beta \cdot R_{\text {sum }}^{\mathrm{No}-\text { Feedback }}$

Intermittent Feedback: Outer Bound

Two-Phase MAC:
n

Feedback Phase
No Feedback Phase

$$
(1-\beta) n
$$

βn
Feedback Phase
No-Feedback Phase

$$
\begin{gathered}
\mathrm{Y}=\mathrm{U}_{1}+\mathrm{U}_{2} \\
\mathrm{X}_{1} \rightarrow+\quad \mathrm{U}_{1} \sim \boldsymbol{N}\left(0, \sigma_{1}^{2}\right) \\
\mathrm{X}_{2} \rightarrow+
\end{gathered}
$$

Intermittent Feedback: Outer Bound

Two-Phase MAC:

n

Feedback Phase

No Feedback Phase

$$
(1-\beta) n
$$

β n

Lemma (Conditional Independence Lemma - Two Phase Channel)

Let $m=(1-\beta) n$. For any coding scheme

- $x_{k}(i)=f_{k, i}\left(w_{k}, u_{1,1}^{i-1}, u_{2,1}^{i-1}\right)$, for $i=1,2, \ldots, m$
- $x_{k}(i)=f_{k, i}\left(w_{k}, u_{1,1}^{m}, u_{2,1}^{m}\right)$, for $i=m+1, \ldots, n$

Then $x_{1}(i) \leftrightarrow\left(u_{1}^{m}, u_{2}^{m}\right) \leftrightarrow x_{2}(i)$, for $i \in\{m+1 \ldots, n\}$ holds.
See also: Willems: ('82), ('83), ('85), Bracher et. al. ('12)

Intermittent Feedback: Outer Bound

Two-Phase MAC:

n

Feedback Phase

No Feedback Phase

$$
(1-\beta) n
$$

β n

Lemma (Conditional Independence Lemma - Two Phase Channel)

Let $m=(1-\beta) n$. For any coding scheme

- $x_{k}(i)=f_{k, i}\left(w_{k}, u_{1,1}^{i-1}, u_{2,1}^{i-1}\right)$, for $i=1,2, \ldots, m$
- $x_{k}(i)=f_{k, i}\left(w_{k}, u_{1,1}^{m}, u_{2,1}^{m}\right)$, for $i=m+1, \ldots, n$

Then $x_{1}(i) \leftrightarrow\left(u_{1}^{m}, u_{2}^{m}\right) \leftrightarrow x_{2}(i)$, for $i \in\{m+1 \ldots, n\}$ holds.
See also: Willems: ('82), ('83), ('85), Bracher et. al. ('12)

Intermittent Feedback: Outer Bound

Two-Phase MAC:

n

Feedback Phase

No Feedback Phase

$$
(1-\beta) n
$$

Outer Bound for the Two-Phase Channel.

$$
\begin{aligned}
R_{1} & \leq \frac{\bar{\beta}}{2} \log \left(1+\frac{P_{1}^{F}}{\sigma_{1}^{2}}\right)+\frac{\beta}{2} \log \left(1+P_{1}^{N F}\right) \\
R_{2} & \leq \frac{\bar{\beta}}{2} \log \left(1+\frac{P_{2}^{F}}{\sigma_{1}^{2}}\right)+\frac{\beta}{2} \log \left(1+P_{2}^{N F}\right) \\
R_{1}+R_{2} & \leq \frac{\bar{\beta}}{2}\left\{\log \left(1+\frac{P_{1}^{F}}{\sigma_{1}^{2}}\right)+\log \left(1+\frac{P_{2}^{F}}{\sigma_{2}^{2}}\right)\right\}+\frac{\beta}{2} \log \left(1+P_{1}^{N F}+P_{2}^{N F}\right)
\end{aligned}
$$

for some $P_{k}^{F} \geq 0, P_{k}^{N F} \geq 0$ with $\bar{\beta} P_{k}^{F}+\beta P_{k}^{N F} \leq P_{k}$.

Outer Bound - Memoryless State

$$
s^{n} \sim \prod_{i=1}^{n} p_{s}\left(s_{i}\right)
$$

- Strictly Causal Encoder CSI
- Preclude Power Adaptation i.e., $P_{k}^{F}=P_{k}^{N F}=P_{k}$

Outer Bound - Memoryless State

$$
s^{n} \sim \prod_{i=1}^{n} p_{s}\left(s_{i}\right)
$$

- Strictly Causal Encoder CSI
- Preclude Power Adaptation i.e., $P_{k}^{F}=P_{k}^{N F}=P_{k}$

State Dependent Channel Enhancement

Feedback: $s(i)=1$

$$
\begin{aligned}
y(i) & =z(i)=\left\{u_{1}(i), u_{2}(i)\right\} \\
u_{1}(i) & =x_{1}(i)+n_{1}(i) \\
u_{2}(i) & =x_{2}(i)+n_{2}(i) \\
n_{1}(i) & \perp n_{2}(i), n_{1}(i)+n_{2}(i)=n(i)
\end{aligned}
$$

Erasure: $s(i)=0$

$$
\begin{aligned}
& y(i)=x_{1}(i)+x_{2}(i)+n(i) \\
& z(i)=\star
\end{aligned}
$$

Outer Bound - Memoryless State

$$
s^{n} \sim \prod_{i=1}^{n} p_{s}\left(s_{i}\right)
$$

- Strictly Causal Encoder CSI
- Preclude Power Adaptation i.e., $P_{k}^{F}=P_{k}^{N F}=P_{k}$

Lemma (Conditional Independence Lemma - Memoryless State)

For the enhanced MAC Channel, let $\Omega(i)=(z(i), s(i))$. For any coding scheme $x_{k}(i)=f_{k, i}\left(w_{k}, \Omega^{i-1}\right)$, for $i=1,2, \ldots, n$ we have that $x_{1}(i) \leftrightarrow \Omega^{i-1} \leftrightarrow x_{2}(i)$

Outer Bound - Memoryless State

$$
s^{n} \sim \prod_{i=1}^{n} p_{s}\left(s_{i}\right)
$$

- Strictly Causal Encoder CSI
- Preclude Power Adaptation i.e., $P_{k}^{F}=P_{k}^{N F}=P_{k}$

$$
\begin{align*}
n\left(R_{1}+R_{2}\right) & \leq I\left(w_{1}, w_{2} ; y^{n}, s^{n}\right) \\
& \leq \sum_{i=1}^{n} I\left(x_{1}(i), x_{2}(i) ; y(i) \mid z^{i-1}, s^{i-1}, s(i)\right) \tag{1}
\end{align*}
$$

- $x_{1}(i) \leftrightarrow\left(z^{i-1}, s^{i-1}\right) \leftrightarrow x_{2}(i)$
- $x_{1}(i)$ and $x_{2}(i)$ are independent of $s(i)$.

Outer Bound - Memoryless State

$$
s^{n} \sim \prod_{i=1}^{n} p_{s}\left(s_{i}\right)
$$

- Strictly Causal Encoder CSI
- Preclude Power Adaptation i.e., $P_{k}^{F}=P_{k}^{N F}=P_{k}$

$$
\begin{aligned}
& I\left(x_{1}(i), x_{2}(i) ; y(i) \mid z^{i-1}, s^{i-1}, s(i)\right) \\
& =\beta I\left(x_{1}(i), x_{2}(i) ; y_{0}(i) \mid z^{i-1}, s^{i-1}, s(i)=0\right) \\
& \quad+\bar{\beta} I\left(x_{1}(i), x_{2}(i) ; y_{1}(i) \mid z^{i-1}, s^{i-1}, s(i)=1\right)
\end{aligned}
$$

- $x_{1}(i) \leftrightarrow\left(z^{i-1}, s^{i-1}\right) \leftrightarrow x_{2}(i)$
- $x_{1}(i)$ and $x_{2}(i)$ are independent of $s(i)$.
- Optimality of Gaussian Inputs

Lower Bound

- Outer Encoder: Length N block code

$$
w_{1} \rightarrow\left(\psi_{1}(1), \ldots, \psi_{1}(N)\right), w_{2} \rightarrow\left(\psi_{2}(1), \ldots, \psi_{2}(N)\right)
$$

- Inner Encoder: Iteratively Refine $\left(\psi_{1}(j), \psi_{2}(j)\right)$ until feedback symbol is erased.

Lower Bound

Iterative Refinement Scheme:

- Initialize: $x_{1}(1)=\psi_{1}(1)$ and $x_{2}(1)=\psi_{2}(1)$
- Until $z_{i}=\star$, we let

$$
x_{1}(i)=\frac{1}{\beta_{1, i}}\left(\psi_{1}(1)-E\left[\psi_{1}(1) \mid z^{i-1}\right]\right), x_{2}(i)=\frac{(-1)^{i-1}}{\beta_{2, i}}\left(\psi_{2}(1)-E\left[\psi_{2}(1) \mid z^{i-1}\right]\right)
$$

- If $z_{i}=\star$ reset to $x_{1}(1)=\psi_{1}(2)$ and $x_{2}(1)=\psi_{2}(2)$, proceed.

Lower Bound

Concatenated Coding Scheme

Induced Channel: $\left(\psi_{1}, \psi_{2}\right) \rightarrow\left(y_{1}, \ldots, y_{T}, T\right)$
$\operatorname{Pr}(T=t)=\beta(1-\beta)^{t-1}$.

$$
\begin{aligned}
R_{1}+R_{2} & \leq \frac{1}{E[T]} I\left(\psi_{1}, \psi_{2} ; y_{1}, \ldots, y_{T} \mid T\right), \\
R_{k} & \leq \frac{1}{E[T]} I\left(\psi_{k} ; y_{1}, \ldots, y_{T} \mid \psi_{\bar{k}}, T\right)
\end{aligned}
$$

Computation based on Ozarow ('83), Lapidoth-Wigger ('10)

Numerical Comparisons

$$
P_{1}=P_{2}=2
$$

MAC With Intermittent Cribbing + Perfect Feedback

Encoder Side Information

$$
z(i)= \begin{cases}y(i), & s(i)=0 \\ \left(y(i), x_{1}(i), x_{2}(i)\right), & s(i)=1\end{cases}
$$

- Encoding Function: $x_{k}(i)=f_{k, i}\left(w_{k}, z^{i-1}, s^{i-1}\right)$
- Decoding Function: $\left(\hat{w}_{1}, \hat{w}_{2}\right)=g_{n}\left(y^{n}\right)$

MAC With Intermittent Cribbing + Perfect Feedback

Semi-deterministic MAC (SD-MAC): $x_{1}=f\left(y, x_{2}\right)$

Theorem

The capacity region of SD-MAC consists of all $\left(R_{1}, R_{2}\right)$ that satisfy:

$$
\begin{aligned}
R_{1} & \leq \beta I\left(x_{1} ; y \mid u, x_{2}\right)+\bar{\beta} H\left(x_{1} \mid u\right) \\
R_{2} & \leq \beta I\left(x_{2} ; y \mid u, x_{1}\right)+\bar{\beta} H\left(x_{2} \mid u\right) \\
R_{1}+R_{2} & \leq I\left(x_{1}, x_{2} ; y\right)
\end{aligned}
$$

for some u that satisfies $x_{1} \rightarrow u \rightarrow x_{2}$ and $u \rightarrow\left(x_{1}, x_{2}\right) \rightarrow y$.

- Achievability: Superposition Block-Markov Coding
- Converse: Independence Lemma

MAC With Intermittent Cribbing + Perfect Feedback

Semi-deterministic MAC (SD-MAC): $x_{1}=f\left(y, x_{2}\right)$

Theorem

The capacity region of SD-MAC consists of all $\left(R_{1}, R_{2}\right)$ that satisfy:

$$
\begin{aligned}
R_{1} & \leq \beta I\left(x_{1} ; y \mid u, x_{2}\right)+\bar{\beta} H\left(x_{1} \mid u\right) \\
R_{2} & \leq \beta I\left(x_{2} ; y \mid u, x_{1}\right)+\bar{\beta} H\left(x_{2} \mid u\right) \\
R_{1}+R_{2} & \leq I\left(x_{1}, x_{2} ; y\right)
\end{aligned}
$$

for some u that satisfies $x_{1} \rightarrow u \rightarrow x_{2}$ and $u \rightarrow\left(x_{1}, x_{2}\right) \rightarrow y$.

- Achievability: Superposition Block-Markov Coding
- Converse: Independence Lemma

MAC With Intermittent Cribbing + Perfect Feedback

Semi-deterministic MAC (SD-MAC): $x_{1}=f\left(y, x_{2}\right)$

Theorem

The capacity region of SD-MAC consists of all $\left(R_{1}, R_{2}\right)$ that satisfy:

$$
\begin{aligned}
R_{1} & \leq \beta I\left(x_{1} ; y \mid u, x_{2}\right)+\bar{\beta} H\left(x_{1} \mid u\right) \\
R_{2} & \leq \beta I\left(x_{2} ; y \mid u, x_{1}\right)+\bar{\beta} H\left(x_{2} \mid u\right) \\
R_{1}+R_{2} & \leq I\left(x_{1}, x_{2} ; y\right)
\end{aligned}
$$

for some u that satisfies $x_{1} \rightarrow u \rightarrow x_{2}$ and $u \rightarrow\left(x_{1}, x_{2}\right) \rightarrow y$.

Extreme Cases:

- No Cribbing, Only Feedback ($\beta=1$), Willems ('82)
- Perfect Cribbing + Feedback $(\beta=0)$, Bracher et. al ('12)

MAC With Intermittent Cribbing + Perfect Feedback

Semi-deterministic MAC (SD-MAC): $x_{1}=f\left(y, x_{2}\right)$

Theorem

The capacity region of SD-MAC consists of all $\left(R_{1}, R_{2}\right)$ that satisfy:

$$
\begin{aligned}
R_{1} & \leq \beta I\left(x_{1} ; y \mid u, x_{2}\right)+\bar{\beta} H\left(x_{1} \mid u\right) \\
R_{2} & \leq \beta I\left(x_{2} ; y \mid u, x_{1}\right)+\bar{\beta} H\left(x_{2} \mid u\right) \\
R_{1}+R_{2} & \leq I\left(x_{1}, x_{2} ; y\right)
\end{aligned}
$$

for some u that satisfies $x_{1} \rightarrow u \rightarrow x_{2}$ and $u \rightarrow\left(x_{1}, x_{2}\right) \rightarrow y$.

Extreme Cases:

- No Cribbing, Only Feedback ($\beta=1$), Willems ('82)
- Perfect Cribbing + Feedback $(\beta=0)$, Bracher et. al ('12)

Conclusions

MAC with Intermittent Side Information

- Gaussian MAC with Intermittent Feedback
- SD-MAC with Intermittent Cribbing + Perfect Feedback

Conclusions

MAC with Intermittent Side Information

- Gaussian MAC with Intermittent Feedback
- Inner Bound based on Concatenated Coding + Iterative Refinement
- Outer Bound that reduces to No-Feedback Capacity when $\beta \rightarrow 1$.
- SD-MAC with Intermittent Cribbing + Perfect Feedback
- Capacity Region
- Achievability based on Superposition Block Markov Coding

Conclusions

MAC with Intermittent Side Information

- Gaussian MAC with Intermittent Feedback
- Inner Bound based on Concatenated Coding + Iterative Refinement
- Outer Bound that reduces to No-Feedback Capacity when $\beta \rightarrow 1$.
- SD-MAC with Intermittent Cribbing + Perfect Feedback
- Capacity Region
- Achievability based on Superposition Block Markov Coding

Future Work

- Noisy Feedback (Gastpar-Kramer '06, Wigger-Lapidoth '10, Tandon-Ulukus '11)
- Independent Erasures
- Tighter Outer Bounds

