Multiple Access Channels with Intermittent Feedback and Side Information

Ashish Khisti University of Toronto

Joint Work with Amos Lapidoth (ETH-Zürich)

ISIT, 2013 July 12th 2013

Problem Setup Multiple Access Channel with Intermittent Feedback

Multiple Access Channel with Intermittent Feedback

$$z(i) = \begin{cases} y(i) & s(i) = 1, \\ \star & s(i) = 0. \end{cases}$$

Multiple Access Channel with Intermittent Feedback

$$\mathbf{z}(i) = \begin{cases} \mathbf{y}(i) & \mathbf{s}(i) = 1, \\ \star & \mathbf{s}(i) = 0. \end{cases}$$

• State Sequence: \mathbf{s}^n i.i.d. $\Pr(\mathbf{s}(i) = 0) = \beta$

Multiple Access Channel with Intermittent Feedback

$$z(i) = \begin{cases} y(i) & s(i) = 1, \\ \star & s(i) = 0. \end{cases}$$

- State Sequence: s^n i.i.d. $\Pr(s(i) = 0) = \beta$
- Encoding Functions: $x_k(i) = f_k(w_k, z^{i-1}, s^{i-1}), k = 1, 2$
- Decoding Function: $(\hat{w}_1, \hat{w}_2) = g_n(y^n, s^n)$

Multiple Access Channel with Intermittent Feedback

$$\mathbf{z}(i) = \begin{cases} \mathbf{y}(i) & \mathbf{s}(i) = 1, \\ \mathbf{\star} & \mathbf{s}(i) = 0. \end{cases}$$

- State Sequence: s^n i.i.d. $\Pr(s(i) = 0) = \beta$
- Encoding Functions: $x_k(i) = f_k(w_k, z^{i-1}, s^{i-1}), k = 1, 2$
- Decoding Function: $(\hat{w}_1, \hat{w}_2) = g_n(y^n, s^n)$
- Gaussian MAC: $y(i) = x_1(i) + x_2(i) + n(i)$, $E[x_k^2] \le P_k$, $n(i) \sim \mathcal{N}(0, 1)$

- No-Feedback: (Ahlswede '71, Liao '72)
- Perfect Feedback: (Ozarow '83)

- No-Feedback: (Ahlswede '71, Liao '72)
- Perfect Feedback: (Ozarow '83)

Independent Gaussian Inputs

Jointly Gaussian Inputs

- No-Feedback: (Ahlswede '71, Liao '72)
- Perfect Feedback: (Ozarow '83)

ISIT, 2013 July 12th 2013

- No-Feedback: (Ahlswede '71, Liao '72)
- Perfect Feedback: (Ozarow '83)

- No-Feedback: (Ahlswede '71, Liao '72)
- Perfect Feedback: (Ozarow '83)

Theorem

Any achievable rate pair (R_1, R_2) satisfies:

$$(R_1, R_2) \in \bigcap_{\substack{\sigma_1^2 \ge 0, \sigma_2^2 \ge 0\\ \sigma_1^2 + \sigma_2^2 = 1}} \mathcal{C}(\sigma_1^2, \sigma_2^2)$$

where $\mathcal{C}(\sigma_1^2,\sigma_2^2)$ is defined by:

$$\begin{split} R_{1} &\leq \frac{\beta}{2} \log(1+P_{1}) + \frac{\bar{\beta}}{2} \log\left(1 + \frac{P_{1}}{\sigma_{1}^{2}}\right) \\ R_{2} &\leq \frac{\beta}{2} \log(1+P_{2}) + \frac{\bar{\beta}}{2} \log\left(1 + \frac{P_{2}}{\sigma_{2}^{2}}\right) \\ R_{1} + R_{2} &\leq \frac{\beta}{2} \log(1+P_{1}+P_{2}) + \frac{\bar{\beta}}{2} \left[\log\left(1 + \frac{P_{1}}{\sigma_{1}^{2}}\right) + \log\left(1 + \frac{P_{2}}{\sigma_{2}^{2}}\right)\right] \\ \text{for every } \sigma_{1}^{2} &\geq 0, \sigma_{2}^{2} \geq 0 \text{ with } \sigma_{1}^{2} + \sigma_{2}^{2} = 1 \text{ and } \bar{\beta} \triangleq (1-\beta). \end{split}$$

Theorem

Any achievable rate pair (R_1, R_2) satisfies:

$$(R_1, R_2) \in \bigcap_{\substack{\sigma_1^2 \ge 0, \sigma_2^2 \ge 0\\ \sigma_1^2 + \sigma_2^2 = 1}} \mathcal{C}(\sigma_1^2, \sigma_2^2)$$

where $\mathcal{C}(\sigma_1^2, \sigma_2^2)$ is defined by:

$$\begin{split} R_1 &\leq \frac{\beta}{2} \log(1+P_1) + \frac{\bar{\beta}}{2} \log\left(1 + \frac{P_1}{\sigma_1^2}\right) \\ R_2 &\leq \frac{\beta}{2} \log(1+P_2) + \frac{\bar{\beta}}{2} \log\left(1 + \frac{P_2}{\sigma_2^2}\right) \\ R_1 + R_2 &\leq \frac{\beta}{2} \log(1+P_1+P_2) + \frac{\bar{\beta}}{2} \left[\log\left(1 + \frac{P_1}{\sigma_1^2}\right) + \log\left(1 + \frac{P_2}{\sigma_2^2}\right)\right] \\ \text{for every } \sigma_1^2 &\geq 0, \sigma_2^2 \geq 0 \text{ with } \sigma_1^2 + \sigma_2^2 = 1 \text{ and } \bar{\beta} \triangleq (1-\beta). \end{split}$$

Two-Phase MAC:

Achievable Sum-Rate: $R_1 + R_2 = \bar{\beta} \cdot R_{\text{sum}}^{\text{cut-set}} + \beta \cdot R_{\text{sum}}^{\text{No-Feedback}}$ Upper Bound: $R_1 + R_2 \leq \bar{\beta} \cdot R_{\text{sum}}^{\text{parallel}} + \beta \cdot R_{\text{sum}}^{\text{No-Feedback}}$

Two-Phase MAC:

Achievable Sum-Rate: $R_1 + R_2 = \bar{\beta} \cdot R_{\text{sum}}^{\text{cut-set}} + \beta \cdot R_{\text{sum}}^{\text{No-Feedback}}$ Upper Bound: $R_1 + R_2 \leq \bar{\beta} \cdot R_{\text{sum}}^{\text{parallel}} + \beta \cdot R_{\text{sum}}^{\text{No-Feedback}}$

Two-Phase MAC:

Two-Phase MAC:

Lemma (Conditional Independence Lemma - Two Phase Channel)

Let
$$m = (1 - \beta)n$$
. For any coding scheme
• $x_k(i) = f_{k,i}(w_k, u_{1,1}^{i-1}, u_{2,1}^{i-1})$, for $i = 1, 2, ..., m$
• $x_k(i) = f_{k,i}(w_k, u_{1,1}^m, u_{2,1}^m)$, for $i = m + 1, ..., n$
Then $x_1(i) \leftrightarrow (u_1^m, u_2^m) \leftrightarrow x_2(i)$, for $i \in \{m + 1, ..., n\}$ holds.

See also: Willems: ('82), ('83), ('85), Bracher et. al. ('12)

Two-Phase MAC:

Lemma (Conditional Independence Lemma - Two Phase Channel)

Let
$$m = (1 - \beta)n$$
. For any coding scheme
• $x_k(i) = f_{k,i}(w_k, u_{1,1}^{i-1}, u_{2,1}^{i-1})$, for $i = 1, 2, ..., m$
• $x_k(i) = f_{k,i}(w_k, u_{1,1}^m, u_{2,1}^m)$, for $i = m + 1, ..., n$
Then $x_1(i) \leftrightarrow (u_1^m, u_2^m) \leftrightarrow x_2(i)$, for $i \in \{m + 1, ..., n\}$ holds.

See also: Willems: ('82), ('83), ('85), Bracher et. al. ('12)

Two-Phase MAC:

Outer Bound for the Two-Phase Channel.

$$R_{1} \leq \frac{\bar{\beta}}{2} \log \left(1 + \frac{P_{1}^{F}}{\sigma_{1}^{2}} \right) + \frac{\beta}{2} \log \left(1 + P_{1}^{NF} \right)$$

$$R_{2} \leq \frac{\bar{\beta}}{2} \log \left(1 + \frac{P_{2}^{F}}{\sigma_{1}^{2}} \right) + \frac{\beta}{2} \log \left(1 + P_{2}^{NF} \right)$$

$$R_{1} + R_{2} \leq \frac{\bar{\beta}}{2} \left\{ \log \left(1 + \frac{P_{1}^{F}}{\sigma_{1}^{2}} \right) + \log \left(1 + \frac{P_{2}^{F}}{\sigma_{2}^{2}} \right) \right\} + \frac{\beta}{2} \log \left(1 + P_{1}^{NF} + P_{2}^{NF} \right)$$

 $\text{for some } P_k^F \geq 0, P_k^{NF} \geq 0 \text{ with } \bar{\beta} P_k^F + \beta P_k^{NF} \leq P_k.$

- $\mathbf{s}^n \sim \prod_{i=1}^n p_{\mathbf{s}}(s_i)$
 - Strictly Causal Encoder CSI
 - Preclude Power Adaptation i.e., $P_k^F = P_k^{NF} = P_k$

 $\mathbf{s}^n \sim \prod_{i=1}^n p_{\mathbf{s}}(s_i)$

- Strictly Causal Encoder CSI
- Preclude Power Adaptation i.e., $P_k^F = P_k^{NF} = P_k$

State Dependent Channel Enhancement

Feedback:
$$s(i) = 1$$

 $y(i) = z(i) = \{u_1(i), u_2(i)\}$
 $u_1(i) = x_1(i) + n_1(i)$
 $u_2(i) = x_2(i) + n_2(i)$
 $n_1(i) \perp n_2(i), n_1(i) + n_2(i) = n(i)$
Erasure: $s(i) = 0$
 $y(i) = x_1(i) + x_2(i) + n(i)$
 $z(i) = \star$

$$s^n \sim \prod_{i=1}^n p_s(s_i)$$

- Strictly Causal Encoder CSI
- \bullet Preclude Power Adaptation i.e., $P_k^F=P_k^{NF}=P_k$

Lemma (Conditional Independence Lemma - Memoryless State)

For the enhanced MAC Channel, let $\Omega(i) = (z(i), s(i))$. For any coding scheme $x_k(i) = f_{k,i}(w_k, \Omega^{i-1})$, for i = 1, 2, ..., n we have that $x_1(i) \leftrightarrow \Omega^{i-1} \leftrightarrow x_2(i)$

 $\mathbf{s}^n \sim \prod_{i=1}^n p_{\mathbf{s}}(s_i)$

- Strictly Causal Encoder CSI
- Preclude Power Adaptation i.e., $P_k^F = P_k^{NF} = P_k$

$$n(R_1 + R_2) \le I(w_1, w_2; y^n, s^n)$$

$$\le \sum_{i=1}^n I(x_1(i), x_2(i); y(i) | z^{i-1}, s^{i-1}, s(i))$$
(1)

•
$$x_1(i) \leftrightarrow (z^{i-1}, s^{i-1}) \leftrightarrow x_2(i)$$

• $x_1(i)$ and $x_2(i)$ are independent of $s(i)$.

Outer Bound — Memoryless State

 $\mathbf{s}^n \sim \prod_{i=1}^n p_{\mathbf{s}}(s_i)$

- Strictly Causal Encoder CSI
- \bullet Preclude Power Adaptation i.e., $P_k^F=P_k^{NF}=P_k$

$$I(\mathbf{x}_{1}(i), \mathbf{x}_{2}(i); \mathbf{y}(i) | \mathbf{z}^{i-1}, \mathbf{s}^{i-1}, \mathbf{s}(i))$$

= $\beta I(\mathbf{x}_{1}(i), \mathbf{x}_{2}(i); \mathbf{y}_{0}(i) | \mathbf{z}^{i-1}, \mathbf{s}^{i-1}, \mathbf{s}(i) = 0)$
+ $\bar{\beta} I(\mathbf{x}_{1}(i), \mathbf{x}_{2}(i); \mathbf{y}_{1}(i) | \mathbf{z}^{i-1}, \mathbf{s}^{i-1}, \mathbf{s}(i) = 1)$

- $x_1(i) \leftrightarrow (z^{i-1}, s^{i-1}) \leftrightarrow x_2(i)$
- $x_1(i)$ and $x_2(i)$ are independent of s(i).
- Optimality of Gaussian Inputs

Lower Bound Concatenated Coding Scheme

 \bullet Outer Encoder: Length N block code

 $\mathbf{w}_1 \to (\psi_1(1), \dots, \psi_1(N)), \mathbf{w}_2 \to (\psi_2(1), \dots, \psi_2(N))$

• Inner Encoder: Iteratively Refine $(\psi_1(j), \psi_2(j))$ until feedback symbol is erased.

Lower Bound Concatenated Coding Scheme

Iterative Refinement Scheme:

- Initialize: $x_1(1) = \psi_1(1)$ and $x_2(1) = \psi_2(1)$
- Until $z_i = \star$, we let

$$x_{1}(i) = \frac{1}{\beta_{1,i}} \left(\psi_{1}(1) - E\left[\psi_{1}(1) | \mathbf{z}^{i-1} \right] \right), x_{2}(i) = \frac{(-1)^{i-1}}{\beta_{2,i}} \left(\psi_{2}(1) - E\left[\psi_{2}(1) | \mathbf{z}^{i-1} \right] \right)$$

• If $z_i = \star$ reset to $x_1(1) = \psi_1(2)$ and $x_2(1) = \psi_2(2)$, proceed.

Lower Bound Concatenated Coding Scheme

Induced Channel:
$$(\psi_1, \psi_2) \to (y_1, \dots, y_T, T)$$

 $\Pr(T = t) = \beta(1 - \beta)^{t-1}.$
 $R_1 + R_2 \le \frac{1}{E[T]}I(\psi_1, \psi_2; y_1, \dots, y_T|T),$
 $R_k \le \frac{1}{E[T]}I(\psi_k; y_1, \dots, y_T|\psi_{\bar{k}}, T)$

Computation based on Ozarow ('83), Lapidoth-Wigger ('10)

Numerical Comparisons

 $P_1 = P_2 = 2$

Encoder Side Information

$$z(i) = \begin{cases} y(i), & s(i) = 0\\ (y(i), x_1(i), x_2(i)), & s(i) = 1 \end{cases}$$

- Encoding Function: $x_k(i) = f_{k,i}(w_k, z^{i-1}, s^{i-1})$
- Decoding Function: $(\hat{w}_1, \hat{w}_2) = g_n(y^n)$

Semi-deterministic MAC (SD-MAC): $x_1 = f(y, x_2)$

Theorem

The capacity region of SD-MAC consists of all (R_1, R_2) that satisfy:

$$R_{1} \leq \beta I(x_{1}; y | u, x_{2}) + \bar{\beta} H(x_{1} | u)$$

$$R_{2} \leq \beta I(x_{2}; y | u, x_{1}) + \bar{\beta} H(x_{2} | u)$$

$$R_{1} + R_{2} \leq I(x_{1}, x_{2}; y)$$

for some u that satisfies $x_1 \rightarrow u \rightarrow x_2$ and $u \rightarrow (x_1, x_2) \rightarrow y$.

- Achievability: Superposition Block-Markov Coding
- Converse: Independence Lemma

Semi-deterministic MAC (SD-MAC): $x_1 = f(y, x_2)$

Theorem

The capacity region of SD-MAC consists of all (R_1, R_2) that satisfy:

$$R_{1} \leq \beta I(x_{1}; y | u, x_{2}) + \bar{\beta} H(x_{1} | u)$$

$$R_{2} \leq \beta I(x_{2}; y | u, x_{1}) + \bar{\beta} H(x_{2} | u)$$

$$R_{1} + R_{2} \leq I(x_{1}, x_{2}; y)$$

for some u that satisfies $x_1 \rightarrow u \rightarrow x_2$ and $u \rightarrow (x_1, x_2) \rightarrow y$.

- Achievability: Superposition Block-Markov Coding
- Converse: Independence Lemma

Semi-deterministic MAC (SD-MAC): $x_1 = f(y, x_2)$

Theorem

The capacity region of SD-MAC consists of all (R_1, R_2) that satisfy:

$$R_{1} \leq \beta I(x_{1}; y | u, x_{2}) + \bar{\beta} H(x_{1} | u)$$

$$R_{2} \leq \beta I(x_{2}; y | u, x_{1}) + \bar{\beta} H(x_{2} | u)$$

$$R_{1} + R_{2} \leq I(x_{1}, x_{2}; y)$$

for some u that satisfies $x_1 \rightarrow u \rightarrow x_2$ and $u \rightarrow (x_1, x_2) \rightarrow y$.

Extreme Cases:

- No Cribbing, Only Feedback ($\beta = 1$), Willems ('82)
- Perfect Cribbing + Feedback ($\beta = 0$), Bracher et. al ('12)

Semi-deterministic MAC (SD-MAC): $x_1 = f(y, x_2)$

Theorem

The capacity region of SD-MAC consists of all (R_1, R_2) that satisfy:

$$R_{1} \leq \beta I(x_{1}; y | u, x_{2}) + \overline{\beta} H(x_{1} | u)$$

$$R_{2} \leq \beta I(x_{2}; y | u, x_{1}) + \overline{\beta} H(x_{2} | u)$$

$$R_{1} + R_{2} \leq I(x_{1}, x_{2}; y)$$

for some u that satisfies $x_1 \rightarrow u \rightarrow x_2$ and $u \rightarrow (x_1, x_2) \rightarrow y$.

Extreme Cases:

- No Cribbing, Only Feedback ($\beta = 1$), Willems ('82)
- Perfect Cribbing + Feedback ($\beta = 0$), Bracher et. al ('12)

MAC with Intermittent Side Information

- Gaussian MAC with Intermittent Feedback
- \bullet SD-MAC with Intermittent Cribbing + Perfect Feedback

MAC with Intermittent Side Information

- Gaussian MAC with Intermittent Feedback
 - Inner Bound based on Concatenated Coding + Iterative Refinement
 - Outer Bound that reduces to No-Feedback Capacity when $\beta \rightarrow 1.$
- \bullet SD-MAC with Intermittent Cribbing + Perfect Feedback
 - Capacity Region
 - Achievability based on Superposition Block Markov Coding

Conclusions

MAC with Intermittent Side Information

- Gaussian MAC with Intermittent Feedback
 - Inner Bound based on Concatenated Coding + Iterative Refinement
 - Outer Bound that reduces to No-Feedback Capacity when $\beta \rightarrow 1.$
- SD-MAC with Intermittent Cribbing + Perfect Feedback
 - Capacity Region
 - Achievability based on Superposition Block Markov Coding

Future Work

- Noisy Feedback (Gastpar-Kramer '06, Wigger-Lapidoth '10, Tandon-Ulukus '11)
- Independent Erasures
- Tighter Outer Bounds