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Abstract—We study error correction codes for multimedia
streaming applications where a stream of source packets mus
be transmitted in real-time, with in-order decoding, and stict
delay constraints. In our setup, the encoder observes a s@e of
source packets in a sequential fashion, and/ channel packets
must be transmitted between the arrival of successive souec

packets. Each channel packet can depend on all the source

packets observed up to and including that time, but not on any
future source packets. The decoder must reconstruct the soce
stream with a delay of T' packets.

We consider a class of packet erasure channels with burst

and isolated erasures, where the erasure patterns are lodgl
constrained. Our proposed model provides a tractable appmi-
mation to statistical models, such as the Gilbert-Elliott ©iannel,
for capacity analysis. WhenM = 1, i.e., when the source-packet
arrival and channel-packet transmission rates are equal, &
establish upper and lower bounds on the capacity, that are \tiin

Distance Separable (MDS) and rateless codes are not ideal
streaming codes. Their encoders operate on the sour@arstre
in blocks, and introduce buffering delays. The decoders can
only recover missing source packets simultaneously, witho
considering the different decoding deadlines.

Classical results in information theory provide little igists
into real-time communication. Naturally the Shannon cépac
is no longer the fundamental limit under delay constraints.
A recent empirical study [1] notes that in the Skype confer-
encing application, the overhead used in the error comecti
codes far exceeds the Shannon limit without delay congsrain
Furthermore, the performance degradation due to burstdoss
is far more detrimental than random losses. This is again
fundamentally different from classical systems withoulagle

one unit of the decoding delayZ. We also establish necessary Constraints where one can use interleaving or codes witp lon

and sufficient conditions on the column distance and column
span of a convolutional code to be feasible, and in turn estdish

a fundamental tradeoff between these. Our proposed codes —

Maximum Distance And Span (MiDAS) codes — achieve a near-
optimal tradeoff between the column distance and column spg
and involve a layered construction. WhenM > 1, we establish
the capacity for the burst-erasure channel and an achievakel
rate in the general case. Extensive numerical simulationsver
Gilbert-Elliott and Fritchman channel models suggest thatour
codes also achieve significant gains in the residual loss frability
over statistical channel models.

Index Terms—Delay Constrained Capacity, Application Layer
Error Correction, Packet Erasure Channels, Real-Time Stream-
ing Communication, Deterministic Channel Models

I. INTRODUCTION

block-lengths to average out the effect of local burst eesu

In practice, channels introduce both burst and isolatese®s
often captured by statistical models such as the Gilbdit{El
(GE) channel. Thus, burst losses are unavoidable and it is of
practical interest to study the optimal coding schemes over
such channels.

In the present paper, we study a class of packet-erasure
channels that introduce both burst and isolated losseseSin
the direct analysis of the GE channel under delay consgraint
appears intractable, we introduce a simplified channel that
provides a useful approximation. We propos#iding-window
erasure channel mode}- C(N, B, W) — where in any sliding
window of sizelV/, the channel can introduce either an erasure
burst of maximum lengttB or up to N erasures in arbitrary
locations. Thus, error correction codes over such channels

ULTIMEDIA applications such as interactive au-must correct both burst erasures and isolated erasures. We
dio/video conferencing, mobile gaming, and cloudshow that our proposed model is not only amenable to a

computing require the transmission of a stream of sourg@ctable capacity analysis under delay constraints, lat t
packets in real time, and under strict delay constraint® Tthe resulting streaming codes also provide significantsyain
transmitter must encode a source-stream sequentially, a@ulations over the GE and related channel models.
the receiver must decode each source packet within a fixedyje model our streaming setup as follows. The encoder
playback deadline. In this paper, we investigate a sysiemajhserves a stream of source packets in a sequential fashion.
approach for constructingtreaming codegor such appli- Between the arrival of two consecutive source packets, the
cations. Classical error correction codes such as Maximwhcoder transmitd/ channel packets. Each channel packet can
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applications,M can be as small as$. We note that some channel parameters. We also discuss how the parameters of
preliminary results of this paper appeared in the confexrenstreaming codes can be selected based on the underlying
versions [2]-[4]. statistical models of interest.

In the first part of the paper, we treat the case whén- 1, In other related works, references [9]-[13] study a mudiica
i.e., the source-packet arrival rate and the channel-péeltes-  extension of [5], [6] to the case of two users and a common
mission rate are equal. A special case of this setup, invglvisource stream. The stronger receiver's channel introduces
the burst-erasure channel, was previously studied by Marti shorter bursts and in turn, the decoding delay is required to
et. al. [5], [6]. The authors establish the capacity, as wsell be smaller. The weaker receiver's channel introduces longe
the optimal class of codes, for ttEN = 1, B,W > T + 1) bursts and the decoding delay can be longer. Such codes can
channel. These codes were called Maximally Short Codalso be used in applications where the decoding delay can
(MS) and involved constructing a block code with certaimary based on channel conditions. The construction of these
properties, and then converting it into a convolutional &odcodes involves embedding the parity-checks of two singleru
In the present paper, we revisit this construction and pgepaviS codes in a careful manner to simultaneously satisfy the
a modification that has certain advantages. First it does manstraints of both receivers. References [14]-[16] stady
require construction of a block code, but directly congsucextension of MS codes to parallel channels with burst eessur
the streaming code usinga-MDS convolutional code [7], where the constructions involve a modification of MS codes
[8], and a repetition code as constituent codes. We belieteeexploit the diversity across the parallel channels. If],[1
that our approach provides a more transparent viewpoint sineaming codes that can correct multiple bursts are pezpos
how classical codes can be modified to achieve sequentialng an interleaving-type approach. We note that thess-ref
recovery of source packets over the burst erasure chanmeices do not consider channels with burst and isolatedreasu
Furthermore, our construction for the burst erasure cHarame as in the present work. References [18]-[20] study stregmin
be naturally extended to the sliding window erasure chanr@des motivated by connections between streaming andainica
when N > 1. This is achieved by simply concatenating ametwork coding and study channels with either burst erasure
additional layer of parity-checks to the burst-erasureecatle or i.i.d. erasures. However, to the best of our knowledge,
call this approach &yered codelesign. For ang (N, B,W) these papers do not consider channels vkitlih burst and
channel, our proposed layered code achieves within one usdlated erasures, or the layered approach for coding,hwhic
of the optimal decoding delay. We note that our constructios the focus of the present work. In the broader literature,
provides the first family of streaming codes that can correptoblems involving real-time coding and compression have
both burst and isolated erasures in the streaming setup. Been studied from many different perspectives. Some straict
importance of studying such robust codes was also discusgedperties of optimal codes have been studied in e.g., [21]-
in [5], and some specific examples were obtained using[28], and a dynamic programming based formulation is pro-
computer search, but these do not appear to immediately |lgeded. However, to the best of our knowledge, these papers do
to general constructions. not consider explicit codes as considered here. Tree cades f

The streaming codes by construction are convolutionstteaming over i.i.d. channels are studied in [24]-[26]efEh
codes, and hence it is natural to study their underlyingdist is also a significant body of literature on adapting various
properties. We show that any feasible streaming code owerding techniques for streaming systems, see e.g., [21]-[3
the C(N, B, W) channel must simultaneously have a certaiand references therein.
minimum column distance and column span. The column dis-
tance is associated with isolated erasures, whereas thmgol Il. SYSTEM MODEL AND MAIN RESULTS
span is associated with the recovery from burst erasures. Asn this section, we introduce the streaming setup and sum-
a corollary to our capacity bound, we characterize a newarize the main results of the paper.
tradeoff between the column distance and column span for any
convolutional code, which could be (_)f independe_znt interest Sliding-Window Erasure Channel Model
Furthermore, our proposed codes attain a near optimaldfiade

Hence, we call them Maximum Distance and Span (MiDAS(g . . .
codes. rasure patterns are locally constrained. In any slidingiaoiv

In the second part of the paper, we consider the gene?éllength W thg channel can introduce one of the following
case whenV/ > 1, i.e., the source-packet arrival and channe Tgtterns. .(') a single erasure .burst .Of maximum lengthor
packet transmission rates are unequal. We propose an dpti amaximum ofN erasures in arbitrary Iocatlons_. Note th_at
construction for the burst erasure channel, and an achHeva] € condition’ <  follows since a burst erasure is a special
rate for the general case. Both the construction as well 0 of erasure pattern_. we W'l_l assume throughout t_he paper
atB+1 < W, so that in any window of lengti’ there is at-

the decoding analysis are a non-trivial extension of thec .

when M = 1. Finally we present extensive simulation result easst %me;%%:;?Z?de;f(?#; ltﬁg ;heezgfggggv v(ﬂ?ég{

over the GE and Fritchman channels that suggest substa {5 su the ab : del t b F; II h I del. |

performance gains over baseline codes for a wide rangerS_ uces the above model 1o a burst-only channel model. in

this case, the guard separation between successive bsIrsts i
1The setup in [5], [6], only considers a single burst-erasthhannel. But at-leastiV — 1.

their construction also applies to the sliding window eraschannel when

W >T+1. 2|f this condition is violated, it follows that the capacity zero.

We consider a class of packet erasure channels where the
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Fig. 1: An example of the sliding-window erasure channel
C(N = 2,B = 3,W = 5). In any sliding window of length

W = 5, there is either a single erasure burst of length no A
greater tharB = 3, or no more thanV = 2 isolated erasures. whereT.g = min(7, W — 1). O

R
Y )B4 N<Tyg+1, 1
(25) B+ N < T+ ®

Theorem 1 provides an upper bound on the rate for any
I prctic, e can view(. .11 a5 an spproxation S0 N o 1oL 4y 0 s steriauel. wher
of statistical models such as the Gilbert-Elliott (GE) chain . yr » =0

o between the achievable values Bfand N. We cannot have
model. A GE channel is in one of two states. In the goo . ;
streaming code that can simultaneously correct long erasu

state, it behaves as an i.i.d. erasure channel, while in t';f;ller ts and manv isolated erasures. The proof of Theorem 1. is
bad state, it behaves as a burst-erasure channel. Thus, t 5! . Y ) P
vided in Section IV-A.

interval consisting of a burst loss corresponds to the b8 :
state, whereas a window comprising of isolated erasur?'sNOte thatTeq + 1 = min(T + 1, W), whereT' +1 denotes

corresponds to the good state. Fig. 1 provides an examt 5 active duration of each source packet, i.e., each source
of C(N = 2,B — 3,W — 5). The intervals[0,2] and Backets[z] arrives at time: and must be decoded by time

'éT. WhenW > T + 1 the right hand side in the upper

[12,14] of burst erasures correspond to the bad state of th . :
. ound in (1) depends on the decoding delayand not on
GE channel, whereas the intervgl L1] corresponds to the.t e window W; otherwise it depends ofV. In the latter

good state of the GE channel. The advantage of Study'cgse the upper bound corresponds to the capacity of arcertai
the C(N, B,W) is that it is a tractable model for capacity ' PP b pactly

. . - tr%eriodic erasure channel with" = oo. The intuition here
analysis. Furthermore, streaming codes developed usiag

model with suitable parameters can provide significantsgai'nS that theC(N, B, W) channel only controls the allowable

over statistical models. This will be verified in our simirdat s:]aesiraenpigﬁgt]rs Icnt er?cearggmrgowa?gfnn?hcg It/Ih/at< tjr:;r }:’hannel
results over the Gilbert-Elliott and Fritchman channel elsd u ure p u

We separately treat the cases when the source-packet in @gzeézoﬁﬁew;dsggfgeu aEckeW _Taucsa?r?:te?ficltjiizﬂ;jle{gr
arrival and channel-packet transmission rates are equal é 9 P ]. y

when they are not. For convenience we refer to thespace- reduc;es t_tOWf_ Lt Indged Olg ontvr:er (Ijaolund f_lrlvqlvets ;[jhe
channel inter-arrival rates construction of a streaming code with a delay¥t-1, instea

of T.

B. Equal Source-Channel Inter-arrival Rates Theorem 2 (Lower Bound) For any channeC (N, B, W) and

At each time sloti > 0, the encoder observes a sourcl®l@yT > B, there exists a code of rat that satisfies
packets[i], and transmits a channel packdt] as shown in R
Fig. 2. We will assume throughout that the source packet (m) B+ N> Tes, @)
consists of k' symbols, while the channel packet consists
of n symbols over a common finite fiellf,. The rate of whereT.q £ min(T, W —1). O
the code equald? = % The channel input at time can The proof of Theorem 2 is presented in Section IV-C. Upon

depend causally on all the source packets observed up_to .~
and including timei, but not on any future packets, i'e'exammlng the upper bound (1) and the lower bound (2) we

_ ) .~ "“"note that the right hand side only differs by one. Thus, the
x[i] = fi(s[0],...,s[i]). The channel output at time is e .
denoted by the packet[i]. Note that eithery[i] = x]i], or proposed codes are at most one unit/pf from the upper

. ound
y|[i] = %, when the channel introduces an erasure. The decogeii_

is required to reconstruct each source packet with a delay of he streaming codes proposed in Theorem 2 is a new family
€q , P . &Y @' codes and will be callediaximum Distance And Span
T, i.e., for eachi > 0 we must have a decoding function

_ ) . .~ (MiDAS) codes Their construction is based on a two-step,
s[i] = gi(y[0],...,y[¢ + T]). Such a collection of encoding la d codi h. In the first st truct
: ; : ) yered coding approach. In the first step, we construct an op
and decoding functions constitutes tsieeaming code timal streaming code fof (N’ = 1, B, W) channel. Then we
Definition 1 (Streaming Capacity - Equal Source-Channelppend an additional layer of parity-check packets thablesa
Inter-arrival Rates) A rate R is achievable with a delay of the recovery from theV isolated erasures. While the recovery
T over theC(N, B,W) channel, if there exists a streamingfrom the burst erasure does not use the parity-checks gedera
code of this rate over some field of sigesuch that every in the second step, the recovery from isolated erasures uses
source packes[i] can be decoded at the destination within garity-checks from both the steps. To our knowledge MiDAS
delay of T" packets. The supremum of all achievable rates des constitute the first family of streaming codes that can
the streaming capacity. recover from both burst and isolated erasures and demumstra
We establish the following upper and lower bounds on thséhgnificalnt gains o_\(/jerthe Gilbtfart-EIIiott channel and ¢friinan
streaming capacity. channel over a wide range of parameters. _ _
Note that Theorem 2 does not explicitly state the field-size
Theorem 1 (Upper Bound) For the sliding-window erasure ¢. The underlying constructions are based on systematic
channelC(N, B, W), an achievable rat&? with delayT”’ > B MDS convolutional codes [7], [8] and their variants, which



Delay =T

{s[il},., X[l {y[il}i
—®»Encoder———» C(N,B,W)
x[i] = £(s[0], ... , s[i])

{slil},.,

Fig. 2: The source streasit| for ¢t > 0 is causally encoded to a channel streaft] which is transmitted over the sliding
window erasure channél(N, B, ). The decoder tolerates a maximum delayZopackets.

are known to exist for field-sizes that increase expondyntiadenotes the macro-packetonsisting of A/ channel packets.
in T.. However, we also provide an alternate construction it the start of macro-packet the encoder observes the source
Section IV-D, that satisfies (2), and whose field-size insesa packets|[i] € IF’; and generated/ packetsx|i, j] € Fy, for
asO(T3;). j € {1,..., M} which can depend on all the observed source

Remark 1 (Column Distance and Column Span Proper&y packets up to that time, i.e.,

definition the streaming code is (&, k) convolutional code, x[i, j] = fi,;(s[0],s[1],- -, s[i]). (6)

where the source streasfi] € F is the input andk|i] € F is ) ) ,
the output. Traditional constructions for convolutionades These packets are transmitted in fi#time slots correspond-

maximize the underlying free distance [32]. However, in tH89 © the macro-packet Fig. 3 shows the system model.
present setup, theolumn distancandcolumn sparfsee Def. 3 NOte that for the case whell = 1 the setup reduces to that
and 4 in Appendix A) determine the error correction prop Section II-B.
erties. In Appendix A, we establish necessary and sufficientrhe jth channel output packet in the macro-packeis

conditions on the column distance and column span of afgnoted byyli, j]. When the channel input is not erased,

feasible convolutional code for th& N, B, W) channel. we have,y[i, j] = x[i, j|, whereas when the channel input
i o is erasedy][i, j] = . The channel output macro-packets are
The following result, which is a consequence of Theoremé‘xpressed a¥l[i,;] = [yli,1] | ... | y[i, M]]. The decoder is

and Theorem 2, appears new and could be of independgt ired to decode each source packet with a maximum delay

interest. of T' macro-packets, i.e.,
Proposition 1 (A Fundamental Tradeoff between Column T o (Y101 Y] e YTt T - 7
Distance and Column Span)or any (n, k) convolutional st = gi(Y [0, YL, oo Y+ 7)), (7)

code with rateR = % and an integerI” > 0, the column e define the rate of this code by = -%. In the above

distancedr and the column spanr must satisfy the upper definition, we are normalizing the size of each source packet
following bound: with the size of each macro-packet. This is due to the fact
R 1 that in our proposed setup, a total 8fn channel symbols
(m) cr+dp <T+1+ 1R (3) are transmitted for each source symbols.

Furthermore, there exists a convolutional code with columbefinition 2 (Streaming Capacity - Unequal Source-Channel
distancedr and column sparcy, over a sufficiently large Inter-arrival Rates) A rate R is achievable with a delay of

field-size that satisfy: T macro-packets ovef (N, B, W) if there exists a streaming
R 1 code of this rate over some field of sizesuch that every
(ﬁ%) cr+dpr >T+ - " (4) source packes[i:] can be decoded with a delay @f macro-
packets. The supremum of all achievable rates is the stregami
0 capacity.
Proof: See Appendix A. B For the above setup, the capacity has been obtained when

N=1landW > M(T +1).

C. Unequal Source-Channel Inter-arrival Rates

We discuss a generalization of the setup in Section Il
where one source packet arrives evardy channel uses. As
before each source packet consistskobymbols and each
channel packet consists ofsymbols, each over a finite field B=bM+B', B c€{0,...,M—1},beN°. (8)
IF,. For convenience, the collection af channel packets is . o
termed as a macro-packet. The index of each macro-packel i€ capacityC' for ' > b is given by:
denoted using the letter i.e., c {L 0< B < LM,

ST
X1 = [x[i, 1] | ... | x[i, M]] e <M (5)

_Eheorem 3. For the channelC(N = 1, B,W), and anyM
and delayT, such thatW > M(T + 1) the capacity is
expressed as follows. Létand B’ be defined via

MTivrn-p vep<m—1 O
M) 0 T+ < = T



s[0] s[1] s[2] s[T] s[T + 1]

! ! ! ! '
(I I I

X[0,:] X1, X[2,:] XIT, ] l XI[T +1,:] l
Recover Recover
s[0] s[1]

Fig. 3: Each source symbsli] arrives just before the transmission Xfi, :] and needs to be reconstructed at the destination
after a delay ofl’ macro-packets.

For the minimum delay casé; = b, we have: I1l. PERFORMANCEANALYSIS OF BASELINE SCHEMES
1 0< B' < %’ We review two constructions —-m-MDS codes and Maxi-
C=up M _p < -1 (10) mally Short codes — that have been proposed in earlier works.
M2 - ’ While these codes are optimal only in some special cases,
Finally, C =0 for T < b. O they constitute important building blocks in our proposed
constructions.

The proof of Theorem 3 is divided into two main parts.
The code construction is illustrated in Section V-B while thA

: . . m-MDS Cod
converse appears in Section V-E. mn odes

In the traditional approach to erasure correction, the deco

We make several remarks pertaining to Theorem 3. Recallist wait till sufficiently many parity-check symbols are
that since the delay’ is expressed in terms of the macrocollected so that all the source symbols can be recovered
packets (see Fig. 1), the case wHEnr= b corresponds to the simultaneously by inverting a full-rank system of equasiolm
minimum possible delay. In this special case, the capaeity crandom-linear codgssee e.g., [27], [34], [35], the coefficients
be attained using a repetition code. WHEn> b the optimal of the linear code are selected at random to guarantee near
codes, as well as the decoding analysis, are a non-trivigdtimal recovery with high probability. However, insteatl o
extension of the case whel = 1. Secondly note that the random codes, we consider a class dsterministic code
capacity expression in (9) involves two cases. In the firsecaconstructions with optimal distance properties [7], [8]tlris
which corresponds téM < B < bM + TLH)M, the capacity section.
stays constant & = TLH) even asB is increased in thisrange.  Consider &, k,m) convolutional code that maps an input

] =

To explain this, note that the threshojd; M = (1 — C)M, source streans(i] = (so[il, ..., s;_[i])! € F; to an output
equals the number of parity-check packets in a given macedi] = (xo[i,...,z-1[i])' € FJ using a memorymn en-
packet. This observation can be used to construct a code saetef. In particular, let
that up to B’ = ;%M erasures in the last macro-packet . i
do not reduce the capacity. This will be further explained in , s
) = —t]- Gy |, 11

Section V-A. xli) ;S [P =1 G (11)

We remark that the capacity result in Theorem 3 can lehere Gy, ..., G, arek x i matrices with elements iff,.

used to obtain bounds on the symbol-level column span Bfirthermore, the convolutional code is systenfaifieve can
a convolutional code. This is in contrast to our treatmemipress each generator matrix in the following form,

in Section II-B where the packet-level column span was _
considered. We do not discuss the associated resuilts in thf0 = Trxx Hol, Gt =[Oz HiJ, t=1,...,m (12)
paper, but refer the reader to [33]. where I, ; denotes thek x k identity matrix, 0y, de-
tes thek x k zero matrix, andH, € IFZX("_’“) for ¢t =

Finally note that the constructions in Theorem 3 only app = ) )
ch - - -» ™. For a systematic convolutional code, (11) reduces

to the burst-erasure channel. Based on the layered appro
in Theorem 2 we also propose a robust construction for t
case whenN > 1 in Section V-F. However, the optimal s[i] m t
construction is left for future work. x[i] = [ pli] } , pli] = (Z sfli—1] - Ht> . (13)
t=0

This completes the discussion of the _main results in thetpa. MDS codes (see e.g. [8, Corollary 2.5]), correspond
Paper. The rest O,f the paper IS organized as follows. {8 a certain choice oH; that result in the maximum column
Section 1, we review some previously proposed codes. We
treat the case when source channel inter-arrival ratescr@ @ 3we uset to denote the vector/matrix transpose operation. Throuigthis
in Section IV and propose our MiDAS codes. The case ofiper, we will treats[i] andx[j] as column vectors and therefosé[i] and

unequal rates is treated in Section V. Simulation resulkés df 7] denote the associated row vectors. For convenience, waetilise the
.notation when the dimensions are clear.

presgnted in Section VI and Conclusions are presented IBThroughout the paper, we only consider systematiMDS codes and
Section VII. thus the word systematic is dropped for convenience



distance (see Appendix B). This in turn results in the follogv ~~ From Corollary 1, it follows that anyV, B) pair that

error correction properties in the streaming setup. satisfies
Lemma 1. Consider a systemati@, k,m) m-MDS code and N<(1-R)(T+1), B<(1-R)(T+1) (15)
suppose that the symbols in each packe, i.e., , , . ,
PP y packel is achieved using én, k, ') m-MDS code of rateR? = £ with
x[i] = (so[i], ooy S_qld], polil, - - ,pﬁ,,;,l[i]) (14) delayT andW > T+1. In particular, if the channel introduces

up to (1 — R)(T +1) erasures in the windoy, 77, it follows
from Property P1 in Corollary 1 thaf0] is recovered at = T'.
Onces|0] has been recovered, its effect can be subtracted out
A from all parity-checks involvings[0]. By the same property,
L1. If N transmitted symbols are erased in the interva[1] is guaranteed to be recovered at tihe- 7'+ 1. This
0,(j + )i — 1] where N < (n — k)(j + 1), then argument can be successively repeated until all the erased
s[0] = (so[0],...,s;_4[0]) can be recovered by time packets are recovered. Furthermore, upon substitutirg N
(j+1n—1. _in (1), we note that then-MDS attain one extreme point on
L2. If the channel introduces an erasure-burst of length the tradeoff, namely wheiV = B. This is clearly the largest
symbols in the intervaﬂc,_c—i— B —1], whereB < (o — feasible value ofV in (1).
k)(j+1)and0 < ¢ < k — 1, then all erased source In a similar fashion, it can be shown that for the case
packets are recovered by tinfg¢ + 1)n — 1. of unequal source-channel inter-arrival rates in Sectie@ |
L3. If the channel introduces an erasure burst of length , whenW > M (T + 1), any (N, B) that satisfies
symbols in the intervdk, c+B—1], where0 < ¢ < k—1,
followed by a total of no more thah isolated erasures N<MQ1-R)T+1), B<MQA-R)(T+1) (16)

such thatB + I < (n — k)(j + 1), then all the erased is achieved using &\/n, k, T') m-MDS code of rateR — &
packets in the burst are recovered by titiye+ 1) — 1.

Proof: See Appendix B. m B. Maximally Short (MS) Codes
We now discuss how the properties in Lemma 1 can beWhile the m-MDS codes achieve the extreme point of the
applied to our system model. In the case in Section 1I-B, whexpper bound (1) corresponding 8 = B, the Maximally
the source and channel inter-arrival rates are equal, Lelnm&hort (MS) codes [5], [6] achieve the other extreme point,
immediately yields the following. corresponding taV = 1. In particular, the maximum value of
B with N =1 is given in the following result.

are transmitted sequentially in the time interjal i, (i + 1) -
n — 1] over the channél The following properties hold for
eachj =0,1,...,m.

Corollary 1. Consider a systemati¢a, k, m) m-MDS code

of rate R = % which transmits the entire channel packetemma 2 (Martinian and Sundberg [5], Martinian and

x[i] = (wolil,...,za-1[i]) € F? in time sloti. For each Trott [6]). Consider the channeC(N = 1,B,W) with

j=0,1,...,m, we have the following, W >T+1 and M = 1. There exists an MS code of rate
R satisfying

P1. Suppose that in the windd®; 5], the channel introduces
N < (1—R)(j+1) erasures in arbitrary locations, then =, B<T,
s[0] is recovered by time = j. R= 0 else 17)

P2. Suppose an erasure burst happens in the intgtyd? — ’

1], where B < (1 — R)(j + 1), then all the packets Furthermore,R in (17) is the maximum achievable rate for

s[0],...,s[B — 1] are simultaneously recovered by timeé’(N =1, B,W > T + 1) channel. O

t=7. The construction of MS codes presented in [5], [6] involves
O first constructing a specific low-delay block code and them co

verting it into a streaming code using a diagonal interlegvi

Proof: To establish property P1 we invoke property L.J[echnique. Thus, the problem of constructing a streamiiig co

in Lemma 1. Note that in P1 we consider the transmlssmg reduced to the problem of constructing a block code with

of channel packets whereas in Lemma 1 we consider the'eC . . LS T T .
certain properties. While such a simplification is appeglin

transmission of symbols. Note that packet erasures Ieadsunfortunatel it does not appear to easily generalize when
to N = nN symbol erasures. Thusy < (1 — R)(j + 1) y P y 9

is equivalent toN < (n — k)(j + 1) symbol erasures. seeking extensions of MS codes. Note that the above MS

Furthermore, the interval0, ;] in P1 associated with the .COdeS can only achiev& = 1 and are highly sensitive to

o - . isolated losses over the channel. In [5], some examples of
transmission of the firsg + 1 packets maps to the InterValcodes with highetV were reported using a numerical search
[0, (j+1)n—1] in L1. Thus, the entire packef0] is guaranteed 9 P g

to be recovered. but a general approach for constructing robust streamidgs<o

. remained elusive. In Section IV-B, we present an altereativ

Property E’Z follows in an analogous fashion upon usmr%rspective that easily extends to achieve a near optinel ra
property L2 in Lemma 1 withe = 0. [ ] for any (N, B)

s - . For the case of unequal source-channel inter-arrival rates
Note that in this statement we are only transmitting symbets F, over iahtf d ad . f the MS d . foll
the channel. Subsequently, we will adapt these propertegréansmitting a stralg tforward a aptapon ot the codes IS as follows.
packets ovef? We split each packet[:] into M sub-packets, one for each



Source Stream  sli] sfi +1] sli + T

Expanded Source Stream‘ e
X[i,] X[i+1,] X[i+T.:
S o S co o 22 2
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Fig. 4: Each source symbali] is split into M sub-packets i.es[i] = (wl[i, 1], w[é, 2], ..., w[i, M]). The expanded source
stream is then encoded using a Maximally-Short code. Thedtaecovers eacw|[i, j] oncey[i + T, j] is received which
ensures thas[i] is recovered by the end of the macro-packetT.

TABLE I: Achievable(N, B) for channeC (N, B,W > T+1)
for equal source-channel inter-arrival rates. Similardeatfs
for the first three codes can be achieved for< T + 1 by
replacingT” with W — 1.

C. Numerical Comparisons

1) Equal Source-Channel Inter-arrival Rateable | sum-
marizes the feasible values of and B for different code%
For a fixed rateR and delayl’ we indicate the values oWV
Code \ N \ B and B achieved by various codes in the case of equal source-

m-MDS Codes A-R)(T+1) 1-R)(T+1) channel inter-arrival rates. The first row corresponds ® th
Maximally Short Codes 1 T-min(z-1,1)  »-MDS in Section IlI-A, while the second row corresponds
MiDAS Codes min (ByT*%B> Be[L,T] to the MS codes in Section IlI-B. The third row corresponds to
E-RLC Codes [36] our proposed construction — MiDAS codes — in Theorem 2.
Ae [R%lel/)éT -1, | FT-4)+1 A In contrast to then-MDS codes and MS codes, that only attain

a single(N, B) pair, the family of MiDAS codes can attain a
range of( N, B) for a givenR andT'. The last row corresponds

to another family of codes — Embedded Random Linear Codes
(E-RLC) — proposed in [36]. While such constructions are

) ) optimal for R = 1/2, they are far from optimal in general and
time slot in the macro-packet and then apply a MS code i} not be discussed in this paper.

Lemma 2 to this expanded source stream with d&lay- MT e further numerically illustrate the achievalflé, B) pairs

(cf. Fig. 4). In particular, we assume thit] € (F,)*"" and for various codes in Fig. 5. We fix the rate 1o = 0.6. As
proceed as follows. stated before, then-MDS and MS codes in Sections IlI-A
and llI-B respectively only achieve the extreme points om th
tradeoff. The MiDAS codes achieve a tradeoff, very close to
the upper bound for all rates. The E-RLC codes, illustrated
with the red plot, are generally far from optimal except for
R = 0.5 which is not the case in this figure.

2) Unequal Source-Channel Inter-arrival Rates$tig. 6
illustrates the capacity and rates achieved with baseline
schemes for the case of unequal source-channel integhrriv
rates. In this example, we considéf = 20 and a de-
lay of T = 5 macro-packets and plot the rate vs. cor-
rectable burst length. The capacity is shown by the blue-
curve marked with squares. Note that it is constant in the

 Split eachs[i] = (w[i,1],...,w[i, M]) wherew[i, j] €
Fk,

. A%)ply a MS code in Lemma 2 for thé(N =1, B, W)
channel with delay” = M T (channel packets) arid >
M(T +1).

« Transmit the associated channel packét j| € Fy in
slot j of the macro-packet

From (17) we have that

po MT T (18) intervals B € [40,45], (60,67, [80,88], [100,110]. The red

MT+B T+b+%Z curve marked with circles denotes the rate achieved by a

is achievable whenB < MT. Note that in the second Suitable modification of the MS code (18). We note that the
equality in (18), we use (8). Note that the delay Bf — curves intersect whenevdB is an integer multiple ofM,

M - T channel packets in the expanded stream, implies tfagicating the optimality of the MS codes for these special

wli, 5] is recovered whery|i + T, ;] is received for each values: B € {40, 60,80,100}. Furthermore, for burst lengths
j € {1,2,...,M}. Thus, the entire source packel] is B > MT = 100, the MS codes are no longer feasible and

guaranteed to be recovered at the end of macro-packe, the associated rate is zero. The _dotted blgck line shows the
thus satisfying the delay constraint. We note that the rat€"formance of then-MDS codes in (16). Since these codes
in (18) is only positive ifB < MT and attains the capacityd_o r_u_)t perform sequential recovery, their achievable rate i
in Theorem 3 in the special case whah = 0. If B > M7  Significantly lower than the capacity.

the above construction is not feasible and the rate attamed SWe note that the floor of the values given in Table | should besictered
Zero. as the values might not be integers
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Fig. 6: Achievable rates for different code constructions f
the case of unequal source-channel inter-arrival ratethéor
C(N =1,B,W = M(T + 1)) channel. We fix the delay to

T = 5 macro-packets and Iéf = 20. The blue plot (marked
with squares) corresponds to the capacity in Theorem 3.
The red curve (marked with circles) corresponds to the rate
achieved by the adapted MS code (18) whereas the black

line corresponds to the rate of the-MDS code (16).

o The first B — N + 1 packets{s[i]}o<i<p—n, Must be

In this section, we consider the case when source and @all recovered with delayl" since the recovery window

channel inter-arrival rates are equal, i.&f,= 1. We start by

establishing the upper-bound in Theorem 1 in Section IV-A.

In Section IV-B, we revisit the Maximally Short codes for the

C(N =1, B,W) channel and propose a modification that uses *
m-MDS and the repetition code as its constituent codes. We

then extend these constructions to théV, B, W) channel in
Section IV-C to construct MiDAS codes. In Section IV-D, we
provide an alternative construction of MiDAS codes achigvi

the same tradeoff in Theorem 2 but with a smaller field-size.

Finally, we compare the performance of the two construstion
through an example in Section IV-E.

A. Upper-bound

To establish the upper bound in Theorem 1, we separately

consider the cases whel® > T +1 andW < T + 1.

[i,7+ T] of each such packet only have a burst of length
B or smaller. Thus, all these packets are recovered by
timet=7p — 1.

The recovery window of each of th&/ — 1 packets,
{s[i]} B—N+1<i<B—1 IS [, + T] which sees two bursts.
The first burst span§, B — 1] and is of lengthB — i.
The second burst sparfi§ + B — N + 1,i+ 7] and is

of lengthi + N — B. Thus, the total number of erased
packets in each recovery period is exadily Thus, any
feasible code over thé(N, B, W) channels guarantees
that each such packet is also recovered at timel".

« The recovery window of each of the remaining packets in

the first periods|B],...,s[tp — 1], again sees a single-
erasure burst of lengtB at the end of the window. Hence,
each of these packets is also guaranteed to be recovered
with delay no more thaff’, in particular, by timerp — 1.

WhenW > T + 1, consider a periodic erasure channel witQye have thus shown that all the packets in the first period
a period ofrp =T+ B — N + 1 and suppose that in everyspanning[0,7» — 1] can be recovered with deldy. We can
such period the firsB packets are erased (see Fig. 7). Whilgepeat the same argument for all the remaining periods and
such a channel is not includedd{N, B, W), we nonetheless thus the claim follows. Thus, using the capacity of the pido
show that any code fo€(N,B,W) and delayT is also erasure channel, we have

feasible for the proposed periodic erasure chanhnel.
Consider the first period that spans the inteff¢akp — 1].
We note the following

A similar converse argument involving periodic erasurencte for the
burst-erasure channel is also presented in [5], [10], [Edt a rigorous
information theoretic argument, we refer the reader to,[12B], [16] for
the case of burst erasure channel. A similar approach canséé in the
present setup, but it will not be presented.

B
T+B-N+1
For the case whei/ < T + 1, we consider a periodic

R<1- (19)

erasure channel with a period ef = W + B — N where in
each period the firsB packets are erased and the remaining
W — N packets are not erased. Such a channel by construction
is aC(N, B,W) channel. In any windowV; = [i,i + W — 1]
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Fig. 7: The periodic erasure channel in the proof Theoremhe Jhaded symbols are erased while the remaining ones are
received by the destination.

/\ two sub-packefsuli] € FX* andv[i] € F¥" as follows,
Repetition Parity-Check S[Z] = (UO [Z]7 sy Ugu—1 [Z]7 Vo [2]’ sy Ugv—1 [Z]), (22)

Code

|Combination

—uli =vi

el Packet

Y

oAl

eneration
2k +k,

where k% 4+ k¥ = k, i.e., u[i] constitutes the firsk"
symbols ins[i] whereasv[i| constitutes the remaininkg’
symbols.
o m-MDS Parity-Checks: Apply a (k" + k¥, kY, Togt) m-
MDS code of rateR’ = % on the sub-packets]i]
Fig. 8: A block diagram illustrating the encoding steps of a ~@nd generate parity-check packets
Generalized MS code. The source packet is first split into two Tor T
packets and a different code is applied to each packet. The o froo o v ol K
resulting parity-checks are then combined to form the divera Pl = Z%V =’y prlileF, . (29
parity-check packet. Finally, the parity-check packet dmel B
source packet are concatenated to generate the channetpack where the matrice$l] € F’;“Xku are associated with a
m-MDS code (12).
«» Repetition Code: Superimpose the[-] sub-packets onto

]
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of length W, there exists either a single burst of maximum p°[] and let
length B, or up to N isolated erasures. Thus, every erased qli] = p°i] + ufi — Teq]. (24)
packet on such a channel must be recovered, i.e., we have .
that « Channel Packet Generation:Concatenate the generated
B parity-checks to the source packets so that the channel
R<1l— —— (20) input at timei is given byx[i] = (u[i], v[i], q[i]) € Fy,
W+B-N wheren = 2k" + k.

Rearranging (19) and (20) and usifigr = min(W —1,T), In our construction discussed above, we select Ty,
we easily recover (1). This completes the proof of the upp&t = B, k¥ = T.g — B andn = T, + B. Clearly the rate of
bound. the proposed cod& = % matches the expression in (21).

For decoding, we suppose that the first erasure burst of
length B spans the interval0, B — 1]. Since the code is
time invariant a completely analogous argument applieswhe

B. Generalized MS Codes the erasure burst spans the interfat + B — 1] for any
¢ > 0 and the source packets upto timie- 1 have been
In this section, we present a generalization of the MS codgeady recovered. By the definition of the sliding window
introduced in Section I1l-B. The proposed constructionl&sp erasure channel, there can be no other erasurdsapackets
to any W > B + 1, and eliminates the intermediate step ofollowing the erasure burst and in particular all the chdnne
constructing a block code in [5], [6]. This method can be thgsacketss|i] for i € [B,T.x + B — 1] are recovered. We
generalized to correct both burst and isolated erasurethéor claim that eachs[0],s[1],...,s[B — 1] is recovered by time

P

C(N, B,W) channel. t=Teg, Tog +1,...,Tog + B — 1 respectively.

N A . The decoder proceeds in two steps as illustrated in Table II:
Proposition 2. Let Tog = min(W — 1,T). For the C(N = « Simultaneously recovev[0],...,v[B — 1] by time ¢t =
1, B, W) channel, there exists a streaming code with délay T.e — 1. In this step, the decoder proceeds as follows.
and rate For eachj € {B,...,T.z — 1}, the decoder recovers the

%, Ter > B parity-check packet®”[j], by subtracting the unerased
R= O,L else (21) u[j — Teg] from the associated[j] = p*[j] +u[j — Test]

packets. These recovered parity-checks can then be used
U to recoverv[0],...,v[B — 1].

The encoding steps, illustrated in Fig. 8, are as follows:  8Throughout the paper, we will use packets to denote a vedtspuarce,
o . . parity and channel symbols, respectively, whereas we us@ackets fomu:|
« Source Splitting: Split each source packesfi] € IF’; into andv[].
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TABLE II: An illustration of the decoding steps in a Genetralil MS code. Each column denotes a channel packet trangmitte
at the time index shown in the first row. In each interval, tleeitg-check packets used for recovery are highlighted ah re
whereas the parities that are computed and cancelled assett@ut.

0 B-1 B | T -1 Tg |...| Teg+B-1
k, uf0] ... u[B — 1] u|B| e | u[Teg — 1) | u[Tew] | ... | u[Teg + B—1]
ky v[0] v[B — 1] v[B] coo | V[Ter = 1] | v[Tew] | ... | v[Tesr + B —1]
| ulTel | o [ uB=Teg —1] | wiB—Fer} | ... | v+ | w0+ | .| ulB-1)+
| Tplo] | ... | +plB-1] +pB] | ... | plTea —1] | plFent | ... | plFert+B—14
! I
Burst Erasure Simultaneously Recover — u[0] ... u[B — 1]
v[0],...,v[B —1] Sequentially
Note that using property P2 in Corollary 1 and substitut-
ing R=RY andj = T.g — 1 we get, /\
(1 - R"Tur = B, (25) B B R RN it N
e E | s[i] ||«
H = Y 5 +
and hence _the recovery of[0],...,v[B — 1] by time  _ s[i] | (& Do\ [pfH & N
t = Tog — 1 is guaranteed. S \%\ N
« Sequentially recoveru[0],...,u[B — 1] at times A E, S
Tett, - - -, Teg + B — 1, respectively. Consider the parity- § ol =
CheCkSq[j] = u[j _Teff] +pv[j] forj € {Teffa BRI aTeff+ u

B — 1}, which are available to the decoder. Upon the

recovery ofv[0],...,v[B — 1] in the previous step, the . ) ) .
requiredp®[j] can be computed, subtracted fragy], Fi9- 9: A block diagram illustrating the encoding steps of

and the underlying1[-] sub-packets can be sequentiall@ MIDAS code. The top part is equivalent to that of a
recovered by their deadlines. Generalized MS code (cf. Fig. 8). The lower part shows

Upon completion of the two steps stated above, the recov%r‘e? le ?:]ra;ay_el\;lstpggg_?:?ﬁgf[?ii? v;?lggsls generated by
of s[i] for i € {0,..., B — 1} follows. Any subsequent burst, plying am P '

starting at timet > T.g + B, can be corrected in a similar

fashion. Since the rate of the code is clearly given by (21),
the proof of Prop. 2 is complete. channel and then concatenate an additional layer of parity

) ) packets whedV > 1. We again assume thgf] € IF’; and split
Remark 2. The geqerallzed MS_ code construction makes theinio two sub-packets1i] and v[i] as in (22) and generate
structure of the optimal streaming code for the burst erasugpe parity-checksyi] as in (24). The resulting code up to

channel more transparent. Note thatMDS is an inter-packet thjs point can only correct burst erasures. We further apply

code that combines the sub-packets], across different time (k" + k*, k", Tor) m-MDS code of rateR" — - kuk to the
. . Y ) € u+ 8
instants. Such a code can only simultaneously recover all tnv] sub-packets and generate additional parity-check packets

erasedv|[| sub-packets and does not provide the sequentia :

recovery. The repetition code applied ta[-] sub-packets Teft .
is a simple intra-packet code. It does not combine packets p“[i| = ZuT[z’ —Jl-HY | p“li] € ]F’qC ,  (26)
across different time and can be sequentially recovere@. Th §=0

roposed construction splits each source packet into twispa wy s . . .
brop P P Pa | here HY € Fk"xk" are matrices associated with a

applies the inter-packet code to one group, the |ntra—ptatck7en_|v|DS code (12). We simply concatenate the parity-

repetition code to the other group, and then superimpose _ Wi . .
the resulting parity-check packets. Thus, the optimal co&r?_eCkS qlil and p“[i] with the source packets, i.e.,

involves balancing the contributions of the inter-packetia * i] = (u[i], v[i], q[i], p"[i]). Fig. 9 illustrates the layered ap-

intra-packet codes through an appropriate sub-packetirat proach in our code constructlon. Note thé.it] < e Whekre
n = 2k" + k" +k° and the associated rate is given By= 7.

The Generalized MS code is no longer feasible whéen- In our construction, we seledt* = B, k¥ = Tog — B,
1. To see this consider two isolated erasures one=ad and = i« 4 kv = T, and,
the other att = T.. In this case, bothi[0] as well as its N
repeated copy are erased. We propose a modification to these k= —n+——— k" (27)

Teff_N+1

Remark 3. We note that if the value d#® in (27) is non-

, i integer, extra source splitting by a certain factor of is

C. MIDAS: Code Construction needed. In particular, we sét* = mB, k¥ = m(Teg — B),
Our proposed construction is based on a layered approakh= k% + k" = mT.g andk® = ﬁk“ = ﬁmB.

We first construct a Generalized MS code®V = 1, B,W) It can be clearly seen that choosing = Teg — N + 1 is

codes that can deal with any value &fin Theorem 2.
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sufficient fork?® to be an integer. we have that

Decoder Analysis:In the analysis of the decoder, we iB—%N > Tog. (31)
consider the interval0, Tog] and show that the decoder can 1-R _
recovers|0] by timet = T.g if there is either an erasure burstThe proof of Theorem 2 is thus completed.

of length B or smaller, or up taV isolated erasures in this Example - MiDAS(N, B,T) = (2,3,4) and W > T +
interval. Once we show the recovery «ff] by time¢ =Tes, 1 = 5: Table Il illustrates a MIDAS construction for

we can cancel its effect from all future parity-check paskbt (N, B) = (2,3) andT = 4 andT.¢ = T. The encoding steps
necessary. The same argument can then be used to show zhatgs follows:

s[1] can be recovered by tim&.s + 1 if there are no more _ _
thanV isolated erasures or a single burst erasure of maximume Split each source packefi] into & = 7 = 4 sym-

length B in the interval[l, T,z + 1]. Recursively continuing bols. The firstk* = B = 3 symbols areu[i] =
this argument we are guaranteed the recovery of ety (uold], u1]i], usli]) while the lastt” = T'— B = 1 symbol
time i + Teg. is vol].

If there is a burst of lengttB in the interval[0, T,g] our ~ * APPlY a (k" + k", k", T) = (4,1,4) m-MDS code of
construction ofq|] already guarantees the recovery sif] rate R = 1 to thev[:] sub-packets generating the parity-

by time ¢t = T.g (cf. Section IV-B). Thus, we only need to check packets,

consider the case when there aveisolated erasures in the 4

interval [0, Teg]. We show that the decoder is guaranteed to p"[i] = (pgli], pi[e], p5li]) = Zvo[i —jHi.  (32)
recoverv[0] at timet = Teg — 1 using the parity-checkq['] §=0

andul(0] at time¢ = Teqr using the parity-checks”[]. « Combine theu[.] with p”[-] and generatey[i] = p"[i] +

The recovery ofv[0] by time T, — 1 follows in a fashion ufi — 7.

similar to thesimultaneous recovergtep above (25) in the Apply a (k*+&°, k%, T) = (5,3,4) m-MDS code of rate
previous section. However, we use P1 in corollary 1 instead. pu _— 2 to the u[-] sub-packets generating parity-check

Recall from (24) thay[i] = p"[i] + u[i — Teq], wherep®[i] packets each with* = ¥ k" = 2 symbols,

are the parity-checks of the:-MDS code (23). Since the

interferingufi—T.¢] sub-packets in the intervake [0, Tog—1] p"[i] = (po i, p1[i])

are not erased, they can be canceled out frqfij and 4

the corresponding parity-checks’[i] are recovered at the =Y [uoli—j] wli—j] wueli—j]]HY. (33)
decoder. Since the codev[i],p”[i]) is a m-MDS code of J=0

rate R* = 15=5, applying property P1 in Corollary 1 the
number of isolated erasures under which the recoveny[@f
is possible is given byW* = (1— R")T.g = B. SinceN < B
holds, the recovery of[0] by timet = T,z — 1 is guaranteed x[i] = (uli], v[i], q[i], p“[1]) (34)
by the code construction. N L T T g

For recovering1[0] at timet = T,g, we use thep"[-] parity- whose rate IS = s = T+B+72% O
checks in the interval0, T.¢]. Note that the associated code For decoding, first assume that an erasure burst spans the
(uli], p“[i]) is a m-MDS code with rateR" = 2 and interval[i,i+2]. We first recovepg|i + 3], py[i + 3], p5li + 3|
hence it follows from P1 in Corollary 1 that the number oby subtractinguo[i — 1], u1[i — 1], uz[i — 1] from the parity-
isolated erasures under which the recoveryfff] is possible check symbolsy[i + 3], q1[i + 3], g2[i + 3] respectively. In

The channel packet at timeis given by,

is given by the intervalli,i + T — 1] = [i,i + 3], the channel introduces
s a burst of length3. Thus, the(4,1,4) m-MDS code suffices
(1-=RY(Teg+1) = W(Tcﬁ» +1)=N, (28) for recovering the three erased packeg$], vo[i + 1] and

vo[i + 2] by time i + 3 since (1 — R¥)T = 3. Once all the
where we substitute (27) in the last equality. This completgrasedv|t] are recovered, we can compute the parity-check
the proof thats[0] = (u[0], v[0]) can be recovered at timepacketsp®[t] for t € {i + 4,i + 5,7 + 6} and subtract them
t = Teg when there areV isolated erasures in the intervakrom the corresponding]] to recoveruli], u[i + 1], ui + 2]
[0, Tegr). B ot timei +4,i + 5,i + 6 respectively, i.e., within a delay of

It remains to show that our proposed code parameter satigfy— 4.

the lower bound in Theorem 2. In the case of isolated erasures, we consider a channel

o kR Tes (29) introducing ' = 2 isolated erasures in the intervali + 4]
2kt + kv + k5 T+ B+ Bﬁ of lengthT + 1 = 5. We first recover the unerased parity-
Tog check packetp?[] in the interval[i,s + 3] by subtracting

> T-+ B+t B X the correspondingy[-] sub-packets. The4, 1,4) suffices for
oft Lo =N recoveringuo|i] by timei+7T —1 =i+ 3 since(1 — R")T =
- T =N (30) 3 > 2 = N. Also, u[0] can be recovered by time + 4
Tt =N+ B using the(5, 3,4) m-MDS code in the intervali, i + 4] since
where (29) follows by substituting in (27). Rearranging)(30(1 — R*)(T'+1) =2 = N.
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TABLE Ill: MiDAS code construction for(N, B) = (2, 3), a delay ofT’ = 4 and rateR = 4/9.

[4] li +1] [i + 2] [i + 3] [i +4]
uo[l] Ug [Z + 1] Ug [Z + 2] Ug [Z + 3} u()[i -+ 4]
E*=3 u1[d] ufi + 1] u1[i + 2] u1[i + 3] uy i + 4]
UQ[Z] UQ[Z'—Fl UQ[Z'—FQ UQ[Z+3} u2i+4]
kv =1 vo [i] voli + 1 voli + 2 voli + 3] voli + 4]
uo[zf A+ poli] | woli — 3]+ poli +1] | woli — 2]+ ppli + 2] | woli — 1] + pgli + 3] | woli] + poli +4]
k=3 | ua[i = 4]+ py[i] | wali =3 +pili+1) | wa[i = 2]+ pP[i+2] | wili = 1] +pifi+3] | wali] + pyli + 4]
usli — 4] + ps[i] | weli — 1] +p5li +1] | usli — 2] +p5li +2] | ugfi — 1+ p5[i + 3] | uali] + psli +4]
b5 — 9 poi] poli + 1] poli+2] pli+ 3] Py i + 4]
Pyl prli+1] pili+2] pili+ 3] pili+4]
D. MIDAS Codes with Improved Field-Size symbolsp*[i] = (py[i], p{[¢]). The codeword starting at
Our constructions in Section IV-C are based @aMDS time i is given by,
codes [7], [8]. Such codes are guaranteed to exist only when  cu(j] = (ug[i], uy[i + 1], uali + 2], p2[i + 3], pJi + 4])
the underlying field-sizes are very large. In particulae, fileld- (36)

size must increase exponentiallyfhz except in some special

cases [8]. In this section, we suggest an alternative aomstr ~ @nd is marked by the unshaded boxes in Table IV for

tion that uses block-MDS codes instead /0fMDS codes. convenience. o
This construction requires a field-size that only increames The channel packet at timeis given by,
3 i i i i o . o o Ul
O(T). While this alternate construction also attains the x[i] = ([, v[i], ald], pU[i]) , (37)

tradeoff in Theorem 2, it does come at a price. It incurs some

performance loss in simulations and is less robust to neatidwhose rate ist = 41— = 3 which is consistent with (29).
erasure patterns as discussed in Section IV-E. For decoding, first assume that an erasure burst spans the
interval [¢, 7 + 2]. We first recovepy[i + 3], pY[i + 3], p5[i + 3]

. ; o X at timet = i+ 3 from the parity-check packetg|i+ 3], ¢1[i +

there exists a streaming code of raie that satgsf|es(2) N3], ga[i +3]. We can use trrj1e u};derlying MDS c[odes], to [recover
Theorem 2 with a field-size that increases@&l ;). O wolil,vi[i + 1],0a[i + 2] at time t = i + 3 by considering

We start by giving two examples and then discuss thg[i],c”[i + 1],c"[i + 2] respectively (see (35)). Once all the
general code construction. The key step is to replaceithe erasedv(t] are recovered, we recoveri| at timet =i + 4,
MDS code in (23) and (26) by two block MDS codes appliett[i + 1] at timet =i + 5 andu[i + 2] at timet = i + 6.
diagonally to thev|-] andu[] sub-packets. In the case of isolated erasures, we assume a channel
1) Example - MIDAS(N,B,T) = (2,3,4) and W > introducing N = 2 isolated erasures in the intervil, 4]
T +1 = 5 Table IV illustrates a MiDAS construction Of lengthT + 1 = 5. Note that the codeword"[i] in (35)
using MDS as constituent codes. The rate of this code tRyminates at time/ = i + 3. Thus, there are no more
R= W = 4 from (29). Note that this code has the¢han N = 2 erasures on it and thus the recovery fi]
T—N+1

same parameters as in Table 1l in Section IV-C. The encod|hsg guaranteed at time = i + 3. Likewise the codewords

steps, stated below, are also similar except thatrthMDS [0 = 2], ¢*[i — 1], *[i] in (36) combiningus|d], u1[i], uo[d],
codes are replaced with block MDS codes. respectively, terminate at time= i+ 4 and there are no more

. q than N = 2 erasures on any of them. Thus, the recovery of
» Split each source packefi] into k = T' = 4 sym- u;[f] for j =0,1,2 is guaranteed at time= i + 4.

Proposition 3. For the channelC(N, B, W) and delayT,

bOIS.' Thg first.k:“ ;I Bh :I :;fvsxmj?og Ereu[i] b:I However, splitting each source packet irite= 7" symbols
i(:o[z%?]m[z],w[l]), while the last” = T—B =1 symbol g ¢ enough in general. In particular, applyinda T — B)
Volt].

MDS code to thev|-] sub-packets requires that tk¢] sub-

» Apply a(T,T — B) - (4’.1) MDS codé€ to the v ] su_b— packets are split into a multiple @ — B symbols. Similarly,
packets generatl_ng parl'ty-check. paclfptét-].each with applying a(T + 1,T — N + 1) MDS code to theu[-] sub-
B=3 S,yT]bOIS’ -€.p d[l] :d (pO[Z]apl (2] p5[i))- Hence,  hackets requires splitting them into a multiple Bf— N +
at timez, the generated codeword is, 1 symbols. On the other hand, achieving the tradeoff in (2)

c’[i] = (voli], pufi + 1], p¥[i + 2], p5[i + 3]) (35) reguires that th_e _ratio between the sizeudf] to v[-] to be
) ) . 7—5- Thus, splitting theu[-] sub-packets t@3(T' — N + 1)
and is shown using tvhe shaded boxes in Table IV. symbols and splitting the[] sub-packets int¢Z'— N+1)(T—

. Ci)mblne ul] with p”[-] packets and generaigl/] = pB) symbols fulfills all the previous constraints. The followin
p'[t] +ult - T]. ) example illustrates this case.

« Applya(T+1,T-N+1) = (5,3) MDS code diagonally  2) Example - MIDAS(N, B,T) = (2,3,5) and W >
to the u[-] sub-packets generatiny = 2 parity-check 7 , 1 = 6: Table V illustrates a MIDAS construction

using MDS as constituent codes. The rate of this code is

9This can be a simple repetition code, i.py[i + 1] = p¥[i + 2] = T 10 .
p8[i + 3] = volil. R= BT, 5 19" The encoding steps are as follows.
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TABLE IV: MIiDAS code construction fo(V, B) = (2, 3), a delay ofT’ = 4 and rateR = 4/9 with a block MDS constituent

code.
1] [i+1] [i+2] [i+ 3] [i + 4]

M wuoli + 1] uoli + 2] uoli + 3] woli + 4]

=3 ] wrli + 1] wifi+2] wifi+3] wifi+ 4]

usli] usli + 1] [uali +2]] usli + 3] usli + 4]

k' =1 vo 4] voli + 1] voli + 2] volt + 3] voli + 4]
uoli — 4] + pgli] | woli — 3]+ pElE+1] | woli — 2] +pfli +2] | woli — 1] +pgli +3] | uoli] +pyli + 4]
ROZ3 i - ) 3] | el 3+ g+ 1) | wali - 2+ BRERR] | wili— 1)+ pyli+3] | wali) + il + 4]
wsli — 4]+ p3li] | wali— 1+ p3li+1] | uali— 2]+ p3fi+2] | wali — U+[pBEHE] | uoli] +pili + 4

o pil] phli+1] pili +2] pili+3]] pili +4]

pili] pifi+1] pii+2] pi[i+3] |MH+M|

TABLE V: MiDAS code construction fof N, B) = (2, 3), a delay ofl" = 5 and rateR = 10/19 with a block MDS constituent
code. We note that each of the parity-check sub-sympifit$ is combined withu;[t — 5] for j = {0,1,...,11} but the latter
are omitted in the above table for simplicity.

[4] [i41] [i+2] [i+ 3] [i + 4] [i + 5]
| ug|1] wolt + 1] uoli + 2] ugli + 3] ugli + 4] ugli + 5]
uy[d] urli + 1] ur]i + 2] uli + 3] urli + 4] uy[i + 5]
U2 [Z] U2 [7 + 1] th[i + 2} ’ltz[i + 3] U2 [Z + 4] UQ[i + 5]
usli] usli+2 | wsli+3] | wsli+4] | wusli+5]
N uy1] ugli 4 1] ugfi + 2] ugfi + 3] ug[i + 4] ugfi + 5]
k=120 ugli) | usli+1] | wsli+ 2] | us[i+3] | usli+4] | usli+5]
usli] | ueli +1] ugli+3] | wueli+4] | weli+5]
uoli] | uoli+1] | wuoli+2] uoli +4] | wueli + 5]
7L10[i] 7110[7: + 1] 71,10[7: + 2} um[i + 3] ulo[i + 4] Ulo[i + 5]
Ull[l] U11[7z+ 1} U11[71+2} U11[Z+3] U11[2+4] U11[1+5]
Vo [Z] Vo [l + 1] Vo [Z + 2] Vo [L + 3] Vo [L + 4] Vo [l + 5]
U1 [L} VU1 [L + 1] U1 [L + 2] VU1 [Z + 3] U1 [l + 4] (%1 [2 + 5]
vali] voli 4 1] vali + 2] vali + 3] vali + 4] vali + 5]
kU =8 U3 M U3 [’L -+ 1] V3 [Z + 2] U3 [l + 3] U3 [7 + 4] U3 [7, + 5]
v4[i] vgli + 1] vali + 2] vt + 3] vt + 4] vt + 5]
Vs [Z} Vs [’L + 1] Vs [Z + 2] Vs [7, + 3] Vs [’L + 4] Vs [Z + 5]
Ve [L} Ve [L + 1] Ve [Z + 2] Ve [Z + 3] Ve [L + 4] Ve [Z + 5]
vrt] vrfi 4+ 1] vrli + 2] vr[i + 3] vr[i + 4] vr[i + 5]
pilil | peli+1] | pgli+2] | p§li+3] | ppli+4] | pgli+ 5]
pili) | pili+1] | pili+2] | pP[i+3] | pili+4] | pili+5)]
vl | pbli+1) | pbli+o) | pli+3 | walid] | pili+s)
pili] | p3li+1] | pyli+2] | pili+3] | pili+4] | pili+5)
pilil | pili+1] | pili+2] | PR3] | pili+4] | pili+ 5]
k=12 | gl | oplit1] | i) | psli+3) | pRlita] | pili+s
peld | peli+1] | pEli+2] | pgli+3] | pgli+4] | pgli+ 5]
prli] | pyli+1) | pyli+2] | pyli+3] | phli+4] | p¥li+5)]
pgld] | pEli+1] | pgli+2] | pEli+3] | pgli+4] | pgli+ 5]
pyldl | peli+1] | wli+2] | psli+3] | psli+4] | psli+9]
Pioli] | ploli+1] | pYoli+2] | pioli +3] | pioli+4] | pioli + 5]
piald] | plili+1] | phali+2] | ph[i+3] | phili+4] | pii[i+ 5]
pel) | poli+1] | peli+2] | pili+3] %ﬁ+ﬂ| pgli + 5]
pil] | prli+1] | pi[E+2] | pYli+3] | pili+4] | pYli+ 5]
ks =6 | palil | peli+1] | peli+2] | pali+3] | peli+4] | pyli+5]
pilil | pli+1] | pyli+2 | psli+3) | pyli+4]
pill) | pili+1] | pili+2] | pili+3] | pili+4] | pili+ 5]
pelil | pali+1] | py[i+2] | pyli+3] | pyli+4] | pEli+5]
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« Split each source packefi] intok = (T—N+1)T = 20 i+ 5. Hence, they;[i + 1] andwv;4[i + 2] symbols

symbols. The firsk" = (T'— N+1)B = 12 of which are are recovered by timé+ 4.
(uoli], . .., u11[7]) while the lastk” = (T'— N + 1)(T — = ci[i+2] = (vj[i + 2], vjpali + 3], p3[i + 4], 0} 4[i +
B) =8 are(wli], . .., vr[d]). 5], pY, s[i+6]) has3 erasures at+2, i+5 andi+6.
e Apply a (T,T — B) = (5,2) MDS code diagonally to Hence, thev;[i + 2] symbols are recovered by time
the symbols in thev[-] sub-packets with an interleaving i+ 4.
factor of '— N +1 = 4. Hence, at time, four codewords In other words, all the erased:] sub-packets are recov-
are generated as follows, ered by timei + 4.
culi] = (voli], vali + 1), p3[i + 2], pli + 3], p3[i + 4]) . Cqmputg the parity-check packejs_’[t] fort e {i +
eVli] = (va[il, vs[i + 1], p%[i + 2], p2Ji + 3], pili + 4]) 5,14+ 6,1 + 7} as they only comblna_r[~] sub-pa_ckets
! HH TS L s 9 that are either unerased or recovered in the previous step.
cy[i] = (vali], veli + 1], p3[i + 2], pgli + 3], pioli + 4]) These parity-check packets can be subtracted from the
cyli] = (vsli], vz[i + 1], ph[i + 2], py[i + 3], p7;[¢ + 4]) corresponding|t] packets to recovai[;—T'] sub-packets
(38) within a delay ofT" = 5. In other words, we recovai(i]
The codeworcep|i] is shown using the shaded boxes in  at timet = i + 5, ufi + 1] at timet = i + 6 andu[i + 2]
Table V. According to (38)(T' — N + 1) B = 12 parity- at timet =i + 7.
check symbols are generated, nameljlil, ..., pi,[i]). In the case of isolated erasures, we assume a channel

» Combine theu[-]usub-packets withp®[] packets and introducing N = 2 isolated erasures in a the interval 5]
generateq[t] = p°[t] + uft — T]. For simplicity we do length T + 1 = 6. Note that the codewords![] in (38)
not show these in Table V. terminate at timet = ¢ + 4. Thus, there are no more than

« Apply a(T+ 1’T._N+ 1). = (6,4) MDS code to thgu N = 2 erasures on either of them and thus the recovery of
packets with an interleaving factor & = 3 generating v;li] is guaranteed at timét 4. Likewise the codeworde i]
BN = 6 parity-check symbolgpg[i],...,ps[i]). The ;3 (39) terminate at time = i+ 5 and there are no more than
resulting codewords are as follows, N = 2 erasures on any of them. Thus, the recovery:gi]
et li] = (uoli), usfi + 1, ucli + 2], usli + 3], pifi + 4], IS Quaranteed at time=i + 5. o

pU[i + 5)) 3) Code ConstructionThe general construction achieving
Prop. 3 is as follows.

h +1 +2 +3 +4 ",
erli] = (wnld], uali + 1], urli + 2], wiofi + 3], prfi + 4] « Source Splitting: We assume that each source packet

pili+5]) sli] € F% and partition thek symbols into two sub-

cy[i] = (uzld], us[i + 1], ugli + 2], w11 [i + 3], py[i + 4], packetsuvec[ ] € F¥" andv.ec[i] € FX as follows,
i+ 5 39 .

p5li+5)) (39) Sli] = (so[il, - - . sw_1[i])
The codeword:j[i] is marked by the unshaded boxes in = (ug[i], ..., upu_1[i],voli], ..., v _1[i])  (41)
Table V for convenience. " "

The channel packet at timeis given by, where we select
. . . qwrs kY = (Teg — N + 1)B,
x[i] = (uli], v[il, ali], p"[i]) (40) (Ten ) (42)

k' = (Teg — N +1)(Teg — B).

whose rate iR = 128 = 10,
12Ee A 19 « MDS Parity-Checks for v[-] sub-packets: Construct

For decoding, first assume that an erasure burst spans the 77 . _ n 4 1 systematic MDS codes of parameters
interval [i, i + 2]. The decoding steps are as follows, (T, Teg — B) starting at timei whose associated code-
words are,
« Recoverp®[t] = (pg[t], ..., p¥[t]) for t = {i+ 3,7+ 4} _
by subtractingu[t — 5] from q[t].
« Recoverv|i], v[i + 1] andv[i + 2] using the underlying

vild]
Vj+(Tege —N+1) [Z_"" 1]

(5,2) MDS codes as follows. Fof € {0,...,3}, Uj”(chf‘]_V*l)[Z +2

= cjli = 1] = (v;[i — 1], UJ+4[]pJ[Z+1]pJ+4[Z+ i — | v, B B _ i+Tg—B—1
2],pY, g[i + 3]) has3 erasures at, i + 1 andi + 2. ;1 7 (Tese NHZ))%F[?;? ;)[_ B ! H
Hence, thev; 4[i] symbols are recovered by time v / -
i+ 3. i s g P (N + Ten = B+ 1]

= ] = (vl vyl + 100+ 2p 0+ |
3], pY,sli + 4]) has 3 erasures ati, i + 1 and L Pt (o — N1y (B—1) [ T Ter — 1] |
i + 2. Hence, they;[i] andv;4[i 4+ 1] symbols are (43)

recovered by time + 4.

- cj [i + 1] = (v;[i + 1], vja[i +2], Dy [i + 3],p}’+4[i + 10We note that the parity-check symbal$, ¢[i+5] for j € {0,...,3} are
4],p§+8[i + 5]) has3 erasures at + 1, i + 2 and counted as erasures since they are combined jth [¢] which are erased.
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for j € {0,1,...,Teg — N}. Notice that each codewordsensitive compared to the construction in Section IV-C when
cjli] spans the intervali,i + T — 1] and the adjacent non-ideal erasure patterns are considered. To illusthégente
symbols have an interleaving factor fifs — N + 1. The focus on the case wheN =2, B=3,T =5andW > 6
resulting parity-check packets at timere expressed as:in our discussion. The MIiDAS construction with block MDS
p°[il = W8lil, - - P{r N1y B li]) constituent code for these parameters is illustrated ineTeb

« Repetition of u[] sub-packets: Combine theu|-] sub- The MIDAS codes using:-MDS codes has a similar structure
packets with the parity-check packet¥|-] after applying except that the parity-check$[-] andp -] are generated using
a shift of Teg, i.e., q[i] = p*[i] + ufi — Teal. the m-MDS code.

o MDS Parity-Checks for u[-] sub-packets:ConstructB We consider an erasure pattern that introduces a burst of
systematic MDS codes of parametéfsg +1, 7. — N+ length 2 in the interval[i,i + 1] and an additional isolated
1) at time¢ whose associated codewords are, erasure at timeé -+ 3. Clearly such a pattern violatesCd N =

- 2,B = 3,W = 6). Nonetheless, we argue that the MiDAS

" u-j[EZ]JF 1] codes are able to completely recover from this erasurerpatte
A 9 but the alternative construction using block MDS codes in
ujt2nli + 2] Table V cannot.
: In particular, note that the the parity packets + 2] and
ctli] = | WitB(Tu—N) li+Teg — N] |, (44) pli + 4] contribute a total of24 symbols which suffice to
' pyli+Teg — N +1] recovervli], v[i + 1] and v[i 4+ 3|, each of which involves
p;.”+B[i +Tog — N + 2] symbols. Thus, by timé + 4 all the symbols in the erased
. v|[-] sub-packets are recovered and we can proceed to recover
C ufi],ufi + 1] and uf[i + 3] at time ¢ + 5,7 + 6 andi + 8,
L pﬁB(Nfl)[l + Tert] A respectively, i.e., a delay df = 5 packets.

for j € {0,1,...,B — 1}. Notice that each codeword In the MiDAS construction with MDS constituent codes,

c![i] spans the intervali,i + Ter] and consists of illustrated in Table V, we either us&*[-] or c”[-] codewords

symbols with an interleaving factor d8. The resulting t0 recoveru(d.

parity-check packets at time are denoted byp“[:] = « Using c“[-] codewords: Here, &'+ 1,7 — N + 1) =
(Py[d], .- PN _1[8])- (6, 4) block MDS code is applied to each of té] sub-
« Concatenation of Parity-Checks: Concatenate the packets. Each of the codeword$[:] for j € {0,1,2}
parity-check packetp[-] andq][], i.e., the channel input in (39) has3 erasures at, i + 1 andi + 3 and hence the
at times is given by, recovery ofu[0] is impossible.
_ 1w « Using c’[] codewords: Also, thev|[-] sub-packets are
x[d] = (uli], vldl, ald, p“[d) - (45) protected using 47,7 — B) = (5,2) MDS codes. Let
Note that the rate of the code equals us consider the codeword$[i + 3] = (v;[i+ 3], vj1ali +

(Tt — N+ 1)Tog 4], p;li + 5, pjyali + 6], pjsi + 7)) for j € {0,1,2,3}

R= in (38). Each of these codewords has an erasure at time
(Tesg = N+ DTest + B(Test + 1) i+3 and the parity-check packets[i+5] andp; , 4[i+6]
_ Tefr (46) are combined withu;[¢] andw;4[i+ 1] which are erased
Tog + 2ol by the channel. Thus, a total 8ferasures at times+ 3,

L . i+ 5 and i + 6, which implies thatv;[i + 3] can be
which is |.dent|cal to the e.xp.ressmn n (29)' _ recovered at timeé + 7. Now, the decoder can compute
The decoding steps are S|mllar to that d|_scussed in the p;li+5) andp;4[i+ 6] and subtract them fromp;[i 4 5]
previous examples and is provided in Appendix C. andg;4[i + 6] to recoveru;[i] andu;[i+ 1] with a delay
4) Field-Size ComputationTO compute the required field- of 7 and®6, respective|y, i.e., exceeds the de|ay1bf: 5.
size, note that splitting each source packet ififoy — N + 1,5 ynjike the case of MIDAS codes basedrofMDS | it
1)T.s symbols requires that each source packet consqatef_ is not possible to recovarli] with a delay of T’ = 5 when a
(Teg — N +1)Teqr symbols. We therefore need to OletermlnEonstituent block code is used. We will also see performance

the field-size of each symbol. Using the well-known fact th%ss from using MDS block codes instead @tMDS codes
an (n, k) MDS code exists for any field-size greater than in our simulation results

we note that the field-size needed for b¢thg, T — B) and
(Teg + 1, Teg — N + 1) MDS codes to simultaneously exist is
g2 = ©(Teg). Thus, a field-size of = ¢1 - g2 which is of the
orderO(T?%) is sufficient. In this section, we study the case when the source and
channel inter-arrival rates are unequal, iMd.,> 1. We start by
revisting the capacity expression in Theorem 3 in Sectigh V-
In Section V-B, we provide the code construction achieving
Even though the construction in Section IV-D attains theuch capacity. The decoding analysis is discussed in Sec-
same optimal tradeoff over the deterministic erasure chlantion V-C. We illustrate both the encoding and decoding steps
model with a smaller field-size, their performance is morhirough a numerical example in Section V-D. We then provide

V. UNEQUAL SOURCE-CHANNEL INTER-ARRIVAL RATES

E. Non-ldeal Erasure Patterns
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c?[i + 3] — (5,2) MDS Code

i fet+1l|e+2fe+3|i+4]i+5)i+6]i+T)i+8 i+9 i +10):+11]i+12(---

| l

ufi] ufi + 1] ufi + 3]

Fig. 10: A non-ideal erasure pattern in Section IV-E.

the converse proof of Theorem 3 in Section V-E. Finally, w

present constructions that are robust against isolatesiligrs A 1
in Section V-F. = |= ) an
kv I--IU I—-Iu |—-|° |__|u
. . ] 2] o
A. Capacity Expression :5> :5> ..... :5> ..... ::3g .....
We note thatC = 0, if T < b.1! This follows since an !

erasure burst of lengtiB can span all underlying channel
packets in macro-packets i + 7] thus making the recovery
of s[¢] by macro-packet+ T impossible. This trivial case will
therefore not be discussed further in the paper. WHea b,
the capacity in Theorem 3 is given by:
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5, 0< B <%, T=hb, M
C = ?W*B, I\f_ = 2 (47) 4

£, Y <«B<M-1,T=h = -

) ] o ) e | | b | ol [aH

In this special case of minimum delay, during the recove Kk"|[ % g g 3| [==

of s[i] we can only use the unerased packetsyifi,:] and . . < g
Y[i+b,:] as all the intermediate macro-packets are complete v

erased. It turns out that a simple repetition code that us
min (M — B’, L) information packets and an identical num

ber of parity-check packets in each macra-packet achidues ig. 11: Construction of Parity-Check Packets. As in the MS

. ode, each source paclgt] is divided into two sub-packets,
capacity wheril’ = b. L o Uyee[t] @and vyec[t]. A m-MDS code is applied to the .||
WhenT' > b the capacity in Theorem 3 is given by, sub-packets and a repetition code is applied touthe[-] sub-
TLH), 0<B'< TLH)M, packets. The resulting parities are then combined to genera
C= MIEZ(;TI;EBB’ TLerM < B <M-1. (48)  the parity-check packei§ec[t] = Pvec[t] + Uvec[t — T1-

We propose the associated code construction below.

B. Code Construction where we select

As illustrated in Fig. 11 we split each source packet into two k%= Mb, k¥ = M(T —b). (51)
packets as was the case in the generalized MS construction in ]
Section IV-B. However, our construction involves an addidl ~ * 7"MDS  Parity-Checks: épply a (k" + k" k"T)
step of reshapingas illustrated in Fig. 12 to re-arrange the ~ MDS code of rate ;75 to the sub-stream of
symbols in each macro-packet. We separately consider three Vvec[] Sub-packets generating' parity-check packets,

cases below. (polil, .- pru—1[i]) = Pvecli] € FF" for each macro-
1) Encoding:T > b and B’ < TL-H)M: We let packet. In particular, we have that
;
n=T+b, k=MT, (49) T
. k Pvec [Z] = Z V;r/ec [Z - j] ’ Hj (52)
throughout this case. Note that the rdte= ;- reduces to =0

the first case in both (47) and (48). Y . . .
. Source Splitting: We assume that each source packet WhereH; € Fg ** " are the matrices associated with the

sli] € F% and partition thek symbols into two sub- m-MDS code (12). _ _
packetsuyec|i] € F** andvyec|i] € F*" as follows o Parity-Check Generation: Combine theuy.[-] sub-
e ! v ! ’ packets with thep,..[-] parity-checks after applying a
s[i] = (sold]; - .., sk—1[i]) shift of T' to the former, i.e.,
= (old) - ke a6 vole], - o 18] (50) Quee[i] = Puecli] + yec]i — T, (53)
Uyeci] Vyvec|[?]

whereque.[i] € F%".
lRecall from (8) that we expresB = bM + B’ whereB’ € [0, M — 1]. « Re-shaping:In order to construct the macro-packet, we
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and is discussed later in this section.

This completes the description of the encoding function for
the first case in (9) and (10). Fig. 13 illustrates the overall
encoder structure.

=
vec
Z)
5
b
s
o)
—
=
=

] Channel Macro-Packet 2) Encoding:T > b and B’ > TLH)M: We begin by

é Xli,:] choosing the following values of and k,
k|

é ok Y unnnn n=T+b+1, k=MT+b+1)—B (60)

™ “Concatenate 1 P Lifyn

é / and note that the rat® = % reduces to the second case
B e in (48).

] « Split each sourca|i] € F% into k symbols and divide

hil/

them into two sub-packetsy..[i] € FA" and vycc[i] €
F*" as in (50). This time we select

‘oml

Ci

vec!

k*=B=Mb+B', kK=M(T+b+1)-2B

(61)

Fig. 12: Reshaping of Channel Packets. The three groups,
Uyec[t], Vvec[t] and qyec[t] are reshaped intdJ|i,:], Vi,

and Q[i,:] which are denoted by vertically, diagonally and
grid hatched boxes, respectively. These reshaped padkets a
then concatenated to form the channel macro-pakket:|. .

Apply a (k* + k", k", T) m-MDS code of rate £~

to the sub-stream of..[-] sub-packets generating"

parity-check packets(po[il, ..., pke—1[i]) = Pvec[i] €

F’;u for each macro-packet as in (52).

Combine theu,..[] sub-packets with th@...[-] parity-
checks after applying a shift df' to the former, i.e.,
Qvec [2] = Pvec [Z] + Uyec [Z - T]

reshapeuycc(i], Vvec[i] and qyec[i] into groups each of + Reshape theuycc[i], Vvec|i] and quec[i] vectors into

n symbols generating the matrice§[i,:], Vi, :] and
Qli, :], respectively, as shown in (54).

In (54), we definer € N° andr’ € {0,1,...,n— 1} via

(57)

Note thatuli,/] € Fy for eachl € {1,...,r} and
ufi,r+1] € F'. The splitting ofqye.[] into q[i, 5] in (54)

EC=r-n+r.

matricesU[, :|, Vi, :] andQ]i, :] as in (54). In particular,
we letr andr’ be such thak" = r-n + 7' as in (57).
As in (55) we splituyec[i] into {u[i, j]}i<;< (1) Where
ufi,j] € F2 for 1 < j < r andufi,r + 1] € F'
holds. In a similar manner, we spli,..[¢] into vectors
{q[ivj]}lgjg('ﬂrl) Whel’eq[i,j] € FZ for 1 < .7 <r
andqfi,r + 1] € F?" holds. Finally we splitvyec[] into

follows in an analogous manner. We can express {vli, i1} 1<j<(ar—2r) Wherev[i, 1], v[i, M —2r] € IF};‘T'

S=1.2 .41 andvli,j] € Fy for 2 <j < (M —2r —1). _
ey (58) « Generate the Macro-Pack¥{i, :] by concatenatin@J|i, :

|, V[i,:] andQ]i,:] as in (56).

wherepli, j] is a sub-sequence @cc[i] defined in a  3) Encoding:T = b and B’ > A: A simple repetition

similar manner. In the splitting of.. ] into v[i, j], we scheme is used. We split each source packet ito- B’

note thatvl[i, 1], v[i, M — 2r] € F;~" whereasv[i,j] € packets, i.e.s[i] = (so[i,...,sm_p—_1[i]) and assign the

Fy for 2 < j < M —2r —1. It can be easily verified channel packets as follows,

that M — 2r > 0 for our selected code parameters. When

q[ivj] = u[i - Ta]] + p[i,j],

M — 2r =1 the structure ofV[i, ] is as follows, o sj-1[7] 3 €L, M- B
x[i,j]=< 0 je[M-B +1,B] (62
0 ijBlfl[i—T] _]6 [B/+1,M]
Vi = | vii,1] |, (59) ,
0 The rate of such code is clearly = 2-£ as stated in the

second case in (47). In this case, by inspection we can check
that the code described above is decodable within the degodi
delayT = b. Thus, we will only focus on the previous two
cases in our decoding analysis.

wherevl(i, 1] € F2=2"",

« Macro-Packet Generation: ConcatenatdJ[s, :], Vi, ]
and Q[i, :] to construct the channel macro-packef, :]
as in (56). Note that the channel macro-packet at tinise
denoted byX[i,:] € IFZ;XM and thej-th channel packet C. Decoding Analysis

in X[i,:] by x[i, j] € Fy for j € {1,..., M}. Consider a channel that introduces a burst of length:
Note that in the minimum delay case, i.€.,= b we have bM + B’ starting fromx[i, j] for j € {1,...,M}. We first
thatk” = M (T —b) = 0., This construction degenerates inteshow how to recoves[i] by the macro-packet+T'. Note that
a repetition code, and the corresponding rate of such te&peti since our code is time invariant, it suffices to consider only
code isR = % = % which meets the capacity expression ithe recovery of[i]. Onces[i] is recovered, we can compute
the first case in (47). The construction achieving the secoXd:, :] and repeat the same procedure with the smaller burst
case withT = b and B’ > 4 also involves a repetition codethat starts ak[i + 1,1] to recovers[i + 1] and so on.
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Uli, ] = ufi, 1] ‘ ufi, 7] % ] € Frxr+l
‘/‘['L7 ] = V[zo’ 1] V['L7 2] ‘ V[Z, M — 2T — 1] ‘ W S FZXI\{72T (54)
QU] = | Lt g [ [t | empe
where
ufi, 1] v(i, 1] qli, 1]
uli, 2] v[i, 2] qli, 2]
Uvyec [Z] = , Vyec [Z] = ) Qvec [2] = (55)
uli, r| vii, M —2r — 1] qli, 7]
uli,r + 1] vi[i, M — 27 qli,r + 1]
X[z_, ) = [x[i,1]] ... |x[i, M]] =
_ uli, 1] uli, 7] U-[‘Z;[:’-:] 1] vli, 2] V([i[f]’\j[t;]r] qli, 7] qli, 1] 1 , M—2r>1
i uli,r + 1] (56)
ufi, 1] | --- | ulfi, 7] vii, 1] qli,r] | -+ | qli, 1] M-2r=1
i qli,r + 1]
i i+b Repeat U] in the i+T-1 i+T
L7771 (i+T)th Macro-packet | | [ 1] ]

Fig.

Ul[t,:] symbols and its repeated version

= = =R =

VI[t,:] symbols and m-MDS parity check symbols, P[t,:]

Overall channel macro-packet X[t,:] consisting of U[t,:], V[t,:] and Q[t,:]

13: Encoding of source packets into macro-packetshBacirce packet is split into two groups. A repetition code is

applied to theU]Jt,:] group with a delay ofl’ macro-packets and is denoted by vertically hatched boxeshawn in the

first

figure. Am-MDS code is applied to th&/[t,:] group which is denoted by diagonally hatched boxes to gémehe

parity-checksP[i, :] denoted by the horizontally hatched boxes as shown in thensefigure. The combination of the resulting
parity-checks of the two groups is indicated in the last fgwith grid hatched boxes.

-
1)

2)

he decoding steps are as follows, 3) Step 3: Comput@...[i + T] as it combinesry.[] sub-
Step 1: In each macro-pack®t, :|, for ¢ € [i + b,7 + packets that are either not erased or recovered in the
T — 1], recover all the unerased symbols pf..[t] by previous step.
subtracting outi..[t—7'] from the correspondingyec ] 4) Step 4: Subtragbe.[i + T'] from qyec[i + T'] to recover
as the former are not erased. Sinagj, 1],...,ufi,j — Uyec[i] within a delay ofT" macro-packets. At this point
1] are not erased, we can subtract these packets from bothuy..[i] andvy..[i] have been recovered (and hence
the correspondingy,..[i + T to recover the respective s[i]) with a delay ofT" macro-packets as required.
Pvec|i + T packets. It only remains to show the sufficiency of the-MDS code
Step 2: Recover all erased..|] sub-packets by the i, gten"> To do that we use the following lemma.

macro-packet+ T using the underlyingk® + k%, k*, T
m-MDS code. This step will be justified later in theLemma 3. Consider any erasure burst of lengthstarting at
sequel. x[i, j] for somej € {1,..., M —r}. After Step 1 of cancelling
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i i+b i+T-1 i+T

Erasure burst erasing x[i,1],....x[itb,B']

Actual macro-packets under the erasure burst

Decoding window for the recovery of erased V[i,:],...,V[i+b,:] symbols o A

QIi+T,:] contains Ul[i,:] which is erased and hence cross hatched

= = =

All erased V[i,:],...,V[i+b,:] symbols are recovered, thus P[i+T,:] can be computed b 4
Uli,:] can then be decoded by cancelling P[i+T,:] symbols from Q[i+T,:]

A

Fig. 14: Decoding for the burst pattern starting fraf, 1]. The grey boxes denote an erasure burst of lefythhe horizontally
hatched parity-checks in the second figure are used to rettwveraseV|[i,:],..., V[i+b,:] packets. The third figure shows
the recovery ofufi] using the parity-checks in macro-packet 7.

uyec[t] Sub-packets, the total number of unrecovered symbdlsi+1,...,i+b} can be sequentially recovered from macro-
in the sequenc@(vyec[t], Pvec(t]) }i<i<itr iS at mostk™ (T + packet¢ + T by computing and subtracting..e.[t + 7]

1). from quec[t + T]. Thus, eachs[t] = (uyec[t], Vvec[t]) Can be
Proof: See Appendix D. = rﬁcovered by the end of macro-packet 7. This completes

- the decoding analysis.
We next claim that the decoder can recover all the erasec? g y

vyec[t] sSub-packets by the end of macro-packefl’. To prove Remark 4. We discuss intuition on the fact that the capacity
this, we recall that(vye.[t], pvec[t]) is @ m-MDS code with function does not decrease withl in the first case in(48) de-
parametergk? + k*, k*,T). We consider the following cases:fined byB’ < -+ M. Recall that for this case the parameters

« Ifthe burst starts at € {1, ...,7+1} then all the symbols that are selected aré" — Mb andn =T +b. Consider/an
in {(Veeo[t], Puec|t]) ictiss_1 are erased whereas a por€rasure burst that starts at[i, 1] and terminates ak[i+b, B’].

H Mb
tion of the symbols ir{ (Vyec|i+b], pvec|i+b])} are erased We claim that for such an erasure burst, as longR{s< T
until the termination of the erasure burst. Furthermorg!

nly theu|[-] sub-packets are erased in macro-pacKeét++b, :|.
{Puecli + T, 1]} j<1<,+1 are also considered to be erasel]! particular, the rjumber of symbols that are erased in marco
since they are interfered by the erasac.[i,]] sub- PacketX[i+b,:]is equal tonB’ = (T +b)B’ < Mb=k*.
packets from macro-packet Note that all the erased Since theu[-] sub-packets appears before any other packets in
symbols involvingvy.c[] will occur in a single erasure each macro-packet only these packets are .erased. Thusgg:iun
burst. Thus, applying property L3 in Lemma 1 with= T the recovery process, the number of parity-checks availabl

ande = 0 and usingB+1 < k(T +1) = (n—k)(j+1) for recoveringv|-] sub-packets does not decrease B5sis
which follows from Lemma 3, we are guaranteed'thé'i‘creased fromd to 745 Thus, the same code parameters can

all the erased,..[t] are recovered at the end of macroP® useql. The abovzgrgrgument assumes thf';lt thg burst starts at
packeti + T. the beginning of a macro-p_aqke_t. In Appendix D, in the prdof o
If the burst starts af € {r+2,..., M —r} then none of Lemma 3, we show that this is indeed the worst case patter_n. If
are erased and can be subtractet@e burst starts anywhere else, the number of availabletypari
. All the erased checks could only increase. This explains why, remarkéindy,
pacity is not a strictly decreasing function Bf

the sub-packetsiy.[7]
out fromqyec[i+ 7] to recoverpyec[i+ T
symbols thus occur in a burst. Thus, using property L2 frft
Lemma 1, and usin@ < (n — k)(T + 1) which follows  As a final remark, note that the above construction achieves
from Lemma 3, we are guaranteed that all the eras@k capacity in Theorem 3 fdi’ > M (T + 1). For the case
vvec|t] are recovered at the end of macro-packet?.  whenW < M(T+1), the same construction can be used with

o Ifje{M—r+l,...,M—1} then none of the symbols in replacing the delay” with the effective delafl.g = | ¥ | 1.
eitheru,..[i] or vye.[i] are erased. Thus, we can proceed

to blocki + 1 and apply the first step.

Finally as mentioned in Step 4 above, once all the erast
sub-packetsv..[t] have been recovered by macro-packet In this section, we show a code construction for parameters
i+ T, their effect can be canceled and..[t], for t € M =2,B=3,T=3.Notethat=1andB’' =1 > TLH)M.

Example
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TABLE VI: Code construction foM = 2, B = 3,T = 3) achieving a rate oRR = %.

X0, ] X1, ] X2, ] X3, ]
x[0, 1] x[0, 2] x[1,1] x[1,2] x[2, 1] x[2,2] x[3, 1] x[3, 2]
(N [0] (%) [0] Uo [1] (%) [1] (N [2] V2 [2] Uo [3] (%) [3]
u1[0] v3[0] uy[1] v3[1] uy[2] vs[2] uy (3] vs[3]
uz[0] to[—3]+po[0] us[1] to[—2]+po[1] uz (2] to[—1]+po[2] uz(3] uo[0] + pol3]
vo[0] u1[—3]+p1[0] vo[1] uy [—2]+p1[1] vo[2] uy[—1]+p1[2] vg[3] u1[0] + p1 3]
v1[0] us[—3]+p2[0] v1[1] uz[—2]+po[1] v1[2] uz[—1]+p2[2] v1[3] u2[0] + po[3]
Thus, the capacity is given by = %%#;B = %, which In each such period, the fird® channel packets are erased
can be achieved using the code illustrated in Table VI. and the subsequent/ (b + 7 + 1) — B are not. Consider the
Encoding: first period with the burst starting &[0, 1]. By definition we
1) Split each source packet infl (T +b+1) — B = 7 require thats[0] be recovered by the end of macro-packet
packets, i.e.s[i] = (so[i],- - , s6]). s[1] by macro-packef’+ 1 and likewise the last erased source

2) Divide these into two sub-packetf,.c[i] and vyec[i] packets[b] by macro-packef” + b. Thus, all the lost source
with k& = B = 3 andk* = M(T +b+ 1) — packets are recovered by macro-paaketT + b. Once these

2B = 4 symbols, respectively, as in (50). We le€rased packets are recovered, we can treat these erasures as
Weeeli] = (woli], - ,u2li]) = (soli],--,s2[i]) and having never happened and simply repeat the argument for the
Vyee|t] = (vold], - -+, vsli]) = (s3], . .., s[i])- next period and so on. Therefore, our proposed streaming cod

3) We place B = 3 parity packets queli] = Must be a feasible code for the periodic erasure channeale Sin

(qoli], q1]i], ¢=]i]) into the last channel packet of eachhe capacity of the erasure chanljel is simply the fraction of
macro-packet. These parities consist of two componeniide non-erased channel packets, it follows that

Qvec|]=Pvec[i]tuvec]i — 3]. The parity packetp[i] are . M(T+b+1)— (bM + B')
generated using a-MDS code. R™ = M(T+b+1)

Decoding: Since M = 2, there are two burst patterns that . .
need to be checked Is an upper bound on the rate of any feasible streaming code.

1) Burst that erases[0, 1], x[0,2] andx[1, 1. T_o (_establish the other inqua!ity in (63) we consider a
periodic erasure channel consisting of = 7'+ b macro-
gpackets and assume that in each period the first Mb < B
channel packets are erased. Thus, in the proposed chamel, t

(64)

Recovery ofv packets: We first subtractuye.[t — T
from qyec[t] for ¢t = {1,2} to recover the correspondin
Pvec[t]. These are a total a symbols and thus can be

used to recovero[0], - - - , v3]0] as well asvo[1], v1[1]. In first b macro-packets are completely erased in each period and
other words, all eréseof symbols are recovéred by thethe remainingl” macro-packets are not erased. In particular,
end of the macro-packa |2, :| in the first periods[0], ..., s[b — 1] must be recovered at the

end of macro-packet®’,...,T + b — 1 respectively. At this

point all the erased source packets have been recovered and
(3,4} and subtract them fromyec[f] to recoveru,e.[0] we can proceed to the recovery of the _second burst starting
andu,..[1] at their respective deadlines. at macr_o—packeT_Jr b. Thus, the streaming code _mu;t also

2) Burst that erases[0, 2], x[1, 1], x[1, 2]. be feasible on this erasure channel whose capacity is glearl

T
Recovery of packetsSinceu,..[0] is not erased, we can T+b’ and thus the upper bound follows.

subtract it fromaqyec[3] to recoverpy..|3]. This together ~ WhenT = b we show that
with pyec[2] is a total of6 symbols. Thus, they can be O < mi (M - B 1)
< min .

Recovery of, packets:With all the erased packets now
recovered, we can compute tipe..[t] packets fort =

used to recover the erasedpackets(v;[0], v3[0]) and M 2 (65)

(’L)Q[l],-~- ,’03[1]). L. 1 .
Recovery ofu packets: Similar to the previous burst When B’ < M/2, the second conditiod’ < 5 dominates.
pattern, we compute the value of the parity-check packe-IEQ'S bound |mmed|ately follpws from (63) by substitutiig=
Puec|4] and subtract it fromyyec[4] to recovera[1] by its b in the second expression in (63). Thus, we only need to show

deadline. that whenB’ > Y and T = b the upper bound> < X5
is valid.
E. Converse We start by considering a channel that erases theHBirst

bM + B’ channel packetx([i, 1],...,x[i + b, B’]. Since the

In order to establish the converse, we first consider the cqﬁgay constraint fos[i] is i+ T = i+b, the following equation
whenT > b. We show that any feasible rate satisfies ’

M(T+b+1)—B T
, . (63)
M(T+b+1) "T+b

Consider a periodic erasure channel as shown in Figure

15. Each period consists of» = T + b + 1 macro-packets. which implies thatR = & < M=B" as required. This

should be satisfied,

R<R"= Inin< H(s[i]|x[i + b, B' +1],...,x[i + b, M]) =0

= k=H(s) < (M- B')n, (66)




21

X0, :] X|[b, :] X|[T,:] Xb+T, X[b+T+1 ] [2b+T+1 } X[b+2T+1 } X[2b+T

L3

DD D--"DD D--"DD D--"DD DDD D--"DD D--"DD D--"DD L

x[0,2] [0, M] x[i, 1] x[i, x[T, M] x[, M]|x[+,1] x +,M] x[?,1] x[7,2] x[? -,1] x[-,2 -, M| S M| ===
Burst 1 (Length=bM + B’ )’ Deadline for s[0 Deadline for s b] Burst 2 (Length=bM + B’ ) Deadline for s[b + T + 1]| Deadline for s[2b + T - 1]

Period 1 (Tperioa =T +b+1) Period 2 (Tperioa =T +b+1)

< L >

*x=b+T
+=04+T+1
7=20+T+1
—=b+2T+1
=200+T7T)+1

Fig. 15: Periodic Erasure Channel used in the Converse Rfobheorem 3. We assume that the burst starts in macro-block
0 at the first packet and terminates in macro-blécRhe period of the channel spafis+ b + 1 macro-blocks as shown.

completes the proof of the upper bound. Proof: We recall that there are twe-MDS codes un-
derlying our construction in (67). Ak* + k¥, k", T) m-MDS
code is applied t,.[-] Sub-packets to generate parity-checks

F. Robust Extensions Pvec[’] @and quec[t] = Pvec[t] + Uyec[t — T] are transmitted.

In Section V-B, we provided capacity achieving codes fd:urthermore, k" + Mk, k%, T) m'MD.S code is applied to
C(1,B,W > M(T + 1)). In order to extend the codeste Uvec| | sub-packets to generate parity-chegks,[-).
for channels withN > 1, we apply the approach used in Let us consider the Wlndow of lengtii’ consisting of
the MIDAS construction in Section IV-C. In particular, We the macro-packetX([;,,...,X[i + T — 1, and assume
construct an optimal burst erasure code and then appénat there areV erasures in arbitrary positions. Note that in
additional parity-checks for tha|-] sub-packets to deal with Auec[t] = Preclt] + Uvee[t —T] for ¢ € [i,i + T — 1], the

isolated losses. In particular, we extend the macro—pacllb‘l“['] are from timei — i or lzef(zjre, and can be canceled
construction in (56) as follows, to recoverpye.[t]. The (k* + k¥, k¥, T) m-MDS code can

recovervy.|i] if no more thank“T symbols are erased among
(Vvec|t], Quec[t], - - s Vvee|t + T — 1], Qvec[i + T — 1]). Since

X[i,:] = [x[i, 1]] ... |[x[i, M]] = these symbols are reshaped into columns each having no more
_ _ [i,r + 1] thann symbols, the number of erasures that are guaranteed to
ufi, 1] ufi, 7] \;[i 1] be corrected is given by,
p“[i, 1] p“[¢, 7] p"[i,r + 1] .
qli,r +1] . , NU:{ J
V[i, ]\/[ _ 2,,,] q[Z, ’f'] q[Z, 1] n
p“[i, M — ] pY[i, M —r +1] p“[i, M] . (bM + BT MbT
(67) > min —_— s | =
T+b+1 B>z M T+b B <y M
whereuli, j], v[i,j] sub-packets and[i, j] packets are ob- (69)
tained from the optimal code for th€(N = 1,B,W) MbT
channel. We apply anothét*+ME* k“, T) m-MDS codeto = {T——i—bJ N (70)
the u,..[] sub-packets generating k° parity-check symbols
(Pl - - - P [i]) = PUc[i] € FM* . We then concatenate where we use
the generated parities after spI|tt|ng them idtbequal groups ) — (B,T+b+1), B > TLH)M 71)
to each channel packep®.. [i] = (p“[i, 1],...,p"[¢, M]) as (K*,n) = (Mb, T +b), B < TLerM

shown in (67). The corresponding rate of such code is clearly
R= % wherek*, k¥ andn are based on the optimalto get (69) and substitute faB’ >
code for the burst-only channel. in (69) to get (70).

Next we consider the number of erased packets that can
e corrected by thék® + Mk®, k*,T) m-MDS code. Using
Lemma 1, one can see that this code can recover from
MFE*(T + 1) erasures in the window of interest. Since each

b .
> TH)M in the first term

Proposition 4. Consider the layered code design for reg,
covering from isolated erasures. To recover from aNy<

{szMbJ isolated erasures whelv > M (T+1) andT > b,

it suffices to select channel input can have up to+ k* symbols belonging to
. Nn this code, the total number of erasures that can be corrected
= [m—‘ (68) s given by,
where -] and |-| denote the ceil and floor functions respec- N% = {MJ (72)
tively. n+ ke
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which upon re-arranging gives (68). ]

11—« 1-8
Remark 5. Unlike the case of MiDAS codes, we do not claim C@i:@i)
the optimality of the proposed robust codes. Nevertheless i B

the simulation results we observe that in some cases these Fig. 16: Gilbert-Elliott Channel Model
codes outperform baseline schemes.

VI. SIMULATION RESULTS

In this section, we study the validity of our proposed code
constructions over statistical channel models. We conside
classes of channels that introduce both burst and isolated
erasures. A Gilbert-Elliott channel is a two-state Markov
model. In the “good state”, each channel packet is lost with a Fig. 17: Fritthman Channel Model
probability ofe whereas in the “bad state” each channel packet
is lost with a probability ofl. We note that the average loss

rate of the Gilbert-Elliott channel is given by the histogram of the burst lengths observed for the two
3 o channels. The channel parameters for fhe= 12 case are
Pr(€) = Ftat toT 5 (73)  the same as those used in [5, Section 4-B, Fig. 5]. We remark

» o that for this choice ofw, the contribution from failures due
where  and 5 denote the transition probabilities from the, smal guard periods between bursts is not dominant. When
good state to the bad state and vice versa. As long as {ig inter-burst gaps are smaller we believe that an extensio
channel stays in the bad state the channel behaves as a bisfzipas codes that control the number of losses in such
erasure channel. The length of each burst is a Geomeltig,nis may be necessary and is left for a future investigatio
random variable of mea%. When the channel is in the good All codes in Fig. 18(a) are selected to have a rateRof

state |t_ pehaves as an i.i.d. erasure channel W!th an erasH 23 ~ 0.52 and the delay is” = 12. For reference the
probability of . The gap between two successive bursts |s

. : . . Uncoded loss-rate is also shown by the upper-most dotted blu
also a geometric random variable with a meanéomeaIIy y PP

note thats = 0 results in a Gilbert Channel [37], which only:l(?:j5 r:;?(rekg;jﬂ\q/v;t:_I\tﬂrg\ggggz.eTlf:eaé)rll?ec\lfe;oEz]ci]ntjllﬁllrlliehlljss the
results in burst losses. X T '

: . . its performance is limited by its burst-correction capiapil
Fig. 17 shows a Fritchman channel model [38] with a tOtat]?\d thus is consistent with the probability of observingsbsir

of A/ + 1 states. One of the states is the good state and %ﬁger thané which is given by~ 2 x 10-5. The red-curve

remaining/\” states are bad states. We again let the transitig\/@]iCh deteriorates rapidly as we increasis the Maximall
probability from the good state to the first bad stAteto bea picly y

whereas the transition probability from each of the baobstat.Short code (MS). It achieve® = 11 and v = 1. Thus,

- . n general it cannot recover from even two losses occurrin
equalsg. Let ¢ be the probability of a packet loss in good 9 9

; . . in a window of lengthT + 1. The remaining curve marked
state. We lose packets in any bad state with probaHilifyhe with squares shows the MiDAS code which achigve— 9

burst length distribution in a Fritchman Channel is a hype&—ndN — 2. The loss probability also deteriorates wittbut

geometric random variable instead of a geometric randorpa much lower rate. Thus, a slight decreaseBinwhile

variable. Fritthman and related higher order Markoy m.Ode|r§1provingN from 1 to 2 exhibits noticeable gains over both

are commonly used to model fade-durations in mobile I|nk§\./IS andm-MDS codes. At the left most point, i.e., when-
In a conferencing application witlz Mbps video and 1073, the loss probability is dominated by burst losses, while

packets of sizeb12 bytes, the inter-packet time is abot L .
millisecond. A moderate decoding delay o0 ms would ase is increased, the effect of isolated losses becomes more
' 9 Y significant. In Fig. 19(a), the rate of all codes is setite=

correspond tdl’ = 50 packets. With this in mind, our results50/83 ~ 0.6. The delay is set td" = 50. The m-MDS code

|8n0 thF'S rtii??r?c?rewm :(:]%?; ?;]f:rzngggluss g tf::cnl: é?srto i cSrlc%lack horizontal plot) achieveB = N = 20 whereas the MS
- » W 'gn play ISTUPIO e (red plot) achieveS = 1 andB = 33. Both codes suffer

of once every30 minutes corresponds to a packet loss ra : : .
6 : . . rom the same phenomenon discussed in the previous case.
of 10~°, while an unacceptable disruption every two secon%

correspond to packet loss rateldf—3. In our simulations, we e also consider the MIDAS code (blue plot) wifii = 4

would vary channel parameters over a wide range to roviaed B = 30. We observe that its performance deteriorates
y b 9 PTOVIES < is increased and eventually crosses theMDS codes.

comparison of different SCh§meS O\éer significant portiohs e believe that despite the relatively large valueof this
packet loss rates betwee ™" to 1077, performance deterioration is due to burst and isolateduezas
] being observed in theamedecoding window. Such patterns,

A. Equal Source-Channel Inter-arrival Rates which occur during the transition period between good ar ba

In Fig. 18(a) and Fig. 19(a), we study the performancstates, are not covered in our sliding window erasure cHanne
of various streaming codes over the Gilbert-Elliott chdnnéNe refer the reader to our follow-up work [33], [39], where
The channel parameters and code parameters are showthélayered construction is exploited further to handles¢he
Table VII and VIII respectively. Fig. 18(b) and 19(b) indiea patterns.
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(a) Simulation results. All codes are evaluated using a diagodelay of (b) The actual burst histogram (in bars) follows a geometiigtribution
T = 12 packets and a rate dt = 12/23 ~ 0.52. (dotted line) with a success probability gf= 0.5.
Fig. 18: Simulation Experiments for Gilbert-Elliott ChagirModel with (o, 3) = (5 x 10~%,0.5).
-2
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(a) Simulation results. All codes are evaluated using a diegodelay of (b) The actual burst histogram (in bars) follows a geometiigtribution
T = 50 packets and a rate d¢ = 50/83 ~ 0.6. (dotted line) with a success probability gf= 0.2.

Fig. 19: Simulation Experiments for Gilbert-Elliott ChagirModel with (o, 3) = (5 x 107°,0.2).

In Fig. 20 and Fig. 21, we evaluate streaming codes ovEhus, their loss rate is consistent with the probability of
the Fritchman channel in Fig. 17. The channel parameters astiserving bursts longer th& and16 which can be calculated
code parameters are shown in Table IX and X respectively.be~ 10~° and~ 3 x 10~°, respectively. The performance
We let the transition probability from the good state to thef the MS codes is shown by the red-plot in both figures. We
first bad stateF; to be a whereas the transition probabilitynote that it is better than the:-MDS codes fors = 1073,
from each of the bad states equglsLet ¢ be the probability but deteriorates quickly as we increaseThe performance
of a packet loss in good state. We lose packets in any bad sigééns from MIDAS codes are significantly more noticeable
with probability 1. Fig. 20(b) and 21(b) indicate the histogranfor the Fritchman channel because the hyper-geometri¢-burs
of the burst lengths observed for the two channels. length distribution favors longer bursts over shorter ores
in the case of GE Channels, we expect further performance

ins to be possible by considering more sophisticatediexas

atterns, such as burst plus isolated losses, but leaveasuch
nvestigation for a future work.

In Fig. 20 and Fig. 21, the uncoded loss rate is sho
by the upper-most plot while the black horizontal line is th
performance ofn-MDS code. Note that the performance o
this code is essentially independent ©fin the interval of
interest. As in the case of GE channels, theMDS codes  In Fig. 22, we compare the performance of MiDAS and MS
recover all the losses in the good state and fail against buredes obtained by replacing the MDS constituent code with
lengths longer than its burst erasure correction capgbilia diagonally interleaved block MDS code (cf. Section IV-D).
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TABLE VII: Gilbert-Elliott Channel Parameters TABLE VIII: Achievable N andB for different streaming codes

Fig. 18(a) Fig. 19(a) Fig. 18(a)| Fig. 19(a)
Delay T 12 50 Code N B N B
(o, B) (5x107%,0.5) | (5 x107°,0.2) MiDAS Code | 2 | 9 41 30
Channel Length 107 108 m-MDS 6 6 20| 20
Rate R 12/23 50/83 MS Codes 1 11 1 33
107 A
=& Uncoded =y
______ A - —=—m-MDS Code (N,B) = (20,20) 0.4
_ar_\,\—\" -e-MS Code (N,B) = (1,39) 9
o 10 % -a- MiDAS Code (N,B) = (8,31) § 0.08
£z S
= o
E 4 8 0.0
) « 0.00
& 10 ;
@ =
9 § 0.04
o
o
0.0
10 - - y . . . ' :
1 2 3 4 5 6 7 8 10 15 20 25 30 35
€ x 10° Burst Length
(a) Simulation over aVv' + 1 = 9-States Fritchman Channel witly, 3) = (b) The actual burst histogram (in bars) follows a negativeoiial
(107%,0.5). All codes are evaluated using a decoding delayl'of= 40 distribution (dotted line) with\VV = 8 failures and a success probability
packets and a rate @@ = 40/79 = 0.5. of B =0.5.

Fig. 20: Simulation Experiments for Fritthman Channel Moalith (N, a, 8) = (8,107°,0.5).

TABLE IX: Fritchman Channel Parameters TABLE X: Achievable N and B for different streaming codes
Fig. 20 Fig. 21 Fig. 20 | Fig. 21
Channel States 9 12 Code N | B|N|B
Delay T 40 40 MIDAS Codes| 8 | 31| 4 | 24
(o, B) (1075,0.5) | (2 x 107°,0.75) m-MDS 201 20| 16| 16
Channel Length 108 108 MS Codes 1139|127
Rate R 40/79 ~ 0.5 40/67 = 0.6

TABLE XI: Unequal Source Channel Inter-arrival RatesTABLE XlI: Achievable N and B for different streaming codes

Fig. 23 Fig. 24 Fig. 23 Fig. 24
Channel States 2 20 Code N B N | B
M 20 40 Reshaped Code 1 50 | 1 |58
T 4 2 Robust Reshaped CodeN/A | N/A | 5 | 53
(o, B) (107°,[0.05,0.15]) | (107°,0.5) MiDAS Code N/A | NJA | 5 | 42
Channel Length 109 10° m-MDS Code 35 | 35 | 43| 43
Rate R 9/14 ~ 0.64 40/63 ~ 0.63 MS Codes 1 44 | 1 | 45

We consider the same GE channel in Fig. 18(a) and delBy Unequal Source-Channel Inter-arrival Rates

T = 12. The codes involvingn-MDS codes are plotted using

a solid line whereas the codes involving block MDS codes areln our simulations in Fig. 23, we consider a Gilbert Channel

shown by the dotted lines of the same color. We note thatimodel which is the same as a Gilbert-Elliott channel with

all cases there is a noticeable increase in the loss rate when 0, i.e., the loss probability i§ in the good state. We fix

a block MDS code is used despite the fact that these codes- 10~° and varyj3 on the x-axis in the intervdD.05, 0.15]

achieve the saméN, B) values over deterministic channelswhich in turn changes the burst length distribution. WeHart

This loss in performance is due to their sensitivity to ndeal select M = 20, i.e., 20 channel packets are generated for

erasure patterns as discussed in Section IV-E. every source packet received at the encoder. We fix the rate
R = 9/14 and the delayl’ = 4 macro-packets. Under these
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- =& Uncoded
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(a) Simulation over aV' 41 = 12-States Fritchman Channel witlx, 3) = (b) The actual burst histogram (in bars) follows a negativeoial
(2x1075,0.75). All codes are evaluated using a decoding dela¥ 6f 40 distribution (dotted line) with\/ = 11 failures and a success probability of
packets and a rate @@ = 40/67 = 0.6. B =0.75.
Fig. 21: Simulation Experiments for Fritchman Channel Moaligh (N, o, 8) = (11,2 x 1075,0.75).
102 N
=& Uncoded Aha s -4 Uncoded
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Fig. 22: Simulation over a Gilbert-Elliott Channel with Fig. 23: Simulation over a Gilbert Channel with= 10—
(o, 8) = (5 x 107%,0.5). All codes are evaluated using andg varied on the x-axis. All codes are of ralie= 2 and
a decoding delay of" = 12 packets and a rate ak = evaluated using a decoding delay Bf= 4 macro-packets.
12/23 ~ 0.52. Each macro-packet consists df = 20 channel packets.

conditions, them-MDS code can correct burst erasures afate for all codes is fixed t&® = 0.64 and the delay constraint
length up to B = 35, whereas a Maximally Short codeis T = 2 macro-packets where each macro-packet¥fas 40
achievesB = 44. In contrast, for the optimal code we havepackets. As the probability of erasure in the good state
B = 50. This gain in terms of correctable burst-length isncreases, the performancefMDS code (black curve) does
reflected in Fig. 23 as one can see that codes designed rfot change. The loss rate of this code~is10~* which is
unequal source-channel inter-arrival rates, which arerrefl dominated by the fraction of erasures introduced by bursts
to asreshaped codesichieve a lower loss probability. We notdonger than43. On the other hand, both Maximally Short and
that the code parameters in Fig. 23 correspond to the secoeshaped codes achied¢= 1 and thus deteriorate as quickly
case in (9). as 2. For the left most point corresponding to= 0, the

In F|g 24, we consider a Fritchman channel Mth ﬁ) = probability of loss of the Maximally Short code is 1074
(107%,0.5) and ' + 1 = 20 states. The corresponding burstvhich reflects the number of erasures introduced by bursts
distribution is illustrated in Fig. 24(b). In Fig. 24(a), vehow longer thard5. Similarly, the loss probability of the reshaped
the performance of different streaming codes in the case @fde is~ 3 x 107° which matches the fraction of losses
unequal source-channel inter-arrival rates on such chafime introduced due to bursts longer th@s. The performance
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(a) Simulation results. All codes are evaluated using a diegodelay of (b) The actual burst histogram (in bars) follows a negativeoial
T = 2 macro-packets and a rate &f ~ 0.63. Each macro-packet consists  distribution (dotted line) with\/ = 20 failures and a success probability of
of M = 40 channel packets. B =0.5.

Fig. 24: Simulation Experiments for Fritchman Channel Moalith A + 1 = 20 states anda, 3) = (1075,0.5).

of the robust versions of these codes, namely MIDAS armdir proposed constructions outperform traditional codes o
robust reshaped codes does not deteriorate as fast. Howestatistical models.

the robust reshaped code outperforms the MiDAS code as th@ve believe that the results in the paper are a promising first
former achieves3 = 53 versusB = 42 achieved by the latter, step towards construction of explicit error correction esd

whenN =5, R =0.63 andT = 2. for real-time streaming applications over practical ch&nn
models. A number of further topics can be pursued, both
VIl. CONCLUSION from a theoretical viewpoint as well as practical viewpoint

. . . On the theoretical side, the tradeoff between column digtan
In this paper, we introduce a systematic approach fqr

constructing low-delay error correction codes for realdi and column span discovered in our analysis of the sliding-
icting ay indow erasure channel appears intriguing. It will be inter
streaming communication over packet erasure channels t

egttlng to revisit it, perhaps using systems theoretic témls

introduce both burst and isolated erasures. We mtmducecgnvolutional codes [32], [40]. Furthermore, provable s

class of sliding window erasure channels where the Crasiif the achievable error probability over the Gilbert-Etliand
tractable analysis of the capacity and the resulting codes Frftchman channels, when using codes for the sliding-windo
observed to );ovide substaEtiaI yains in simulatio?\s olrer t%rasure channel can be developed. In other directionsnapti

X op . 9 streaming codes for the case when the source and channel
Gilbert-Elliott and Fritchman channel models. .

When th ket arrival rat d the ch | E\tes are unequal and the channel introduces both burst and
en the source-packet arrival rate and the channel-pac tIated erasures remain to be found. Furthermore, as iroted

transtmls?on lr\;’ll.tgigrce: edqual, we prolpose Z neg_r-optlmal 8 simulations, improvements can be attained by consideri
construction, Vi 0des, using a layered coding approag eaming codes that correct both burst and isolated losses

that usesm-MDS codes and repetition codes as constituem hin the same decoding the window of interest. Finally

:/loggs' V\ée also prop(:ie ar:othzr clasz of coc_jes that us_z bl ?'constructions are tuned to specific channel paramdters.
codes as constituent codes and require a consl eri r(_!]%{ctice, it is very desirable to extend such constructibas

smallle_r field size. We estapllsh the necessary and suffic apt to varying channel parameters with little or no feektba
conditions on the column distance and column span of any

feasible streaming code for the sliding-window erasureneha
nel, and establish a fundamental tradeoff between thesécmet

which could be of independent interest. APPENDIXA
For the case when the source-packet arrival rate and the COLUMN DISTANCE AND COLUMN SPAN OF
channel-packet transmission rates are unequal, we charact CONVOLUTIONAL CODES

the capacity for the burst erasure channel. Our proposed

codes are a non-trivial extension of the MIDAS codes and In this section, we show that the error correction capabilit
require a careful re-arrangement of the source symbols imiba streaming code can be expressed in terms of its column
the channel packets. We also present an achievable ratedistance and column span. In our discussion, we view the inpu
the sliding window erasure channel with both burst angacketss[i] as a lengthk vector overF, andx[i] as a length
isolated erasures. Extensive numerical simulations atdithat 7 vector overF,. We restrict our attention to time invariant
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linear (n, k,m) convolutional codes specified by
T

xlil = [ Yos'li-ilG, | -

whereGy, ..., G are generator matrices OVEEXﬁ.
The firstT + 1 output packets can be expressed as,

x[0], x[1], . ... x[T]] = [s[0],s[1],....s[T]] - G5 (74)

Fig. 25: Trellis diagram showing a streaming code. Since the

where delay constraint isI" packets, the corresponding generator
Go Gi ... Gr matrix is truncated at tim& (cf. (74)) and hence nodes after
Gs — 0 Go Gr—1 (75) time T are irrelevant. Also, according to the column distance
L : and column span definitions in Def. 3 and Def. 4, only paths
0 ... Go diverging from all zero path at the starting point are coasd

to calculate these metrics. The red solid path is one example

is the truncated generator matrix to the fitst- 1 columns. ¢ these paths while the dashed line is not considered.

Note thatG; =0 if j > m.

Definition 3 (Column Distance) The column distance &S

in (75) is defined as To the best of our knowledge the column span of a con-

= min wt([x[0],...,x[T]]) (76) Volutional code was first introduced in [5] in the context of
SE[S[OJSV[SO[]&(-)--VS[TH low-delay codes for burst erasure channels.
where wt([x[0],...,x[T]]) counts the number of non-zeroDefinition 4 (Column Span) The column span d&, in (75)
elements in thd + 1 length vector. is defined as
Intuitively, the column distance of the convolutional code = oy PO XTI (77)
finds the codeword sequence of minimum Hamming weight T s0j#0
in the interval[0, T'] that diverges from the all zero state a%/vherespan([x[O], ..., x[T])) equals the support of the under-

time ¢ = 0. We refer the reader to [32, Chapter 3] for som

properties ofds. Fying vector, i.e.span([x[0],...,x[T]]) = j — i+ 1, wherej

is the last index where is non-zero and is the first such
Fact 1. A convolutional code with a column distancelgfcan index.

recover every information packet with a delay®fprovided

the channel introduces no more thah= dr — 1 erasures in Fact 2. Consider a channel that introduces no more than
any sliding window of length” 4 1. Conversely there existsa single erasure burst of maximum lengkhin any sliding
at-least one erasure pattern witthy erasures in a window window of lengthl” + 1. A necessary and sufficient condition
of lengthT" + 1 where the decoder fails to recover all sourcdor a convolutional code to recover every erased packet with
packets. a delay ofT is thatcy > B.

~ Proof: Consider the interval0,7] and consider two  The justification is virtually identical to the proof of Fatkt
input sequencess(0],...,s[T]) and (s'[0],...,s'[T]) with  gnd is omitted.

s[0] # s’[0]. Let the corresponding output k&[0], ..., x[T]) "
and (x'[0], ... x'[T]). Note that the output sequences differ It follows from Facts 1 and 2 that a necessary and sufficient

. o ; . condition for any convolutional code to recover each source
in at-leastdr indices since otherwise the output sequence

. packet with a delay of over a channe?(N, B,W = T+1) is
(x[0] = x’[0],...,x[T] —x[T]) which corresponds t¢s[0] — o
$'[0],....s[T] — §'[T]) has a Hamming weight less thai that bothdr > N ander > B. Thus, specializing Theorem 1

while the inputs[0] — s’[0] # 0, which is a contradiction. gnd 210W =T+ 1 we are how able to prove Prop. 1, which
is stated below for convenience.

Thus, if (s[0],...,s[T]) is the input source sequence, for any
sequence ofiy — 1 or fewer erasures, there will be at-leasproposition (A Fundamental Tradeoff between Column Dis-
one packet wher€x'[0],...,x[T]) differs from the received tance and Column Spanyor any (71, k,m) convolutional

sequence. Thus[0] is recovered uniquely at tim&. Once code and an integef” > 0 we have that the column distance
s[0] is recovered we can cancel its contribution from all thg,. and column spams must satisfy

future packets and repeat the same argument for the interval 1

[1,T + 1] to recovers[1] and proceed. er+dr <T+14+—— (78)
Conversely there exists at-least one output sequence whose B =R I-R

Hamming weight equalé; and the input packet{0] # 0. By whereR = % denotes the rate of the code. Furthermore, for

erasing all the non-zerd, positions for this output sequenceany T > 0 there exists &, k,m) convolutional code with

we cannot distinguish it from the all-zero sequence. B column distancelr and column sparr, over a sufficiently
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large field-size such that, At this point we can also compute thie— k& symbols
of p[0] = (po[0],...,ps_%_1[0]). Thus, all the symbols
T—prtdr2T+—F (79) until time ¢ = 7 — 1 have now been recovered by the
decoder.
- « The next windowW; (j) = [@, (j + 1)@ — 1] has B —
Proof: To establish (78), consider any convolutional code (72 — ¢) < j(n — k) erasures since < k. Hence, L1 can
with a column distancels and column sparr. From the be used to recoves(1] at time(j + 1)n — 1 andpl[1] can
sufficiency parts of Facts 1 and 2 such a code is feasible over be computed consequently. .
the channel(N = dr — 1,B = ¢y — 1,W = T + 1) with « Similarly, Ws(j—1) = [27, (j+1)2—1] hasB—(a—c)—
delay7. Thus, it must satisfy the upper bound (1). Substituting 7 < (7 — k)(j — 1) erasures which implies the recovery
N =dp —1 and B = ¢; — 1 immediately gives (78). of s[2] at time (j + 1)n — 1.

To establish (79), consider the code that satisfies the lower Repeating the previous step fV;(j —i+1) = [i-n, (j+
bound in (2) in Theorem 2. From the necessity parts of Facts 1 1)7— 1] andi-n < ¢+ B —1, one can recover all erased
and 2 such a code must satisfy > B+ 1 anddr > N + 1. packets in the erasure burst at tirfye+ 1)7 — 1.
Substituting in (2) immediately leads to (79). The proof of L2 is thus complete. The claim in L3 is

B a generalization of L2, as it permits the erasure pattern to

As a final remark we note Facts 1 and 2 also immediatehave both burst and isolated erasures, but only guararitees t
apply to any channel witi¥ > T + 1. In particular, any recovery of the burst erasure. To establish L3 we can proceed
erasure pattern for th& N, B, W) channel withi > T'+1is in a similar fashion as above and stop when the recovery of
also feasible fo€ (N, B,WW = T'+ 1) and thus the sufficiency the erasure burst is complete.
follows. Furthermore, note that wheneviéf > T + 1, any

erasure pattern in the intervil, 7] used in the proof of the APPENDIXC
necessity part can also be used for the chadal, B, V). DECODING ANALYSIS OF MIDAS coDE WITHMDS
CONSTITUENT CODES
APPENDIX B In the decoding analysis, it is sufficient to show that each
PROOF OFLEMMA 1 source packet[i] can be recovered at tinie= i + T, if there

is either an erasure burst of lengfh or up to N isolated

In order to establish L1, we use the followin ropert ) )
g prop rasures in the intervad, i + Ty

regarding systematie:-MDS codes [8, Corollary 2.5]. Con-
sider the window of the firs§j + 1 packets of a(n, k,m)
convolutional code and let the truncated codeword assmtiaf- Burst Erasure

with the input sequencés(0],...,s[j]) be (x[0],...,x[j]), First consider the case when a burst erasure spains-
where eactx([i] is expressed as in (14). Then tjith (symbol B — 1]. Following this burst, we are guaranteed that for the

level) column distanc® is defined as C(N, B, W) channel, there are no erasures in the intefval
£ - min wte(x[0] x[j]) (80) B, i+T.g+ B—1]. We argue that the decoder can first recover

T s=(s[0),....s[4]) e XU v[i],. .., v[i+B—1] simultaneously by timé = i+T.—1 and

s[0]#0 then recoven(i] at timet = i+ T.¢ by computingp® [i + Teg]

where recall that each channel packéf hasn symbols, i.e., and them[i] = q[i+Tex] —p“[i+Ter]. To show the recovery

x[i] = (zoli], ..., zn-1[i]) andwt¢(v) counts the number of Of v, ..., v[i+ B —1], note that there are no erasures in the

non-zerosymbolsin the codewordy. interval spanningi + B, i + Teg — 1] and the interferinga[']

It is well-known that for any(#, k,7m) convolutional code Sub-packets imy[t] = u[t —Teq| + p”[t] can be subtracted out
s < (n— E)(j +1) +1 for all j > 0. A special class of 0 recoverp®[t]. The diagonal codeword§c§[r]} spanning
convolutional codes — systematie-MDS codes — satisfy this V[il:-- ., v[i+ B —1] startatr € {i — (Teg —B) +1,...,i+
bound with equality forj = {0,...,m} [8, Corollary 2.5]. B — 1}. Each such codeword belongs to(&, Terr — B)

similar to that in the proof of Fact 1 in Appendix A. We will €ach codeword, the erased packets can be recovered. However

To establish L2, we use the notatiow,(l) to denote a thev[] sub-packets in the interval,i + B — 1] are erased.
window of length! - n starting at timei - n, i.e., W;(l) A Also, _theq[~] pa_ckets in the 'nterv4t+T°ﬁ"Z+TOH+B__1]
combineu[-] which are erased and thus the correspongipp

[i -7, (i + )i — 1] (see Fig. 26). We show that the entire i .
erasure burst can be recovered through the following stepsPaCketS must also be treated as erased. We split the diagonal

In the windowWp(j + 1) = [0, (j+ 1) — 1], the channel codewords of interest into two groups,

4 N 0 .77 = , J n—1j, . . _ .
introducesB < (n—k)(j+1) erasures. Hence, we use L1 ge?ofé tirf(;eff n ?) +vv1r;é.ré72ti1.e;reheasrz c:r:jlewo;jasssgd
to recovers[0] = (so[0], ..., s;_1[0]) attime(j+1)n—1 ! eff W

. columns in the intervali,i + B — 1].
among which only the lask — ¢ symbols are erased. « r€f{it+1,. .. i+B—1}: Each of these codewords has

12Thjs differs from (76) in that we measure the Hamming weidtgymbols Tes — B symbols .in the intervali+ B, i + Tef — 1] Which
rather than the packets|;]. are not erased. Since the length of each codewofiis
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Wa(j—1)
Wi(j)

Wo(j+1)

of el [n—1|n 2n —1|2n 3n—1 c+B—-1 (j—Dn jn—1|jn G+Dn—1]---

x[0] x[1] x[2] x[j —1] x[j]

B
Fig. 26: An erasure channel witB erasures in a burst starting at timeused in proving L2 in Lemma 1. Grey and white
squares resemble erased and unerased sub-symbols redpecti

then the number of erasures are at Miggt— (7. —B) = after the cancellation ofi[-] sub-packets does not exceed

B. k*(T + 1). We start by considering that the burst begins at
We note that all the considered diagonal codewdfdgr]} j = 1 and subsequently consider other cases in Table XIlI.
forr € {i — (Teg — B) + 1,...,i + B — 1} end before time For the case whep = 1 we consider two cases.

i+ Tog + B. Also, thep|] parities in the intervali + Tog, ¢ + « B > TLH)M: We first show that the total number
Teg + B — 1] cannot be used as discussed earlier. Thus, it symbols erased ifyec[-] andpyec[-] due to the burst in

follows that the corresponding|-] sub-packets are recovered  the macro-packetsi+1,...,i+0b equalsk*T = B-T.

by i+ Teg — 1. Furthermore, in macro-packeét+ 7', the parity-checks
Pvec[t + T] combine withu,..[i] which are also erased.

B. Isolated Erasures Hence, these symbols contribute to additiottakrasures

Next we show that when there aré erasures in arbitrary leading to a total o (7" + 1) erased symbols.

locations in the intervali, i + T.q], thenul[i] is guaranteed Note that the erasure burst spans the entire macro-packets

to be recovered by timeé = i + T.g, andv[i] is guaranteed X[i,:], ..., X[i+b—1,:] as well asx[i +b,1],...,x[i +

to be recovered by time = i + T.q¢ — 1. For the recovery b, B']. The total number of symbols Wyc[t] andpyec|i]

of ufi] we note that the codewordg%[r]} that includeul:] in each macro-packet is” + £ = M(T +b+1) - B. In

start atr € {i — (Tog — N),...,i}. Since eachc?[r] is a the b-th macro-packet, we only have the fil8t columns

(Teg +1,T.g — N + 1) MDS code, and there are no more erased. Out of these, the firkt symbols are from the
than N erasures on each such sequence, it follows that all Uvec[-] Sub-packets whereas the remainifg — k* =

the erased packets are guaranteed to be recovered by time B'(T + b+ 1) — B symbols come fronvy..[i + ] and
i+Teq. The recovery ofa[i] by timet = i+ T.g now follows. Pvec[i +b] . It can be easily verified thas'(T'+b+1) —

For recoveringv|i], we consider the non-erased parity-check B = 0. Hence, the total number of erased symbols of
packetsp®[{] for ¢ € [i,i + Tg — 1], which can be obtained ~ Vvec[t] andpvec(t] is

by cgncelling t_he interfering[t — Teg] Sub-packets froml[z_f] b(k" + k) + B'n — kv

as discussed in the case of burst erasure above. Notice that

the diagonal codeword$c?[r]} spanningvli] start atr € =0M(T+b+1) = B)+ BT +b+1) — k"

{i—(Teg—B)+1,...,i} and terminate by timé+ 7.z — 1. It =B(T+b+1)-bB - k"
follows that each such sequence has no more ffia@rasures =B(T+1) — k* = Tk" (82)
and hence all the erasedli| sub-packets are recovered by time _
t=i+Tog—1. where we use the fact that* = B in our code
construction andB = bM + B’.
APPENDIXD « B' < TLH)M: Again the macro-packeX|i,:],..., X[i+
PROOF OFLEMMA 3 b — 1,:] are completely erased and each contributes to
We need to show that the total erased symbols O(K"+k") = 0b(M(T+b)—Mb) erasures. In thX[i+b,:],
(Vvee[], Pvec|]) between macro-packets to macro-packet only the symbols inu,..[i + b] are erased as it can be
i+ T, i.e., in the following sequence, easily verified thatB’n < k*. Finally, as in the previous
case all the symbols in..[i + T in macro-packet +
{vveclt], Preclt] }iccinr = T that combine withu,..[i{] must be considered erased.
- Thus, the total number of erased symbol$(d/ (T +
(’Uo[i], ceey ’Ukv_l[i],po[i], cee ,pku_l[i], b) — Mb) + kY =bMT + k* = ku(T + 1).
) ] , ) To establish the claim fof = 2,3,..., M —r it suffices to
voli +1], s ope i+ 1) poli + 1, v [i 4 1] show the following lemma

geeey

Lemma 4. Let IV; denote the total number of erased symbols
voli + T, ..., vk —1[i+ T poli + T), ..., pru—1[i + T]) ’ in {vyec[t], Pvec[t]} after the cancellation of non-erased..[']

sub-packets when the erasure burst beging[atj]. Then we
(81) have thatV; < N,_; for eachj =2,3,...,M —r.
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TABLE XIlII: Different erasure patterns considered in theabysis of the decoder. The indegxat the left of each row, indicates
the starting location of each burst in macro-black he shaded blocks shows the symbols that are erased.

=1 0 ‘ ufi,2] ‘ ‘ uli, 7] “[f;[%” ‘ v[i, 2] ‘ v[i,3] ‘ U P VT v‘[’ﬂzﬂgfg«] ‘ alir] | - ‘ ali,1]
j=2 ufi, 1] | ufi,2] ufi, 7] u[iv[;ir] U | v,z | vii.3) vli, M —2r — 1] VEEi}\:[t ;]7«] i, 7] ai1]
j=r+1 i, 1] | uli, 2] uli, ] “[i’[;;r]” v[i,2] | v[i,3] v[i, M —2r —1] VE[ZA;J: ;L] qfi, 7] qfi, 1]
j=r+2 ufi, 1] | uli,2] uli, ] “[i’[:.j] Ul vii2) | i3 Vi, M — 2r — 1] VE[ZA;J: ;]T] ai, 7] afi, 1]
i—r+3 wfi 1] | ufi, 2] ufi, 1] “[i’[’i"j] U vi 2 [ vig Vi, M —2r — 1] V‘ﬁ[’]\;f ;]T] il ali1)
j=M-—r ufi, 1] | uli, 2] uli, 7] “[i’[:j] Ul Vi) | viig) Vi, M — 2r — 1] v‘[:[zjvr[f ;]T] ai, 7] afi, 1]
j=M-r+1| ufi,1] | ufi2 uli, ] “[i;[gj] Ul v | vii3) Vi, M —2r — 1] VE“]‘;J: 12]T] afi, 7] afi, 1]

Lemma 4 establishes that the worst case erasure sequence issymbols ofv[i, j — r] € vye[-] add up ton symbols and

the one that begins dt= 1. Since we have already established

the claim follows.

that the total number of erasures {Rec[t], pvec[t]} In this  This establishes Lemma 4 and in turn the proof of Lemma 3
case does not exceeéd (7" + 1), this will complete our claim. g complete.

To establish Lemma 4, we note that going from the burst

pattern that starts af[7, j] to the pattern that start afi, j+ 1]

results in one extra erased channel packet at the end. Also, i

results in revealing the first channel packet whichx[s, j].
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