Layered Error-Correction Codes for Real-Time Streaming over Erasure Channels

Ashish Khisti University of Toronto

Joint Work: Ahmed Badr (Toronto), Wai-Tian Tan (Cisco), John Apostolopoulos (Cisco).

Sequential and Adaptive Information Theory Workshop McGill University Nov 7, 2013

- Random Linear Codes
- Strongly-MDS Codes (Gabidulin'88, Gluesing-Luerssen'06)

- Random Linear Codes
- Strongly-MDS Codes (Gabidulin'88, Gluesing-Luerssen'06)

- Random Linear Codes
- Strongly-MDS Codes (Gabidulin'88, Gluesing-Luerssen'06)

- Random Linear Codes
- Strongly-MDS Codes (Gabidulin'88, Gluesing-Luerssen'06)

- Random Linear Codes
- Strongly-MDS Codes (Gabidulin'88, Gluesing-Luerssen'06)

- Random Linear Codes
- Strongly-MDS Codes (Gabidulin'88, Gluesing-Luerssen'06)

- Random Linear Codes
- Strongly-MDS Codes (Gabidulin'88, Gluesing-Luerssen'06)

- Random Linear Codes
- Strongly-MDS Codes (Gabidulin'88, Gluesing-Luerssen'06)

$$\mathbf{p}_{i} = \mathbf{s}_{i} \cdot \mathbf{H}_{0} + \mathbf{s}_{i-1} \cdot \mathbf{H}_{1} + \dots + \mathbf{s}_{i-M} \cdot \mathbf{H}_{M}, \qquad \mathbf{H}_{i} \in \mathbb{F}_{q}^{k \times n-k}$$

Erasure Codes:

- Random Linear Codes
- Strongly-MDS Codes (Gabidulin'88, Gluesing-Luerssen'06)

$$\begin{bmatrix} \mathbf{p}_4 \\ \mathbf{p}_5 \\ \mathbf{p}_6 \\ \mathbf{p}_7 \end{bmatrix} = \underbrace{\begin{bmatrix} \mathbf{H}_4 & \mathbf{H}_3 & \mathbf{H}_2 & \mathbf{H}_1 \\ \mathbf{H}_5 & \mathbf{H}_4 & \mathbf{H}_3 & \mathbf{H}_2 \\ 0 & \mathbf{H}_5 & \mathbf{H}_4 & \mathbf{H}_3 \\ 0 & 0 & \mathbf{H}_5 & \mathbf{H}_4 \end{bmatrix}}_{\text{full rank}} \begin{bmatrix} \mathbf{s}_0 \\ \mathbf{s}_1 \\ \mathbf{s}_2 \\ \mathbf{s}_3 \end{bmatrix}$$

Rate 1/2 Baseline Erasure Codes, T = 7

Rate 1/2 Baseline Erasure Codes, T = 7

Rate 1/2 Repetition Code, T = 8

$$R = \frac{u+v}{3u+v} = \frac{1}{2}$$

$$R = \frac{u+v}{2u+v} = \frac{2}{3}$$

- **1** Split each source symbol into 2 groups $\mathbf{s}_i = (\mathbf{u}_i, \mathbf{v}_i)$
- 2 Apply Erasure code to the \mathbf{v}_i stream generating \mathbf{p}_i parities
- **③** Repeat the \mathbf{u}_i symbols with a shift of T
 - Combine the repeated \mathbf{u}_i 's with the \mathbf{p}_i 's

- **1** Split each source symbol into 2 groups $\mathbf{s}_i = (\mathbf{u}_i, \mathbf{v}_i)$
- 2 Apply Erasure code to the \mathbf{v}_i stream generating \mathbf{p}_i parities
- **③** Repeat the \mathbf{u}_i symbols with a shift of T
 - ${f \Phi}$ Combine the repeated ${f u}_i$'s with the ${f p}_i$'s

- **1** Split each source symbol into 2 groups $\mathbf{s}_i = (\mathbf{u}_i, \mathbf{v}_i)$
- 2 Apply Erasure code to the \mathbf{v}_i stream generating \mathbf{p}_i parities
- **③** Repeat the \mathbf{u}_i symbols with a shift of T
 - ${f 0}$ Combine the repeated ${f u}_i$'s with the ${f p}_i$'s

- **1** Split each source symbol into 2 groups $\mathbf{s}_i = (\mathbf{u}_i, \mathbf{v}_i)$
- 2 Apply Erasure code to the \mathbf{v}_i stream generating \mathbf{p}_i parities
- **③** Repeat the \mathbf{u}_i symbols with a shift of T
- ${f \Phi}$ Combine the repeated ${f u}_i$'s with the ${f p}_i$'s

- **①** Split each source symbol into 2 groups $\mathbf{s}_i = (\mathbf{u}_i, \mathbf{v}_i)$
- 2 Apply Erasure code to the \mathbf{v}_i stream generating \mathbf{p}_i parities
- ${f 0}$ Repeat the ${f u}_i$ symbols with a shift of T
- ${f @}$ Combine the repeated ${f u}_i$'s with the ${f p}_i$'s
- Maximally Short Codes (Martinian and Sundberg '04, Martinian and Trott '07)

• Can we construct streaming codes for realistic channels?

Gilbert-Elliott Model

- How much performance gains can we obtain?
- What are the fundamental metrics for low-delay error correction codes?

Problem Setup

System Model

- Source Model : i.i.d. sequence $s[t] \sim p_s(\cdot) = \text{Unif}\{(\mathbb{F}_q)^k\}$
- Streaming Encoder: $x[t] = f_t (s[1], \dots, s[t]), x[t] \in (\mathbb{F}_q)^n$
- Erasure Channel
- Delay-Constrained Decoder: $\hat{s}[t] = g_t(y[1], \dots, y[t+T])$

• Rate
$$R = rac{k}{n}$$

Problem Setup

System Model

- Source Model : i.i.d. sequence $s[t] \sim p_s(\cdot) = \text{Unif}\{(\mathbb{F}_q)^k\}$
- Streaming Encoder: $x[t] = f_t (s[1], \dots, s[t]), x[t] \in (\mathbb{F}_q)^n$
- Erasure Channel
- Delay-Constrained Decoder: $\hat{s}[t] = g_t(y[1], \dots, y[t+T])$

• Rate
$$R = rac{k}{n}$$

Problem Setup

System Model

- Source Model : i.i.d. sequence $s[t] \sim p_s(\cdot) = \text{Unif}\{(\mathbb{F}_q)^k\}$
- Streaming Encoder: $x[t] = f_t (s[1], \dots, s[t]), x[t] \in (\mathbb{F}_q)^n$
- Erasure Channel
- Delay-Constrained Decoder: $\hat{s}[t] = g_t(y[1], \dots, y[t+T])$

• Rate
$$R = \frac{k}{n}$$

Problem Setup

System Model

- Source Model : i.i.d. sequence $s[t] \sim p_s(\cdot) = \text{Unif}\{(\mathbb{F}_q)^k\}$
- Streaming Encoder: $x[t] = f_t (s[1], \dots, s[t]), x[t] \in (\mathbb{F}_q)^n$
- Erasure Channel
- Delay-Constrained Decoder: $\hat{s}[t] = g_t(y[1], \dots, y[t+T])$
- Rate $R = \frac{k}{n}$

Problem Setup

System Model

- Source Model : i.i.d. sequence $s[t] \sim p_s(\cdot) = \text{Unif}\{(\mathbb{F}_q)^k\}$
- Streaming Encoder: $x[t] = f_t (s[1], \dots, s[t]), x[t] \in (\mathbb{F}_q)^n$
- Erasure Channel
- Delay-Constrained Decoder: $\hat{s}[t] = g_t(y[1], \dots, y[t+T])$

• Rate
$$R = rac{k}{n}$$

Capacity: C(N, B, W, T)

Theorem

Consider the $\mathcal{C}(N, B, W)$ channel, with $W \ge B + 1$, and let the delay be T.

Upper-Bound For any rate R code, we have:

$$\left(\frac{R}{1-R}\right)B + N \le \min(W, T+1)$$

Lower-Bound: There exists a rate R code that satisfies:

$$\left(\frac{R}{1-R}\right)B + N \ge \min(W, T+1) - 1.$$

The gap between the upper and lower bound is 1 unit of delay.

Streaming Codes - Burst Erasure Channels

$$C(N = 1, B, W \ge T + 1) = \frac{T}{T + B}$$

- Assume $\mathbf{s}_i \in \mathbb{F}_q^T$. Let $\mathbf{v}_i \in \mathbb{F}_q^{T-B}$, $\mathbf{u}_i, \mathbf{p}_i \in \mathbb{F}_q^B$
- Recovery of $\{\mathbf{v}_i\}$ by time T-1
 - Number of Unknowns: *B* symbols over \mathbb{F}_{q}^{T-B}
 - Number of Equations: T B symbols over \mathbb{F}_q^B
- Recovery of \mathbf{u}_i at time i + T

Streaming Codes - Burst Erasure Channels

$$C(N = 1, B, W \ge T + 1) = \frac{T}{T+B}$$

- Assume $\mathbf{s}_i \in \mathbb{F}_q^T$. Let $\mathbf{v}_i \in \mathbb{F}_q^{T-B}$, $\mathbf{u}_i, \mathbf{p}_i \in \mathbb{F}_q^B$
- Recovery of $\{\mathbf{v}_i\}$ by time T-1
 - Number of Unknowns: B symbols over \mathbb{F}_{q}^{T-B}
 - Number of Equations: T B symbols over \mathbb{F}_q^B
- Recovery of \mathbf{u}_i at time i + T

Streaming Codes - Burst Erasure Channels

$$C(N = 1, B, W \ge T + 1) = \frac{T}{T+B}$$

- Assume $\mathbf{s}_i \in \mathbb{F}_q^T$. Let $\mathbf{v}_i \in \mathbb{F}_q^{T-B}$, $\mathbf{u}_i, \mathbf{p}_i \in \mathbb{F}_q^B$
- Recovery of $\{\mathbf{v}_i\}$ by time T-1
 - Number of Unknowns: B symbols over \mathbb{F}_{q}^{T-B}
 - Number of Equations: T B symbols over \mathbb{F}_q^B
- Recovery of \mathbf{u}_i at time i + T

Streaming Codes - Isolated Erasures $C(N \ge 2, B, W)$

$$T = 8$$

- Erasures at time t = 0 and t = 8
- \mathbf{u}_0 cannot be recovered due to a repetition code

ſ	u ₀	u ₁	u ₂	u ₃	u ₄	u ₅	u ₆	u ₇	u ₈	u ₉	u ₁₀	u ₁₁	$\left(u \right)$
l	V ₀	v ₁	v ₂	v ₃	v ₄	\mathbf{v}_{5}	v ₆	v ₇	v ₈	v ₉	V ₁₀	v ₁₁	$v > x_i$
	P ₀	p ₁	p ₂	p ₃	p ₄	p ₅	p ₆	P ₇	p ₈	p ₉	p ₁₀	p ₁₁	1_{u}
	+u8	+u7	+u6	+u5	+u4	+u3	+u2	+u ₋₁	$+\mathbf{u}_0$	$+\mathbf{u}_1$	$+u_2$	+ u ₃	
	\mathbf{q}_{0}	q ₁	q ₂	q ₃	q ₄	q ₅	q ₆	q ₇	q ₈	q ₉	q ₁₀	q ₁₁	k

Layered Code Design

- Burst-Erasure Streaming Code $C_1 : (\mathbf{u}_i, \mathbf{v}_i, \mathbf{p}_i + \mathbf{u}_{i-T})$
- Erasure Code: $\mathbf{q}_i = \sum_{t=1}^M \mathbf{u}_{i-t} \cdot \mathbf{H}_t^u$, $\mathbf{q}_i \in \mathbb{F}_q^k$

•
$$C_2$$
: $(\mathbf{u}_i, \mathbf{v}_i, \mathbf{p}_i + \mathbf{u}_{i-T}, \mathbf{q}_i)$

$$R = \frac{T}{T+B+k}, \qquad k = \frac{N}{T-N+1}B$$

Layered Code Design

- Burst-Erasure Streaming Code $C_1 : (\mathbf{u}_i, \mathbf{v}_i, \mathbf{p}_i + \mathbf{u}_{i-T})$
- Erasure Code: $\mathbf{q}_i = \sum_{t=1}^M \mathbf{u}_{i-t} \cdot \mathbf{H}_t^u$, $\mathbf{q}_i \in \mathbb{F}_q^k$

•
$$C_2$$
: $(\mathbf{u}_i, \mathbf{v}_i, \mathbf{p}_i + \mathbf{u}_{i-T}, \mathbf{q}_i)$

$$R = \frac{T}{T+B+k}, \qquad k = \frac{N}{T-N+1}B$$

Layered Code Design

- Burst-Erasure Streaming Code $C_1 : (\mathbf{u}_i, \mathbf{v}_i, \mathbf{p}_i + \mathbf{u}_{i-T})$
- Erasure Code: $\mathbf{q}_i = \sum_{t=1}^M \mathbf{u}_{i-t} \cdot \mathbf{H}_t^u$, $\mathbf{q}_i \in \mathbb{F}_q^k$

•
$$C_2$$
: $(\mathbf{u}_i, \mathbf{v}_i, \mathbf{p}_i + \mathbf{u}_{i-T}, \mathbf{q}_i)$

$$R = \frac{T}{T+B+k}, \qquad k = \frac{N}{T-N+1}B$$

- Burst-Erasure Streaming Code $C_1 : (\mathbf{u}_i, \mathbf{v}_i, \mathbf{p}_i + \mathbf{u}_{i-T})$
- Erasure Code: $\mathbf{q}_i = \sum_{t=1}^M \mathbf{u}_{i-t} \cdot \mathbf{H}_t^u$, $\mathbf{q}_i \in \mathbb{F}_q^k$

•
$$C_2$$
: $(\mathbf{u}_i, \mathbf{v}_i, \mathbf{p}_i + \mathbf{u}_{i-T}, \mathbf{q}_i)$

$$R = \frac{T}{T+B+k}, \qquad k = \frac{N}{T-N+1}B$$

Upper Bound $W \ge T + 1$

- Periodic Erasure Channel with P = T + 1 N + B.
- B erasures in each burst.
- Guard Interval = T + 1 N.

Show that any low-delay code recovers every symbol on this erasure channel.

$$R \le \frac{T+1-N}{T+1-N+B}$$

Simulation Results Gilbert-Eliott Channel $(\alpha, \beta) = (5 \times 10^{-4}, 0.5), T = 12$ and R = 12/23

Gilbert Elliott Channel

- Good State: $Pr(loss) = \varepsilon$
- Bad State: Pr(loss) = 1

Simulation Results

Gilbert-Eliott Channel (α, β) = (5 × 10⁻⁴, 0.5), T = 12 and R = 12/23

Code	Ν	В	Code	N	В
Strongly MDS	6	6	MiDAS	2	9
Burst-Erasure	1	11			

Simulation Results-II

Fritchman Channel $(\alpha, \beta) = (1e - 5, 0.5)$ and T = 40 and R = 40/79, 9 states

Histogram of Burst Lengths for 9–States Fritchman Channel – $(\alpha,\beta) = (1E-5,0.5)$

Sequential and Adaptive Information Theory Workshop McGill University Nov 7, 2013

Simulation Results-II

Fritchman Channel $(\alpha, \beta) = (1e - 5, 0.5)$ and T = 40 and R = 40/79, 9 states

Simulation Results - III Gilbert-Eliott Channel (α, β) = (5 × 10⁻⁵, 0.2), T = 50 and R \approx 0.6

Code	Ν	В	Code	Ν	В
Strongly MDS	20	20	MiDAS	4	30
Burst-Erasure	1	33	PRC	4	25

When do Earlier Constructions Fail?

- $\bullet~ {\rm Burst}~ {\rm spans}~ t \in [0,2]$
- \bullet Isolated Erasure $i \in [7,10]$
- ullet Interference from \mathbf{v}_i during the recovery of $\mathbf{u}_0,\ldots,\mathbf{u}_2$

Layered Construction for Partial Recovery

•
$$\mathbf{r}_i = \sum_{t=1}^M \mathbf{v}_{i-t} \cdot \mathbf{H}_t^v$$

- Shift in Repetition Code: $\mathbf{p}_i + \mathbf{u}_{i-(T-\Delta)}$
- Isolated Loss: $v \leq (\Delta + 1)r$
- Burst Loss: $v(B+1) \leq (T \Delta B)(u+r)$

Layered Construction for Partial Recovery

•
$$\mathbf{r}_i = \sum_{t=1}^M \mathbf{v}_{i-t} \cdot \mathbf{H}_t^v$$

- Shift in Repetition Code: $\mathbf{p}_i + \mathbf{u}_{i-(T-\Delta)}$
- Isolated Loss: $v \leq (\Delta + 1)r$
- Burst Loss: $v(B+1) \leq (T \Delta B)(u+r)$

Layered Construction for Partial Recovery

- $\mathbf{r}_i = \sum_{t=1}^M \mathbf{v}_{i-t} \cdot \mathbf{H}_t^v$
- Shift in Repetition Code: $\mathbf{p}_i + \mathbf{u}_{i-(T-\Delta)}$
- Isolated Loss: $v \leq (\Delta + 1)r$
- Burst Loss: $v(B+1) \leq (T \Delta B)(u+r)$

Layered Construction for Partial Recovery

• Burst Loss: $v(B+1) \leq (T - \Delta - B)(u+r)$

Sequential and Adaptive Information Theory Workshop McGill University Nov 7, 2013

Layering Principle

- Start with a code for $\mathcal{C}(N, B, W)$
- Add additional parity check symbols for more sophisticated patterns.

• Source model: i.i.d. process with $\mathbf{s}[i] \sim \text{uniform over } \mathbf{F}_q^k$

• Source model: i.i.d. process with $\mathbf{s}[i] \sim \text{uniform over } \mathbf{F}_q^k$

• Source model: i.i.d. process with $\mathbf{s}[i] \sim \text{uniform over } \mathbf{F}_q^k$

• Streaming encoder: $\mathbf{x}[i, j] = f_{i,j}(\mathbf{s}[0], \mathbf{s}[1], \cdots, \mathbf{s}[i]) \in \mathbf{F}_q^n$ Macro-packet: $\mathbf{X}[i, :] = [\mathbf{x}[i, 1] \mid \dots \mid \mathbf{x}[i, M]]$ Rate: $R = \frac{\mathbf{H}(\mathbf{s})}{n \times M} = \frac{k}{n \times M}$

- Source model: i.i.d. process with $\mathbf{s}[i] \sim \text{uniform over } \mathbf{F}_q^k$
- Streaming encoder: $\mathbf{x}[i, j] = f_{i,j}(\mathbf{s}[0], \mathbf{s}[1], \cdots, \mathbf{s}[i]) \in \mathbf{F}_q^n$ Macro-packet: $\mathbf{X}[i, :] = [\mathbf{x}[i, 1] \mid \dots \mid \mathbf{x}[i, M]]$ Rate: $R = \frac{\mathbf{H}(\mathbf{s})}{n \times M} = \frac{k}{n \times M}$

• Source model: i.i.d. process with $\mathbf{s}[i] \sim \text{uniform over } \mathbf{F}_q^k$

• Streaming encoder: $\mathbf{x}[i, j] = f_{i,j}(\mathbf{s}[0], \mathbf{s}[1], \cdots, \mathbf{s}[i]) \in \mathbf{F}_q^n$ Macro-packet: $\mathbf{X}[i, :] = [\mathbf{x}[i, 1] \mid \dots \mid \mathbf{x}[i, M]]$ Rate: $R = \frac{\mathbf{H}(\mathbf{s})}{n \times M} = \frac{k}{n \times M}$

- Source model: i.i.d. process with $\mathbf{s}[i] \sim \text{uniform over } \mathbf{F}_{q}^{k}$
- Streaming encoder: $\mathbf{x}[i, j] = f_{i,j}(\mathbf{s}[0], \mathbf{s}[1], \cdots, \mathbf{s}[i]) \in \mathbf{F}_q^n$ Macro-packet: $\mathbf{X}[i, :] = [\mathbf{x}[i, 1] \mid \dots \mid \mathbf{x}[i, M]]$ Rate: $R = \frac{\mathbf{H}(\mathbf{s})}{n \times M} = \frac{k}{n \times M}$

- Source model: i.i.d. process with $\mathbf{s}[i] \sim \text{uniform over } \mathbf{F}_q^k$
- Streaming encoder: $\mathbf{x}[i, j] = f_{i,j}(\mathbf{s}[0], \mathbf{s}[1], \cdots, \mathbf{s}[i]) \in \mathbf{F}_q^n$ Macro-packet: $\mathbf{X}[i, :] = [\mathbf{x}[i, 1] \mid \dots \mid \mathbf{x}[i, M]]$ Rate: $R = \frac{\mathbf{H}(\mathbf{s})}{n \times M} = \frac{k}{n \times M}$
- Packet erasure channel: erasure burst of maximum B channel packets

- Source model: i.i.d. process with $\mathbf{s}[i] \sim \text{uniform over } \mathbf{F}_q^k$
- Streaming encoder: $\mathbf{x}[i, j] = f_{i,j}(\mathbf{s}[0], \mathbf{s}[1], \cdots, \mathbf{s}[i]) \in \mathbf{F}_q^n$ Macro-packet: $\mathbf{X}[i, :] = [\mathbf{x}[i, 1] \mid \dots \mid \mathbf{x}[i, M]]$ Rate: $R = \frac{\mathbf{H}(\mathbf{s})}{n \times M} = \frac{k}{n \times M}$
- Packet erasure channel: erasure burst of maximum B channel packets

- Source model: i.i.d. process with $\mathbf{s}[i] \sim \mathsf{uniform}$ over \mathbf{F}_q^k
- Streaming encoder: $\mathbf{x}[i, j] = f_{i,j}(\mathbf{s}[0], \mathbf{s}[1], \cdots, \mathbf{s}[i]) \in \mathbf{F}_q^n$ Macro-packet: $\mathbf{X}[i, :] = [\mathbf{x}[i, 1] \mid \dots \mid \mathbf{x}[i, M]]$ Rate: $R = \frac{\mathbf{H}(\mathbf{s})}{n \times M} = \frac{k}{n \times M}$

• Packet erasure channel: erasure burst of maximum B channel packets

• Delay-constrained decoder: $\mathbf{s}[i]$ recovered by macro-packet i + T

Sequential and Adaptive Information Theory Workshop McGill University Nov 7, 2013

• Source model: i.i.d. process with $\mathbf{s}[i] \sim$ uniform over \mathbf{F}_q^k

• Streaming encoder: $\mathbf{x}[i, j] = f_{i,j}(\mathbf{s}[0], \mathbf{s}[1], \cdots, \mathbf{s}[i]) \in \mathbf{F}_q^n$ Macro-packet: $\mathbf{X}[i, :] = [\mathbf{x}[i, 1] \mid \dots \mid \mathbf{x}[i, M]]$ Rate: $R = \frac{\mathbf{H}(\mathbf{s})}{n \times M} = \frac{k}{n \times M}$

• Packet erasure channel: erasure burst of maximum B channel packets

• Delay-constrained decoder: s[i] recovered by macro-packet i + T

Sequential and Adaptive Information Theory Workshop McGill University Nov 7, 2013
Unequal Source/Channel Rates

Source-splitting based scheme

- Split $\mathbf{s}[i]$ into sub-symbols $(\mathbf{s}[i, 1], \mathbf{s}[i, 2], \dots, \mathbf{s}[i, M])$.
- Apply a streaming code for M = 1.
- Decoding Delay $T' = M \cdot T$.
- $R = \frac{MT}{MT+B}$

Unequal Source/Channel Rates Patil-Badr-Khisti-Tan 2013

21/42

Unequal Source/Channel Rates Patil-Badr-Khisti-Tan 2013

Key Idea:

- Apply code for M = 1 on complete source-packet to generate the entire macro-packet.
- Map/reshape the generated macro-packet into M individual channel-packets.

Optimal Code Construction II Patil-Badr-Khisti-Tan 2013

Source splitting

• split $\mathbf{s}[i]$ into into two groups

Optimal Code Construction III Patil-Badr-Khisti-Tan 2013

Parity generation

- layer 1: $(k_v + k_u, k_v, T)$ Strongly-MDS code applied to $\mathbf{v}_{vec}[\cdot]$ generating $\mathbf{p}_{vec}[i]$
- \bullet layer 2: repetition code on \mathbf{u}_{vec} with a shift of T

Optimal Code Construction IV Patil-Badr-Khisti-Tan 2013

• Overall combined parity: $\mathbf{q}_{\mathrm{vec}}[i] = \mathbf{p}_{\mathrm{vec}}[i] + \mathbf{u}_{\mathrm{vec}}[i - T]$

Optimal Code Construction V Patil-Badr-Khisti-Tan 2013

- Mapping of macro-packet to individual channel-packets
 - Map the generated macro-packet into ${\cal M}$ individual channel-packets

Rate of the code= $\frac{k_u + k_v}{2k_u + k_v}$

Overall macro-packet structure:

Decoding Analysis Patil-Badr-Khisti-Tan 2013

Key Fact: The worst case burst pattern starts at the beginning of the macro-packet.

Let B = bM + B'. Two cases depending on whether $B' \leq (1 - R)M$: Burst only erases symbols from $\mathbf{u}_{\text{vec}}[i+b]$

- Recovery of v symbols: $(k_u + k_v)b = k_u T$
- Optimal spitting ratio: $\frac{k_u}{k} = \frac{b}{T-b}$
- $R = \frac{T}{T+h}$

Burst erases symbols from $\mathbf{v}_{\text{vec}}[i+b]$

- Recovery of v symbols: $(k_u + k_v)b + (B'n - k_u) = k_uT$
- Optimal spitting ratio: $\frac{k_u}{k} = \frac{B}{M(T+b+1)-2B}$

•
$$R = \frac{M(T+b+1)-B}{M(T+b+1)}$$

Theorem

For the streaming setup considered, with any M, T and B, the streaming capacity C is given by the following expression:

$$C = \begin{cases} \frac{T}{T+b}, & B' \leq \frac{b}{T+b}M, \ T \geq b, \\ \frac{M(T+b+1)-B}{M(T+b+1)}, & B' > \frac{b}{T+b}M, \ T > b, \\ \frac{M-B'}{M}, & B' > \frac{M}{2}, \ T = b, \\ 0, & T < b. \end{cases}$$

where the constants \boldsymbol{b} and \boldsymbol{B}' are defined via

$$B = bM + B', \quad B' \in \{0, 1, \dots, M - 1\}, \quad b \in \mathbb{N}^0.$$

Robust Extension for M = 1

• Append an additional layer parity checks containing Strongly-MDS code on **u**

ſ	u _o	u ₁	u ₂	u ₃	u ₄	u ₅	u ₆	u ₇	u ₈	u ₉	u ₁₀
J	V ₀	v ₁	v ₂	v ₃	v ₄	v ₅	v ₆	v ₇	v ₈	v ₉	V ₁₀
	p ₀	p ₁	p ₂	p ₃	p ₄	p ₅	p ₆	p ₇	p ₈	p ₉	p ₁₀
	+u8	+u7	+u6	+u5	+u4	+u3	+u2	+u1	+u ₀	$+\mathbf{u}_1$	$+\mathbf{u}_2$
	\mathbf{q}_0	q ₁	q ₂	q ₃	q ₄	q ₅	q ₆	q ₇	q ₈	q ₉	q ₁₀

•
$$R = \frac{u+v}{2u+v+k}$$
.
• Very close to being optimal for $k = \frac{N}{T-N+1}B$

Many possibilities for the placement of Strongly-MDS parities for u!

Approach I:

- Repetition code replaced by Strongly-MDS code for **u**
- Rate of the code unchanged.
- N = r is achievable.

Approach II

• Append additional layer of Strongly-MDS code for **u**

•
$$R = \frac{k_u + k_v}{2k_u + k_v + k_s}$$

• k_s chosen according to given N.

 Burst Erasure Channel: Maximally Short Codes (Block Code + Interleaving), Martinian and Sundberg (IT-2004), Martinian and Trott (ISIT-2007)

- Burst Erasure Channel: Maximally Short Codes (Block Code + Interleaving), Martinian and Sundberg (IT-2004), Martinian and Trott (ISIT-2007)
- Other Variations of Streaming Codes
 - Burst and isolated loss patterns (Badr-Khisti-Tan-Apostolopoulos, ISIT 2013)
 - Unequal Source Channel Rates (Patil-Badr-Khisti-Tan Asilomar 2013)
 - Multicast Extension (Khisti-Singh 2009, Badr-Lui-Khisti Allerton 2010)
 - Parallel Channels (Lui-Badr-Khisti CWIT 2011)
 - Multi-Source Streaming Codes (Lui Thesis, 2011)

- Burst Erasure Channel: Maximally Short Codes (Block Code + Interleaving), Martinian and Sundberg (IT-2004), Martinian and Trott (ISIT-2007)
- Other Variations of Streaming Codes
 - Burst and isolated loss patterns (Badr-Khisti-Tan-Apostolopoulos, ISIT 2013)
 - Unequal Source Channel Rates (Patil-Badr-Khisti-Tan Asilomar 2013)
 - Multicast Extension (Khisti-Singh 2009, Badr-Lui-Khisti Allerton 2010)
 - Parallel Channels (Lui-Badr-Khisti CWIT 2011)
 - Multi-Source Streaming Codes (Lui Thesis, 2011)
- Connections between Network Coding and Real-Time Streaming Codes (Tekin-Ho-Yao-Jaggi ITA-2012, Leong and Ho ISIT-2013)

- Burst Erasure Channel: Maximally Short Codes (Block Code + Interleaving), Martinian and Sundberg (IT-2004), Martinian and Trott (ISIT-2007)
- Other Variations of Streaming Codes
 - Burst and isolated loss patterns (Badr-Khisti-Tan-Apostolopoulos, ISIT 2013)
 - Unequal Source Channel Rates (Patil-Badr-Khisti-Tan Asilomar 2013)
 - Multicast Extension (Khisti-Singh 2009, Badr-Lui-Khisti Allerton 2010)
 - Parallel Channels (Lui-Badr-Khisti CWIT 2011)
 - Multi-Source Streaming Codes (Lui Thesis, 2011)
- Connections between Network Coding and Real-Time Streaming Codes (Tekin-Ho-Yao-Jaggi ITA-2012, Leong and Ho ISIT-2013)
- Tree Codes: Schulman (IT 1996), Sahai (2001), Martinian and Wornell (Allerton 2004), Sukhavasi and Hassibi (2011)

• Append an additional layer parity checks containing Strongly-MDS code on **u**

•
$$R = \frac{u+v}{2u+v+k}$$
.

- Very close to being optimal for $k = \frac{N}{T-N+1}B$
- \bullet MiDAS \rightarrow (Near) Maximum Distance And Span tradeoff

Consider (n, k, m) Convolutional code: $\mathbf{x}_i = \sum_{j=0}^m \mathbf{s}_{i-j} \mathbf{G}_j$

Trellis Diagram

Consider (n, k, m) Convolutional code: $\mathbf{x}_i = \sum_{j=0}^m \mathbf{s}_{i-j} \mathbf{G}_j$

Trellis Diagram - Free Distance

Consider (n, k, m) Convolutional code: $\mathbf{x}_i = \sum_{j=0}^m \mathbf{s}_{i-j} \mathbf{G}_j$

Column Distance in [0,3]

Column Distance: d_T $d_T = \min_{\substack{[\mathbf{s}_0, \dots, \mathbf{s}_T] \\ \mathbf{s}_0 \neq 0}} \operatorname{wt} \left(\begin{bmatrix} \mathbf{s}_0 & \dots & \mathbf{s}_T \end{bmatrix} \begin{bmatrix} \mathbf{G}_0 & \mathbf{G}_1 & \dots & \mathbf{G}_T \\ 0 & \mathbf{G}_0 & \dots & \mathbf{G}_{T-1} \\ \vdots & \ddots & \vdots \\ 0 & & \dots & \mathbf{G}_0 \end{bmatrix} \right)$

Consider (n, k, m) Convolutional code: $\mathbf{x}_i = \sum_{j=0}^m \mathbf{s}_{i-j} \mathbf{G}_j$

Column Distance in [0,3]

Column Distance: d_T $d_T = \min_{\substack{[\mathbf{s}_0, \dots, \mathbf{s}_T] \\ \mathbf{s}_0 \neq 0}} \operatorname{wt} \left(\begin{bmatrix} \mathbf{s}_0 & \dots & \mathbf{s}_T \end{bmatrix} \begin{bmatrix} \mathbf{G}_0 & \mathbf{G}_1 & \dots & \mathbf{G}_T \\ 0 & \mathbf{G}_0 & \dots & \mathbf{G}_{T-1} \\ \vdots & \ddots & \vdots \\ 0 & & \dots & \mathbf{G}_0 \end{bmatrix} \right)$

Consider (n,k,m) Convolutional code: $\mathbf{x}_i = \sum_{j=0}^m \mathbf{s}_{i-j} \mathbf{G}_j$

Column Span in [0,3]

Column Span: c_T

$$c_T = \min_{\substack{[\mathbf{s}_0, \dots, \mathbf{s}_T] \\ \mathbf{s}_0 \neq 0}} \operatorname{span} \left(\begin{bmatrix} \mathbf{s}_0 & \dots & \mathbf{s}_T \end{bmatrix} \begin{bmatrix} \mathbf{G}_0 & \mathbf{G}_1 & \dots & \mathbf{G}_T \\ 0 & \mathbf{G}_0 & \dots & \mathbf{G}_{T-1} \\ \vdots & & \ddots & \vdots \\ 0 & & \dots & \mathbf{G}_0 \end{bmatrix} \right)$$

Column-Distance & Column Span Tradeoff

Badr-Khisti-Tan-Apostolopoulos (2013)

Theorem

Consider a C(N, B, W) channel with delay T and $W \ge T + 1$. A streaming code is feasible over this channel if and only if it satisfies: $d_T \ge N + 1$ and $c_T \ge B + 1$

Column-Distance & Column Span Tradeoff

Badr-Khisti-Tan-Apostolopoulos (2013)

Theorem

Consider a C(N, B, W) channel with delay T and $W \ge T + 1$. A streaming code is feasible over this channel if and only if it satisfies: $d_T \ge N + 1$ and $c_T \ge B + 1$

Theorem

For any rate R convolutional code and any $T \ge 0$ the Column-Distance d_T and Column-Span c_T satisfy the following:

$$\left(\frac{R}{1-R}\right)c_T + d_T \le T + 1 + \frac{1}{1-R}$$

There exists a rate R code (MiDAS Code) over a sufficiently large field that satisfies:

$$\left(\frac{R}{1-R}\right)c_T + d_T \ge T + \frac{1}{1-R}$$

Multicast (Low-Delay) Codes

Motivation

- $B_1 < B_2$
- Receiver 1 : Good Channel State
- Receiver 2: Weaker Channel State
- Delay adapts to Channel State

Channel-Adaptive Delay

Example: $B_1 = 2$, $T_1 = 4$, $B_2 = 3$ and $T_2 = 5$.

- A burst of length B_1 results in a delay of T_1 .
- A burst of length B_2 results in a delay of T_2 .
- Stretch-Factor: $s = \frac{T_2 B_1}{T_1 B_1}$

Tradeoff between s and Pr(loss).

Diversity Embedded Streaming Codes: DE-SCo Badr-Khisti-Martinian 2011

Sequential and Adaptive Information Theory Workshop McGill University Nov 7, 2013

Multicast (Low Delay) Capacity

Capacity Function

- Capacity function $C(T_1, T_2, B_1, B_2)$
- Single User Upper Bound: $C \leq \min\left(\frac{T_1}{T_1+B_1}, \frac{T_2}{T_2+B_2}\right)$

• Concatenation Lower Bound: $C \geq \frac{1}{1+\frac{B_1}{T_c}+\frac{B_2}{T_c}}$

Multicast (Low Delay) Capacity Badr-Khisti-Lui 2011

Assume w.l.o.g. $B_2 \ge B_1$

- Multiple Erasure Bursts (Li-Khisti-Girod 2011) Interleaved Low-Delay Codes
- Multiple Links (Lui-Badr-Khisti 2011) Layered coding for burst erasure channels
- Multiple Source Streams with Different Decoding Delays (Lui 2011) Embedded Codes

- Error Correction Codes for Real-Time Streaming
- Deterministic Channel Models $\mathcal{C}(N, B, W)$
- $\bullet\,$ Tradeoff between achievable N and B
- MiDAS Constructions
- Column-Distance and Column-Span Tradeoff
- Partial Recovery Codes for Burst + Isolated Erasures
- Unequal Source-Channel Rates