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Abstract—Motivated by error correction coding in multimedia
applications, we study the problem of broadcasting a single
common source to multiple receivers over heterogenous erasure
channels. Each receiver is required to partially reconstruct the
source sequence by decoding a certain fraction of the source sym-
bols. We propose a coding scheme that requires only off-the-shelf
erasure codes and can be easily adapted as users join and leave
the network. Our scheme involves splitting the source sequence
into multiple segments and applying a systematic erasure code
to each such segment. We formulate the problem of minimizing
the transmission latency at the server as a linear programming
problem and explicitly characterize an optimal choice for the
code-rates and segment sizes. Through numerical comparisons,
we demonstrate that our proposed scheme outperforms both
separation-based coding schemes, and degree-optimized rateless
codes and performs close to a natural outer bound in certain
cases.

We further study individual user decoding delays for various
orderings of segments in our scheme. We provide closed-form
expressions for each individual user’s excess latency when parity
checks are successively transmitted in both increasing and de-
creasing order of their segment’s coded rate and also qualitatively
discuss the merits of each order.

Index Terms—Application-Layer Error Correction Coding,
Broadcast Channels, Joint Source-Channel Coding, Linear Pro-
gramming, Multimedia broadcast/multicast services (MBMS),
Rateless Codes, Unequal Error Protection.

I. INTRODUCTION

Consumers of video and other content in today’s networks
have very diverse video and computing equipment rang-
ing from mobile phones and handheld devices to desktops
and HDTVs. When serving multiple diverse users, the most
straightforward approach is to establish independent unicast
sessions. However, when a large number of users require the
same small content, (e.g., video clips at stadiums), or when a
small number of users require the same large content, (e.g.,
a large movie), the multiple unicast approach clearly results
in highly inefficient use of overall network resources. In such
applications, broadcast techniques can lead to significant gains.

One important difference between point-to-point and broad-
cast/multicast applications lies in the way packet losses are
handled. In packet-based data networks, large files are usually
segmented into smaller blocks that are put into transport
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packets. Packet losses occur because of the physical channel
and other limitations such as processing power and buffer
space. In point-to-point scenarios, the sender can adjust its
transmission/coding rate to avoid packet losses and retransmit
lost packets according to the feedback from the receiver
through very efficient physical-layer schemes such as HARQ.
In contrast, in broadcast/multicast applications, it is costly
for the sender to collect and respond to individual receiver
feedbacks, and thus HARQ schemes are disabled and packet
losses are inevitable. Forward error correction coding provides
a natural solution in such applications. A number of these
schemes have already been standardized and are being imple-
mented.

Rateless codes are a popular class of codes that enable effi-
cient communications over multiple unknown erasure channels
at the packet level by simultaneously approaching the channel
capacity at all erasure rates. Raptor codes, a special class
of rateless codes, also have very low encoding and decoding
complexity [3]. Because of these properties, Raptor codes have
been standardized for Multimedia Broadcast/Multicast Service
(MBMS) and are being deployed in applications such as LTE
eMBMS. Raptor codes are essentially optimal for multicast
over erasure channels where all receivers require identical
content.

In certain applications however, the receivers may not
require all the source packets and may not have identical
demands. For example, in emerging eMBMS systems, there
are two distinct phases of transmission. The first phase is a
fixed-rate broadcast transmission, after which, each user is left
with only a subset of source packets. Each user then recovers
the remaining source packets through individual unicast from
a dedicated repair server. Thus, during the broadcast phase, the
server is required to only deliver a fraction of source packets to
each user. As another example, consider a system that applies
a multiple description code (MDC) [4]–[6] to an analog source
sequence to generate a large number of MDC coded packets.
The reconstruction quality depends on the number of MDC
packets available to the destination. Thus, each user can have
a different demand based on its screen resolution and channel
conditions. In such scenarios where the user demands are not
identical, both the fundamental limits and practical coding
schemes remain a fertile area of research to the best of our
knowledge.

In this paper, we propose a coding scheme for transmitting
to multiple receivers with heterogenous channels and demands.
Our scheme relies only on off-the-shelf erasure codes. The key
idea in our scheme is to partition the source sequence into
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Fig. 1: Broadcasting an equiprobable binary source over an
erasure broadcast channel.

multiple non-overlapping segments and to apply a systematic
erasure code to each segment. We formulate the problem of
selecting the segment lengths and code rates that minimize
the transmission latency as a linear programming problem and
characterize an explicit solution. We discuss how the solution
naturally evolves as users join or leave the network. We
further compare our scheme numerically with separation-based
schemes, and degree-optimized rateless codes and demonstrate
that significant performance gains are possible. We also dis-
cuss how a tradeoff between the latencies of individual users
can be attained by selecting various transmission orders for
the parity checks.

Throughout this paper, we adhere to the notation defined
herein. The sample space of a random variable is written in
calligraphic font, e.g., S and we let SN be the set of all
N -vectors with components in S . We use t when referring
to the symbol-index of a vector, which is enclosed in round
brackets when actually referring to a vector component. Thus,
the tth component of a vector SN ∈ SN is denoted by S(t) so
that SN in fact denotes (S(1), S(2), . . . , S(N)). In general, a
variable’s subscript is reserved for user indices and indicates
a correspondence between a user and the variable in question.
For example, when the symbol d is used for distortion, di
denotes the distortion of user i. Finally, for convenience, we
also denote the set {1, 2, . . . , N} as [N ].

II. SYSTEM MODEL

The problem is illustrated in Fig. 1. We consider binary
memoryless source {S(t)}t=1,2,... which produces equiproba-
ble symbols in the alphabet S = {0, 1} and which we wish
to communicate to n users over an erasure broadcast channel.
The source is communicated by a block-encoding function
that maps a length-N source sequence, SN , to a length-W
channel input sequence, XW = (X(1), X(2), . . . , X(W )),
where X(t) denotes the tth channel input taken from the
alphabet X = {0, 1}.

Let Yi(t) be the channel output observed by user i on the tth

channel use for i ∈ [n] and t ∈ [W ]. Our channel model is a
binary erasure broadcast channel as shown in Fig. 1. In partic-
ular, let εi denote the erasure rate of the channel corresponding
to user i, where we assume that 0 < ε1 < ε2 < . . . < εn < 1.

This is without loss of generality since we can address users
that experience identical erasure rates by serving the user with
the most stringent distortion requirement. Our model specifies
that Yi(t) exactly reproduces the channel input X(t) with
probability (1− εi) and otherwise indicates an erasure event,
which happens with probability εi. We let Yi(t) take on values
in the alphabet Y = {0, 1, ?} so that an erasure event is
represented by ‘?,’ the erasure symbol.

Having observed his channel output, user i then uses it to
reconstruct the source as a length-N sequence, denoted as
ŜNi . We will be interested in a fractional recovery requirement
so that each symbol in ŜNi either faithfully recovers the
corresponding symbol in SN or otherwise a failure is indicated
with an erasure symbol, i.e., we do not allow for any bit flips.

More precisely, we choose the reconstruction alphabet Ŝ to
be an augmented version of the source alphabet so that Ŝ =
{0, 1, ?}, where the additional ‘?’ symbol indicates an erasure
symbol. We then express the constraint that an achievable code
ensures that each user i ∈ [n] achieves a fractional recovery
of 1− di, where di ∈ [0, 1], with the following definition.

Definition 1. An (N,W, d1, d2, . . . , dn) code for source S on
the erasure broadcast channel consists of

1) an encoding function fN : SN → XW such that XW =
fN (SN ), and

2) n decoding functions gi,N : YW → ŜN such that ŜNi =
gi,N (YWi ) and for each i ∈ [n],

a) ŜNi is such that for t ∈ [N ], if Ŝi(t) 6= S(t), then
Ŝi(t) = ?,

b) E
∣∣∣{t ∈ [N ] | Ŝi(t) = ?}

∣∣∣ ≤ Ndi,
where E(·) is the expectation operation and |A| denotes the

cardinality of set A.

For a given code, we next define the latency that the code
requires before all users can recover their desired fraction of
the source. Finally, we then state our problem as characterizing
the achievable latencies under a prescribed distortion vector as
per the following definitions.

Definition 2. The latency, w, of an (N,W, d1, d2, . . . , dn)
code is the number of channel uses per source symbol that the
code requires to meet all distortion demands, i.e., w = W/N .

Definition 3. Latency w is said to be (d1, d2, . . . , dn)-
achievable over the erasure broadcast channel if for ev-
ery δ > 0, there exists for sufficiently large N , an
(N,wN, d̂1, d̂2, . . . , d̂n) code such that for i ∈ [n], di+δ ≥ d̂i.

Remark 1. Throughout this paper we will assume that for
each user i ∈ [n], we have that di < εi. Any user with
di ≥ εi will be trivially satisfied by the systematic portion of
our segmentation-based coding scheme. Furthermore, we will
show in Lemma 4 that within our class of coding schemes,
such a systematic portion can be transmitted without loss of
optimality when at least one user satisfies di < εi. Finally,
if every user satisfies di ≥ εi, a simple uncoded transmission
scheme is easily shown to be optimal.

Remark 2. While our system model has assumed binary
alphabets for both the source and channel input sequences,
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our results can be easily extended to larger alphabet sizes for
the purpose of applying our results to packet erasure networks.

A code that satisfies the content demands of a set of users
may in fact afford different users the ability to finish receiving
their content at intervals so that some users require only a
short latency while others require longer ones (e.g., see [7]).
In particular, we can also define what we will call a discretized
code that accounts for users’ separate decoding latencies as
follows.

Definition 4. An (N,W1,W2, . . . ,Wn, d1, d2, . . . , dn) dis-
cretized code for source S on the erasure broadcast channel
consists of

1) an encoding function fN : SN → XW such that XW =
fN (SN ), and W = maxi∈[N ]Wi,

2) n decoding functions gi,N : YWi → ŜN such that ŜNi =
gi,N (YWi

i ) and for each i ∈ [n],
a) ŜNi is such that for t ∈ [N ], if Ŝi(t) 6= S(t), then

Ŝi(t) = ?,
b) E

∣∣∣{t ∈ [N ] | Ŝi(t) = ?}
∣∣∣ ≤ Ndi,

Using Definition 4, we can similarly define what it means
when latency tuple (w1, w2, . . . , wn) is (d1, d2, . . . , dn)-
achievable as in Definition 3.

Clearly, if we let W = maxi∈[N ]Wi, we see that an
(N,W1,W2, . . . ,Wn, d1, d2, . . . , dn) discretized code is also
an (N,W, d1, d2, . . . , dn) code. Definition 4 is of interest
from the perspective of content consumers as it concerns both
the latencies that they will each have to endure for their
content requirements and also the possible tradeoffs amongst
themselves. Alternatively, Definition 3 is unconcerned with
individual latencies and instead provides us with the minmax
latency metric by taking the maximum over all user latencies.
In this way, the minmax latency metric is of interest from
a content provider’s perspective as it will allow the provider
to compare codes based on which ones minimize the overall
transmission time that is required from it.

The focus in this paper will primarily be the minmax latency
metric, and the solution that we propose is a code that is
(minmax) latency-optimal within the class of segmentation-
based codes. Our discussion of individual latencies will be
limited to Section V where given a segmentation-based code,
we consider different orderings of the segments for individual
latency considerations.

In a related work, the minmax latency problem that we
study was also treated in [8] where a set of predetermined
messages were required by each user such that the stronger
users had to decode all the messages intended for the weaker
users. Such a formulation is essentially a degraded message
sets problem for which superposition coding is optimal for
degraded broadcast channels. For the special case of packet
erasure broadcast channels, the capacity can be achieved using
optimal erasure codes. In contrast, we allow for flexibility in
which symbols are recovered so long as this number exceeds
a certain threshold. Our formulation can be viewed as a joint
source-channel coding problem involving an equiprobable bi-
nary source and an erasure distortion measure. For the case of
two users, such an approach was studied in [1], [9], and coding

schemes that involved adaptations of techniques used in the
Gaussian models (see e.g., [10]–[14] and references therein)
were considered. To the best of our knowledge, such schemes
do not attain smaller latencies than the scheme proposed in the
present paper. Furthermore, such schemes involve joint source-
channel code designs and do not have the practical advantages
of the proposed scheme that were discussed previously. It is
also worth mentioning that techniques developed for deriving
outer bounds for the Gaussian model [11] have so far not re-
sulted in non-trivial bounds in the present setup. Nevertheless,
for a closely related problem involving the erasure broadcast
channel and a Hamming distortion, non-trivial outer bounds
can be obtained [15].

III. SEGMENTATION-BASED CODING

A. The Main Idea

Let v denote the user with the highest erasure rate, and
consider the case when this user is the only one in our system.
The optimal latency of (1 − dv)/(1 − εv) can be achieved
by e.g., first compressing the source with distortion dv and
then losslessly transmitting the compressed version of the
source with a channel code of rate (1− εv). The compression
process is particularly simple in our case; we simply retain
the first N(1− dv) source sequence symbols and discard the
remaining symbols. Note that this (separation) scheme can also
be decoded by any user s with erasure rate εs ≤ εv and results
in the same distortion dv . Thus, if ds ≥ dv , the introduction of
user s into the system does not modify the code since user s
does not require any dedicated coding.

Consider however, when ds < dv . We accommodate user s
by incrementally modifying our coding; in addition to trans-
mitting the first N(1 − dv) source symbols as before, we
also transmit the following N(dv−ds) source symbols with a
channel code of rate (1−εs). Thus, if ds < dv , the addition of
user s does modify the code since user s does require dedicated
coding.

It is not hard to generalize this type of coding for n users.
We simply identify the users that require dedicated coding,
and code for only these users by following the procedure
mentioned above. In general, we see that for 1 ≤ i < j ≤ n,
user i is able to decode whatever was channel coded for user
j. Therefore, user i requires dedicated coding only if whatever
was already sent to users with worse channel qualities is not
sufficient for his own distortion requirement, i.e., if di < dj
for j ∈ {i+1, i+2, . . . , n}. For future reference, we will call
this a layered coding scheme.

We observe that whenever a user does not require dedicated
coding, he achieves the same distortion as some user j that has
a worse channel quality and who did require dedicated coding.
Thus, this coding does not allow for graceful improvements
in distortion for increasingly favourable channel qualities. We
circumvent this by modifying our coding. Consider again, the
case when user v is the only user in the system. Instead of the
separation-based scheme, we now split the source sequence
into two segments. The first segment consists of a fraction
of a0 source symbols and is transmitted uncoded, while the
second segment consists of another fraction of av source
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symbols and is transmitted using a systematic channel code
of rate (1 − εv). Note that the latency in this scheme is
a0 + av/(1 − εv), while the fraction of symbols received is
a0(1 − εv) + av . By setting a0 = dv/εv and av = 1 − a0,
we achieve the same latency as the (optimal) separation-based
scheme while satisfying the distortion constraint.

Fundamentally, this approach functions by first ensuring that
user v losslessly recovers all but a fraction of dv/εv source
symbols via a channel code. By construction, the positions of
the missing Ndv/εv symbols are known. Therefore, if they
are transmitted uncoded in a second step, we expect that a
reduced number of only N(dv/εv) · εv = Ndv symbols will
be missing afterwards.

In what follows, we will extend this approach to the case
of n receivers. For i ∈ [n], instead of guaranteeing user i’s
recovery of all but the last Ndi source symbols as in the
layered approach, we will instead guarantee his recovery of all
but the last Ndi/εi symbols. Each user can then recover what
he additionally requires by listening to uncoded transmissions
or the systematic portions of the channel codes used. For the
layered scheme, we saw that if user i recovered all but the
last Ndi symbols, he required dedicated coding if di < dj for
all j > i. Since we guarantee the recovery of all but the last
Ndi/εi symbols in our new coding, we will analogously see in
Section III-B, when defining active users, that a user requires
dedicated coding in our proposed code if di/εi < dj/εj for
all j > i.

B. Scheme Description

In this section, we formally discuss the class of
segmentation-based schemes and formulate the problem of
selecting optimal segment sizes. We then present an analytical
solution and discuss connections with the scheme presented
in the previous subsection.

The source sequence SN is divided into K + 1 non-
overlapping subsequences, S0,S1, . . . ,SK , where for k =
0, 1, . . . ,K, Sk carries ak fraction of source bits and∑K
k=0 ak ≤ 1. For each k, the segmentation encoder maps

subsequence Sk into channel input Xk by using a rate-rk
systematic erasure code. We take r0 = 1 so that X0 = S0, i.e.,
S0 is sent uncoded. The broadcast channel input sequence XW

is obtained by concatenating the segments X0,X1, . . . ,XK .
User i observes the channel input through a channel with

erasure probability εi and can therefore completely recover all
source segments that are coded at rates rk ≤ 1 − εi, as well
as a fraction (1 − εi) of the systematic (uncoded) part of all
source segments that are coded at rates rk > 1 − εi. This is
formally stated in the following claim, which directly follows
from Definition 3 and by construction of the scheme.

Claim 1. The above segmentation-based coding scheme has
latency

a0 +
a1
r1

+ · · ·+ aK
rK

, (1)

and the fraction of source symbols recovered at user i is{
(1− εi)

∑
0≤j≤K
rj>1−εi

aj +
∑

0≤k≤K
rk≤1−εi

ak

}
. (2)

i

d/ǫ
1

1 2 3 4 5 6

Fig. 2: Distortion ratios plotted by user for n = 6 users, where
user indices increase with user erasure rates. A user i is active
if di/εi < dj/εj for all j > i. Active users are shown in bold.

Note that in our formulation so far, the segment sizes
ai, the associated code-rates ri, as well as the number of
segments K need to be specified. Our optimization problem
involves selecting these parameters such that the latency in (1)
is minimized, and for each user i, the received fraction of
symbols in (2) is at least equal to 1 − di. We first show that
the choice of optimal rates ri admits a natural solution that
significantly simplifies our optimization problem.

Claim 2. The latency of a segmentation-based scheme can
be reduced with no penalty in achievable distortion by mod-
ifying its segment lengths, a0, a1, . . . , aK , and code rates,
r1, . . . , rK , s.t. the rates belong to the set R = {1} ∪ {1 −
εi, i ∈ [n]}.

Proof: The proof is given in Appendix -A.
With Claims 1 and 2 in hand, we can formulate an optimiza-

tion problem to minimize the system latency over the segment
lengths a = (a0, a1, . . . , an), given the distortion constraints
as follows.

min
a

a0 +
a1

1− ε1
+ · · ·+ an

1− εn
subject to a0 + a1 + · · ·+ an ≤ 1,

(1− εi)
i−1∑
j=0

aj +

n∑
j=i

aj ≥ 1− di, for i ∈ [n]

aj ≥ 0, for j = 0, 1, . . . , n.
(3)

We provide an explicit solution to (3) below. We first define
the set of active users as those whose distortion-erasure ratio
is smaller than that of each user with a higher erasure rate (see
Fig. 2 for an illustration).

J = {j1, j2, . . . , jl} = {j ∈ [n] :
di
εi
>
dj
εj
,∀i > j}. (4)

Note that from the above definition, it immediately follows
that if J = {j1, j2 . . . , jl} and j1 < j2 < · · · < jl, then
dj1/εj1 < dj2/εj2 < · · · < djl/εjl .

Theorem 3. Let ε1 < ε2 < · · · < εn, (d1, d2, . . . , dn) be a
distortion vector, and J be as defined above. Then the optimal
solution to (3) gives a latency of

dj1
εj1

+

l−1∑
m=1

1

1− εjm

(
djm+1

εjm+1

− djm
εjm

)
+

1

1− εjl

(
1− djl

εjl

)
,



5

which is (d1, d2, . . . , dn)-achievable by a segmentation-based
coding scheme with |J | + 1 = l + 1 segments of normalized
segment lengths

a0 =
dj1
εj1

, ajl = 1− djl
εjl
,

ajm =
djm+1

εjm+1

− djm
εjm

for 1 ≤ m < l,

(5)

and corresponding code rates

r0 = 1 and rjm = 1− εjm for 1 ≤ m ≤ l.

Proof: The proof is given in Appendix -B.
It is interesting to ask if and how the scheme has to be

redesigned if another user t joins the system. Clearly, the
scheme will be affected only if the user’s parameters place
him in J . If the channel erasure rate the user experiences is
between the channel erasure rates experienced by two adjacent
users in J , the user is placed in J if and only if its distortion-
erasure value is also between the distortion-erasure values of
those two adjacent users. Suppose t falls between users ` and
m that are adjacent in J , with ε` < εm. Without user t,
the segment corresponding to the fraction dm/εm − d`/ε` is
protected by a channel code of rate 1− ε`. This segment will
now be split into one of size dm/εm − dt/εt, protected by a
channel code of rate 1−εt, and the other of size dt/εt−d`/ε`,
protected by a channel code of rate 1− ε`. Departure of user t
reverses the process. Note that the scheme scales easily with
the number of users.

C. Special Cases

We now consider several interesting erasure rates and distor-
tion vector setups and interpret the segmentation-based coding
scheme in these special cases.

1) Uniform Channel Condition: When all users are subject
to the same channel erasure rate ε1, we effectively have n = 1.
As in Section III-A, we simply set a0 = d1

ε1
and a1 = 1− d1

ε1
,

where d1 is the minimum distortion of all users. The latency
achieved equals 1−d1

1−ε1 , which is easily seen as optimal.
2) Uniform Distortion: When all users have the same dis-

tortion constraint, d, but experience different channel erasure
rates, we have that J = {n} so that we encode for the weakest
user by setting a0 = d

εn
and an = 1 − d

εn
. Expectedly, all

stronger users achieve the same distortion, and the latency
achieved is 1−d

1−εn , which is optimal.
3) Constant di

εi
: If di

εi
= c < 1 for each user i ∈ [n], we

again have that J = {n}. Thus, a0 = c, an = 1 − c, and
we achieve a latency of w = 1−cεn

1−εn = 1−dn
1−εn , which is again

optimal.
4) di = ε2i : When user distortions are quadratic in their

erasure rates, we have di
εi

= εi, and hence J = [n]. Thus,
a0 = ε1, ai = εi+1 − εi for i ∈ [n − 1], and an = 1 − εn.
We refer to this as the “proportional allocation scheme.” The
amount of bits allocated to the segment protected with an
erasure code of rate (1−εi) is the difference in the channel ca-
pacity between user i and the next weakest user, user i+1. The
latency achieved in this case is w = 1 + ε1 +

∑n−1
i=1

εi+1−εi
1−εi .

d2

d1

ǫ2 1

ǫ1

1

Region IRegion III

Region II
IV(a)

IV(b)

Fig. 3: For n = 2 users, we show the demarcation of regions
requiring distinct coding in the (d1, d2)-plane. A region is
shaded if its corresponding code is optimal.

5) Two Users: When there are only two users in the system,
we can partition the (d1, d2)-plane into distinct regions that
each have a separate encoding scheme (see Fig. 3). Region I
is where di ≥ εi for both i = 1, 2. Clearly, an uncoded
transmission strategy is optimal in this case, and so we shade
this region in Fig. 3 to indicate that we have matching inner
and outer bounds. Similarly, in Region II where d2 ≥ ε2,
but d1 < ε1, we can also be optimal, albeit this time with
a segmentation-based code. The segmentation is done as if
user 1 was the only user in the network, and the systematic
portion of the code is sufficient for user 2 as each source
symbol is eventually sent uncoded over the channel (see
Remark 1 and Lemma 4). An analogous argument can be
made for Region III, where we would code as if user 2 was
the only user in the network. Next, Region IV(a) illustrates
the final region where we obtain optimality, which happens
when d2/ε2 ≤ d1/ε1 ≤ 1. In this case, only user 2 is active
(see (4)), and the coded/uncoded transmissions for user 2 is
also sufficient for user 1 (see Section III-A). Region IV(b) is
the final region, and shows where both users are active, i.e.,
d1/ε1 < d2/ε2.

D. Numerical Comparisons

We compare the latency achievable by our segmentation
scheme of Theorem 3 against some baseline coding schemes.
The comparison is done in a way that parallels the discus-
sion in Section III-A. We first consider a single user and
successively add additional users to see how the overall latency
changes as a function of the number of users in the network.
The users are added so that we begin with the one having the
highest erasure rate and successively add users with the next
highest erasure rate.

The first coding scheme we compare Theorem 3 to is
a separation-based approach which, for example, may be
implemented with a random linear network code (RLNC) [16].
Here we satisfy all user demands by sending a common
message that is intended for everyone to decode. The common
message is a compressed version of the source at a distortion
equal to the minimum of all user distortion constraints. It is
channel coded at a rate that the weakest user can decode. This
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scheme achieves an overall latency of wRLNC =
1−mini∈[n] di

1−εn .
The reader may verify that the RLNC scheme is also optimal
in cases (1) and (2) in Section III-C, but will lead to higher
latencies in the remaining cases. The other coding scheme we
consider is a simplified version of the optimization problem
in (3) where all the non-zero segment sizes are forced to be
identical. In particular, each segment ai, for i ∈ {0, 1, . . . , n},
can be either zero or take a fixed value. We note that the
RLNC scheme is a special case of this scheme, when only an
is non-zero.

The numerical comparisons are shown in Fig. 4 where
we have taken n = 5. Let ε = (ε1, ε2, . . . , ε5) and d1 =
(d1, d2, . . . , d5). In the first plot of Fig. 4, we set ε and d1

so that for i ∈ {1, 2, . . . , 5}, εi = 0.1 × i and di = ε2i .
For the sake of clarity, ε = (0.1, 0.2, 0.3, 0.4, 0.5) and d1 =
(0.01, 0.04, 0.09, 0.16, 0.25). In this case, it can be seen that
the addition of each user expands the set J and thus leads
to an increase in the latency. In the second plot of Fig. 4,
we have slightly modified only the third component of the
distortion vector so that now the third user requires a higher
distortion of 0.13 instead of 0.09. For clarity, we now have
that d2 = (0.01, 0.04, 0.13, 0.16, 0.25). In this case, we see
that for our proposed scheme, when the third user is added
to the network, his distortion is sufficiently high so that he
may simply meet his distortion constraint by virtue of his
better channel quality, and from what is already sent over the
channel (cf. Section III-A). The latency does not increase in
this step. In all cases, we see that our proposed coding scheme
performs much better than the other baseline schemes.

Finally, we further highlight the potential benefits of The-
orem 3 by plotting a larger example with 80 users. In Fig. 5,
we take εi = c(i + 1) and di = ci for c = 0.01 and
i = 1, 2, . . . , 80. Note that Fig. 5 again adds users in order of
decreasing erasure rates so that in fact, user 80 is added first.
For this example, we see that all users require dedicated coding
for both Theorem 3 and the layered scheme. As described in
Section III-A, the layered scheme channel codes a fraction of
di+1 − di = c source symbols for user i, which is constant
among all users. In contrast, Theorem 3 channel codes a
fraction di+1/εi+1−di/εi = 1/(i+1)(i+2) for user i. Thus,
we see that the longest segments are sent to the better users
for Theorem 3. In addition, what must be coded for user i
decreases quickly with i for Theorem 3 but stays constant for
the layered scheme, and Fig. 5 reflects this advantage.

IV. A COMPARISON TO RATELESS CODES

In this section, we compare our segmentation-based scheme
with rateless codes optimized for unequal user demands. As
discussed earlier, rateless codes provide near-optimal, low-
complexity performance when the users are interested in
identical content.

A rateless code maps N binary source symbols
{u1, . . . , uN} into a potentially infinite sequence of binary
code symbols {vl}∞1 , where vl are linear combinations of
{u1, . . . , uN}, i.e., vl = θl1u1 + · · · + θlNuN , θlj ∈ {0, 1}.
The coefficients θlj are generated in the following way: (1)
we select a degree distribution {p1, . . . , pN} for the code,
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Fig. 5: The source latency plotted as more users are added to
the system. The users are added in order of decreasing erasure
rates. We take εi = c(i + 1) and di = ci for c = 0.01 and
i = 1, 2, . . . , 80.

and for each vl we sample the associated degree M from
this distribution; (2) we randomly and uniformly select M
elements from the set {θl1, . . . , θlN} to be non-zero and let
the remaining entries be zero. In the classical rateless code
design [17], [18], the degree distribution is selected such
that the overhead when recovering all N source symbols
is kept as small as possible. However in our present setup,
where each receiver requires different demands, such a degree
distribution will not be suitable. Building upon the approach
taken in [19], [20], we briefly discuss how a suitable degree
distribution can be obtained for our setup and then compare
the performance with our segmentation-based scheme.

We note in advance that codes designed this way do not
include the segmentation-based scheme of Theorem 3 as a
special case. This is because in the rateless code construction,
the choice of non-zero source symbol coefficients is done
uniformly over the entire source sequence. In contrast, each
parity bit in the segmentation-based scheme is generated from
source bits restricted to a certain segment.

A. Rateless Coding Approach

In this subsection, we describe the main difference in our
present approach compared to [19], [20], which is the way
we handle degree-1 symbols. In previous works, the degree-
1 symbols were sampled uniformly at random. This resulted
in many repetitions, where the same source symbol was
transmitted multiple times and others were not transmitted.
Thus, our current work proposes an alternative that chooses
these symbols deterministically in a round-robin fashion. Note
that if a source symbol is sent uncoded T times over a channel
with erasure rate ε, the probability that it is recoverable after
these transmissions is (1− εT ). In a round-robin scheme, we
have that after Nz transmissions of source symbols, a fraction
of (z−bzc) source symbols were transmitted (bzc+1) times,
while the remaining (1− (z − bzc)) fraction was transmitted
only bzc times. The average fraction of recovered symbols is
therefore given by φ(z, ε), where

φ(z, ε) = (1−(z−bzc))(1−εbzc)+(z−bzc)(1−εbzc+1). (6)
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Fig. 4: The source latency plotted as more users are added to the system. The users are added in order of decreasing erasure
rates for two different distortion constraints. We set ε = (0.1, 0.2, 0.3, 0.4, 0.5) and take d1 = (0.01, 0.04, 0.09, 0.16, 0.25)
in (a) while d2 = (0.01, 0.04, 0.13, 0.16, 0.25) in (b).

Following [20], we can express the optimal degree distribu-
tion that minimizes the maximum latency as follows.

min
w,p1,...,pN

w

subject to log(1− x)− log(1− φ(wp1, εi))

+ (1− εi)w
∑
j>1

jpjx
j−1 > 0,

∀x ∈ (0, 1− di), i = 1, 2,

where the probabilities satisfy
∑
j pj = 1, and pj ≥ 0,

and recall that di, and εi denote the distortion and erasure
probabilities for the two users. To interpret the above expres-
sion, note that the left-hand-side, when multiplied by 1−x, is
proportional to the size of the ripple [21] induced in the belief
propagation decoding process when a fraction of x source
symbols have been recovered. Hence, the constraint ensures
that the ripple remains non-empty until a fraction of 1 − di
source symbols have been recovered, which in turn ensures a
distortion smaller than di. Using the approach in [20], we can
numerically compute the optimal degree distribution by using
a linear programming approach. We omit the details due to
space constraints.

B. Numerical Results
Fig. 6 plots the latency vs. d2 with the rest of the parameters,

i.e., d1, ε1, and ε2, fixed. We plot the outer bound wM =
max{ 1−d11−ε1 ,

1−d2
1−ε2 } together with the latency achieved by the

segmentation-based scheme in Theorem 3 and the optimal
latency achievable by a code designed through (7). We refer
to this plot as LT-based scheme due to the similarities with LT
codes [17]. Alongside these curves, we plot the convex hull of
the latencies achieved with the LT-based scheme and denote
this as the “timesharing” curve in Fig. 6.

We observe that there are two regions where Theorem 3
meets the outer bound. The first is where d2 ≥ ε2 = 0.4, and
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1.25

1.3

1.35

1.4

1.45

1.5

1.55

1.6

1.65

1.7

D2

 

 

segmentation−based
outer bound max{(1−d1)/(1−ε1), (1−d2)/(1−ε2)}
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LT−based with time sharing

Fig. 6: Latency versus d2: d1 = 1/10, ε1 = 0.3, ε2 = 0.4.

the other is where d2 ≤ d1ε2/ε1 ≈ 0.13 (see Section III-C5
for a more detailed discussion of these regions). Note that
there is a considerable gap between the degree-optimized rate-
less codes and the segmentation-based scheme. The LT-based
scheme forces the code to have a single degree distribution
from which each coded bit is sampled. The segmentation-
based scheme applies a different code to each of the segments
and hence provides greater flexibility to simultaneously satisfy
each user’s demand. Note that in Fig. 6, the LT-based scheme
is optimal as d2 → 0, but the gap increases as the distortion
increases. We also observe in numerical experiments that for
small d2 (up to around 0.2 in Fig. 6), the optimal latency of (7)
is achieved when the degree distribution is designed for user
2 only, oblivious of user 1. This, to some extent, echoes the
segmentation-based scheme when d2 ≤ d1ε2/ε1 ≈ 0.13, as
discussed above.
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Nai Wi1 Wi2

pi1

pi2

Wii

b b b

Fig. 7: The systematic (cross-hatched) and parity components
of the length-Wii sequence Xi, which is the channel encoder
output of the length-Nai source segment Si.

V. INDIVIDUAL DECODING DELAYS

In this section, we consider possible orderings for the
transmission of the (minmax) latency-optimal segments given
in Theorem 3. In doing so, we will observe the subsequent
effect this has on individual decoding delays. For clarity of
exposition, we do this by revisiting the numerical example
given in Sections III-C4, and III-D and comparing two possible
segment orderings. We mention however, that the procedure
we follow for our derivation is not dependent on this example
and is easily generalizable. Now, recall that for this example,
we have that J = [n]. In turn, this implies that each user’s
distortion constraint in (3) is tight since in general, any user in
J will have their distortion constraint met with equality. This
fact can be verified by combining (3) and (5). The consequence
of this is that each user will need to receive a portion of
every segment, a fact which will be taken into account when
considering possible segment orderings.

Before we begin discussing some possible orderings how-
ever, let us first consider the process involved in transmitting
a length-Nai source segment Si for i ∈ [n]. Given that this
segment is channel coded with a rate-(1−εi) code to obtain the
channel input Xi, we see that Wii channel uses are required
to transmit the segment where

Nai = Wii(1− εi). (7)

Since the channel code is systematic, the Wii channel uses
consists of a length-Nai portion of the original source symbols
in Si, followed by a length-pii portion of parity symbols where

pii = Wii −Nai =
Nεi

1− εi
ai. (8)

We denote the length-pii portion of parity symbols in Xi as
Pi. This partitioning into systematic and parity components is
depicted in Fig. 7.

Notice however, that user i is the only user who must listen
for the entire Wii channel uses. For j ∈ {i+ 1, i+ 2, . . . , n},
user j in fact cannot decode for the entire segment Si and
instead relies only on what he can obtain from the systematic
portion. He can therefore stop listening after Nai channel uses.
On the other hand, for k ∈ {1, 2, . . . , i − 1}, since εk < εi,
user k can decode segment Si by listening to only Wik < Wii

channel uses where

Wik(1− εk) = Wii(1− εi). (9)

The earlier decoding times Wi1 and Wi2 for users 1 and 2 are

also shown in Fig. 7.
In light of these facts, we will treat the systematic portion of

each channel coded segment as a common requirement for all
users. In the next two subsections, we will therefore consider
orderings that begin with uncoded transmissions. That is, we
will first send the length-Na0 segment S0 uncoded and subse-
quently isolate and transmit the systematic component of Xi

for i ∈ [n]. This requires a total of N(a0+a1+ . . .+an) = N
transmissions where we have used the fact that the source
segments partition the entire source sequence (see (5) and
Lemma 4).

The entire source sequence is therefore sent over the first
N channel uses, and the only remaining task is to determine
the subsequent ordering of the n parity components Pi for i ∈
[n]. This option of ordering parity components provides much
flexibility to a content provider. For example, he can make any
user k ∈ [n] able to decode at a latency that is point-to-point
optimal. We again note that for i ∈ {k+1, k+2, . . . , n}, user
k does not have to receive the entire pii parity symbols of Xi.
He can instead listen to only pik symbols where

pik = Wik −Nai =
Nεk

1− εk
ai, (10)

and Wik is given by (9) (see Fig. 7). Since the systematic
portion of segment Sj , j ∈ {1, 2, . . . , k − 1}, has already
been sent within the first N transmissions, user k has therefore
decoded as much as he can for this segment and therefore does
not have to listen to the parities for it. Hence, if the content
provider follows the uncoded transmissions by successively
transmitting the first pik parity symbols of Pi for i ∈ {k, k+
1, . . . , n}, it is not hard to see that user k can meet his optimal
latency.

Given such latitude in our problem, an exhaustive approach
to considering possible segment orderings is therefore out of
the scope of this article. In the following two subsections, we
will instead consider two simple orderings. They will consist
of transmitting the Pi in either increasing or decreasing order
of i. A numerical comparison of these two approaches will be
given in Section V-C.

A. Parity Segments Sent in Decreasing Order

In this subsection, we consider the case when Pi, the parity
for segment Si, is sent in decreasing order of i. That is, we first
transmit Pn followed by Pn−1 to P1 (see Fig. 8a). We will
calculate the excess latency each user experiences with this
ordering. The excess latency is defined relative to the point-
to-point optimal latency, w∗k, which is given for user k by

w∗k =
1− dk
1− εk

. (11)

Given that user k achieves a latency of wk, we then define his
excess latency δk to be

δk = wk − w∗k. (12)

To calculate δk, we first remind the reader that for the
example we are considering, user k requires parities from Pi
for i ∈ {k, k + 1, . . . , n}, but does not require any parities
from Pj , j ∈ {1, 2, . . . , k − 1}, since they are intended for
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Fig. 8: The ordering of Pi for (a) decreasing and (b) increasing i. In both cases, user k decodes the parities in Region I and
ignores those in Region II. The latency of user k is wk.

users with better channel qualities. He can therefore meet his
distortion constraint after Pk is sent (see Fig. 8a). We recall
from the previous section that user k needs to listen to only
pik of the pii symbols in Pi. By combining (8) and (10), we
see that the excess latency incurred by listening to the full pii
parity symbols is therefore cumulatively given by

δk =
1

N

n∑
i=k+1

(pii − pik) (13)

=

n∑
i=k+1

(
εi

1− εi
− εk

1− εk

)
ai. (14)

Hence, the latency tuple (w∗1 + δ1, w
∗
2 + δ2, . . . , w

∗
n + δn) is

(d1, d2, . . . , dn)-achievable, where the ai’s that appear in (14)
are given by Theorem 3 for i ∈ {0, 1, . . . , n}

B. Parity Segments Sent in Increasing Order
In this subsection, we consider the case when Pi, the parity

for segment Si, is sent in increasing order of i. That is, we
first transmit P1 followed by P2 to Pn (see Fig. 8b). We will
again calculate the excess latency user k experiences with this
ordering, which we will denote this time by ∆k.

In calculating ∆k, we again observe that the first k − 1
parities, P1,P2, . . . ,Pk−1, are useless to user k since they
are intended for users with better channel qualities. For j ∈
{1, 2, . . . , k−1}, the excess latency for each of these segments
is thus pjj .

In contrast, user k does require parities from Pi for i ∈
{k, k + 1, . . . , n}. For these parities, we can again derive the
excess latency incurred as being (pii − pik). Notice however,
that user k is not forced to listen to the full amount of parity
symbols for Pn. Since this is the last parity segment sent, he
can actually decode after listening to pnk of these symbols, and
so there is no excess latency incurred from Pn (see Fig. 8b).
The cumulative excess latency is therefore given by

∆k =
1

N

(
k−1∑
i=1

pii +

n−1∑
i=k+1

(pii − pik)

)
(15)

=

k−1∑
i=1

εi
1− εi

ai +

n−1∑
i=k+1

(
εi

1− εi
− εk

1− εk

)
ai. (16)

Again, the latency tuple (w∗1 + ∆1, w
∗
2 + ∆2, . . . , w

∗
n + ∆n)

is therefore (d1, d2, . . . , dn)-achievable, where the ai’s that
appear in (16) are given by Theorem 3 for i ∈ {0, 1, . . . , n}

C. A Numerical Comparison of Orderings
We now compare the individual latencies achieved with

the orderings proposed in Sections V-A and V-B. We do

the comparison for the example discussed in Sections III-C4
and III-D where each user i’s distortion is quadratic in his
erasure rate, i.e., di = ε2i for i ∈ {1, 2, . . . , 5}.

Let ε = (ε1, ε2, . . . , ε5) and d1 = (d1, d2, . . . , d5).
In the first example of Fig. 9a, we again take ε =
(0.1, 0.2, 0.3, 0.4, 0.5) and d1 = (0.01, 0.04, 0.09, 0.16, 0.25).
In this figure, each user is shown on the horizontal axis and the
individual latency he achieves is plotted on the vertical axis.
Each user’s point-to-point optimal latency, as given by (11), is
also shown so that the excess latency can easily be inferred.

From this figure, we see that the sum excess latency is
lower when the parities are sent in increasing order. At first,
this may seem counterintuitive since when the parities are
transmitted in increasing order, a user k has no use for parities
Pj for j ∈ {1, 2, . . . , k − 1} and essentially postpones the
decoding process until the transmission of these parities is
completed (see Fig. 8b). On the other hand, when the parities
are sent in decreasing order, user k has already finished
decoding by the time any parities Pj , j ∈ [k−1], are sent (see
Fig. 8a). The lengths of the parities in Figures 8a, and 8b were
drawn only for convenience however, as pii, the number of
parity symbols in Pi, will generally vary depending on i (see
(8)). As discussed in Section V-B, the ability for certain users
to avoid receiving the entire p55 parities of P5 = Pn is the
other important benefit in this example as P5 happens to be
the longest of all parity segments.

In contrast, Figure 9b plots when the distortions
and erasure rates have been chosen such that the
lengths of all coded segments are equal. Specifically,
we set ε = (0.31, 0.32, 0.33, 0.34, 0.35), and
d3 = (0.155, 0.192, 0.231, 0.272, 0.315), so that
(a1, a2, a3, a4, a5) = (0.1, 0.1, 0.1, 0.1, 0.1). The erasure
rates were chosen within a short interval so that users
experience similar channel qualities. In turn, the excess
latency stronger users incur when listening to parities of
weaker users is small. Thus, each term in (13) is small and
the excess latency for sending parities in decreasing order
is minimal. On the other hand, differing channel qualities
does not account for the entire excess latency when sending
parities in increasing order. There is also the excess latency
incurred by beginning transmission with parities that are not
decodable for certain users, which is represented by the first
summation in (15). We see then that in Figure 9b, the sum
excess latency is lower when sending parities in decreasing
order.

VI. CONCLUSIONS

In this paper, we proposed a successive segmentation-based
coding scheme for broadcasting a binary source over a multi-
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(a) (b)

Fig. 9: The individual latency of each user for the segment orderings of Sections V-A and V-B. In (a), we set ε =
(0.1, 0.2, 0.3, 0.4, 0.5) and d = d1 = (0.01, 0.04, 0.09, 0.16, 0.25). In (b), we take ε = (0.31, 0.32, 0.33, 0.34, 0.35) and
d3 = (0.155, 0.192, 0.231, 0.272, 0.315). The point-to-point optimal latency for each user, as given in (11), is also shown.

receiver erasure broadcast channel. Each receiver has indi-
vidual distortion constraints and experiences distinct channel
erasure rates. The proposed scheme partitions the source
sequence into multiple segments and applies a systematic
erasure code to each segment. We provided optimal choices
for segment sizes, and code-rates for each segment, which
were based on the users’ channel erasure rates, and distortion
constraints.

Not only does this proposed scheme outperform Raptor and
network coding, it also has two other practical advantages,
namely simplicity, and scalability. Firstly, it uses only off-
the-shelf systematic erasure codes rather than a joint source-
channel code, which would otherwise be required for optimal-
ity. Secondly, it can easily be adjusted as users are added or
deleted from the system and thus scales to an arbitrary number
of users while retaining optimality.

We also discussed the effects of transmission orderings on
the decoding latencies of individual users. We provided closed-
form expressions for each individual user’s excess latency
when parity check bits are successively transmitted in both
increasing and decreasing order of their segment’s coded rate.
We then demonstrated user distortion and channel condition
setups in which one of the two orderings incurred a smaller
individual latency than the other.

For future work, it is our interest to conduct a thorough
analysis of individual latencies achieved by users in our
segmentation-based scheme. We would also like to analyze
the segmentation-based scheme for finite block-lengths and
extend the scheme for multiple-descriptions-coded Gaussian
sources.

APPENDIX

A. Proof of Claim 2

By way of contradiction, suppose that the optimal rates do
not belong to the set R = {1}∪ {1− εi, i ∈ [n]}. Then in the
optimal solution (K∗,a∗, r∗), there exists some j, l ∈ [K∗],
j ≤ l, and i′ ∈ {0} ∪ [n], such that 1 − εi′ > r∗j > r∗j+1 >

· · · > r∗l > 1 − εi′+1 where we have defined ε0 = 0. Let
j′ = min{j : 1− εi′ ≥ r∗j }. Then, consider (K ′,a′, r′) where
K ′ = K∗ − (l − j′),

a′k =


a∗k, k = 0, 1, . . . , j′ − 1,∑l
k=j′ a

∗
k, k = j′,

a∗k+l−j′ , k = j′ + 1, . . . ,K ′,

and

r′k =


r∗k, k = 0, 1, . . . , j′ − 1,
1− εi′ , k = j′,
r∗k+l−j′ , k = j′ + 1, . . . ,K ′.

It is not hard to verify that (K ′,a′, r′) satisfies all the distortion
constraints, while the latency (1) is strictly reduced. This
contradicts the optimality assumption.

B. Proof of Theorem 3

We first reformulate the optimization problem in (3) by
introducing a change of variables. If we let bi =

∑i
j=0 aj

for i = 0, 1, . . . , n (and hence a0 = b0 and ai = bi− bi−1 for
i = 1, 2, . . . , n), we can rearrange terms so that (3) becomes

min
b0,...,bn

bn
1− εn

− b0
(

1

1− ε1
− 1

)
−
n−1∑
i=1

bi

(
1

1− εi+1
− 1

1− εi

)
(17a)

subject to
0 ≤ b0 ≤ b1 ≤ · · · ≤ bn ≤ 1 (17b)
(1− εi+1)bi + (bn − bi) ≥ 1− di+1 (17c)

Our problem is therefore reduced to finding the optimal
solution for Problem (17), and it is not hard to see that this
will in turn allow us to construct the optimal solution for
Problem (3). We proceed along these lines by first giving
a lemma that states that in our search for a segmentation-
based code that minimizes latency, we do not sacrifice any
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optimality by restricting our search to those codes whose
segments partition the entire source sequence, i.e., those with
bn = 1.

Lemma 4. Let b∗ = (b∗0, b
∗
1, . . . , b

∗
n) be an optimal solution

to (17) where b∗n < 1. Then β∗ = (b∗0 +∆, b∗1 +∆, . . . , b∗n−1 +
∆, 1) is also an optimal solution where ∆ = (1− b∗n)/εn.

Proof: It is readily verified that in addition to being
feasible, β∗ also does not change the objective function in
comparison to b∗. The verification requires dn < εn which is
assumed in our setup.

We now use Lemma 4 in order to show that Theorem 3
gives the optimal segmentation-based scheme.

Theorem 5. For the optimization problem in (17), there is an
optimal solution with bn = 1 and bi = minnj=i+1

{
dj
εj

}
for

i = 0, 1, . . . , n− 1.

Proof: Using Lemma 4 it is sufficient to consider
segmentation-based codes with bn = 1. From the feasibility
constraints of (17b) and (17c), which when evaluated with
bn = 1, we have

bi−1 ≤ min

{
bi,

di
εi

}
for i ∈ [n]. (18)

Upon inspection of (17a), we see that in order to min-
imize the objective function, we would like to maximize
bi−1 for i ∈ [n]. Consider first, bn−1, which is upper-
bounded as bn−1 ≤ dn/εn. Continuing, we have that bn−2 ≤
min{dn−1/εn−1, dn/εn} and in general

bi ≤ min
j∈{i+1,...,n}

{
dj
εj

}
for i = 0, 1, . . . , n− 1. (19)

We can therefore individually maximize each bi by choosing
equality in (19). This completes the claim.

Finally to complete the justification of Theorem 3 we note
that the expression for bi in (19) is just an alternate represen-
tation for the variables (a0, a1, . . . , an) stated in Theorem 3.
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