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Abstract— We consider a streaming setup where two source
streams with different decoding deadlines, must be transmitted
over a single channel subjected to burst erasures. The encoder
multiplexes the two source streams into a single stream of
channel-packets. The decoder must recover the source-packets
sequentially by their corresponding deadlines. The packet be-
longing to one of the streams — referred to as the urgent stream
— will have a smaller delay than the other stream.

We show that in general that is a tradeoff between the rates of
the two source streams and characterize the capacity region for
a certain range of system parameters. On the achievability side,
we provide new code constructions which combine the source-
packets of the two streams despite their different deadlines. On
the converse side, we develop rigorous information theoretic outer
bounds on the capacity region.

Interestingly we find that the capacity region exhibits a “corner
point” where we can transmit the urgent stream at a positive rate,
yet attain a sum-rate equal to the capacity of the non-urgent
stream. We show that a baseline scheme which applies a single
stream code separately to each of the streams is suboptimal in
general.

I. INTRODUCTION

A growing number of multimedia applications including
video conferencing, cloud computing, and mobile gaming
are inherently streaming in nature. These applications must
operate in real-time and under strict delay constraints. Such
systems are susceptible to sporadic burst packet losses and
long packet delays in wireless networks. While forward error
correction (FEC) codes provide a natural mechanism for
combating such losses, streaming applications discussed above
impose some unique constraints not satisfied by traditional
FEC. In these applications both the encoding and decoding
operations must operate sequentially on the source and channel
streams respectively. Unlike traditional FEC that operate over
long block lengths, typically consisting of a few thousand
packets or more, FEC in streaming applications must operate
over much shorter blocks due to the delay constraints. Such
codes are particularly sensitive when packet losses happen
in bursts [1], [2]. It turns out that local distance properties,
as opposed to global metrics such as minimum distance, are
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much more significant in determining the performance of error
control codes in streaming applications.

A new class of error correction codes for streaming appli-
cations is introduced in [1]. The encoder observes a semi-
infinite source stream — one packet is revealed in each time
slot — and maps it to a coded output stream of rate R. The
channel is modeled as a burst-erasure channel. Starting at
an arbitrary time, it introduces an erasure-burst of maximum
length B. The decoder is required to reconstruct each source-
packet with a maximum delay T . A fundamental relationship
between R, B and T is established and a novel construction is
proposed that achieves it. These codes are systematic, linear,
time-invariant, convolutional codes where the parity check
symbols involve a careful combination of source symbols.
In particular, random linear combinations, popularly used in
e.g., network coding, do not attain the optimal performance.
In reference [2] these constructions are extended to channels
with both burst and isolated erasures. A fundamental tradeoff
between the column-distance and column-span for a convo-
lutional code is introduced and its operational relevance in
terms of error correction in the streaming setup is established.
The constructions proposed in [2] provide considerable gains
over baseline schemes in simulations over statistical models
such as the Gilbert-Elliott channel. We refer the reader to [2]–
[13] and the references therein for various extensions of these
works. We note that in the broader literature a number of
approaches for streaming have been considered, see e.g., [14]–
[21] and references therein. However these works are not
directly related to the present formulation.

In the present work we study a streaming setup where two
source streams with different delays must be simultaneously
encoded into a single channel-packet stream. Such a scenario
arises naturally in video streaming. For example in corporate
video conferencing, one stream could comprise of the au-
dio/video content and will require a stringent delay constraint,
while the other stream comprising of presentation slides could
have a more relaxed delay constraint. As another example,
consider a relay node that must multiplex two incoming source
streams and transmit over a common communication link. The
two source streams could have different delay requirements
either due to application constraints or networking effects such
as link delays/packet-losses over previous hops. As a final
motivation a recent proposal on Quick UDP internet connec-
tion (QUIC) aims to multiplex multiple streams for reliable
transport over UDP connections [22], and joint FEC across
multiple streams is a natural solution for such applications.

In this paper we initiate the study of such a setup. We focus
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Fig. 1: Streaming Setup with Multiplexed Flows. There are two source streams a and b, which are multiplexed into a single
channel-packet stream. The source streams are recovered at the decoder with different delays.

on the burst-erasure channel model. We show that by jointly
coding both the streams, despite their different deadlines, we
can achieve higher rates than the baseline scheme that applies
streaming codes separately on the two streams. We show that
the capacity region exhibits a “corner point” where we can
transmit the more urgent stream at a certain positive rate,
while keeping the sum rate to equal the capacity of the stream
with larger delay. We also establish information theoretic outer
bounds that match the achievable regions for a certain range
of parameters.

In the rest of the paper we introduce the system model and
state the main results in Section II and the main results in Sec-
tion III. We review single-stream codes in Section refsec:bckg.
We provide the associated coding schemes and the converse
bounds in Sections V-VII. Simulations results are presented
in Section VIII and we conclude in Section IX.

A. Notation

Throughout this paper we use the following notation. A
symbol over the field Fq is denoted using standard font, e.g.,
a ∈ Fq . A vector of symbols is denoted using lower case
bold font e.g., s ∈ Fnq . The source packets at time t for
streams a and b are denoted by sa[t] and sb[t] respectively
while the channel packet is denoted using x[t]. The notation
sa

[
t
0

]
denotes the collection of source packets in the interval

[0, t]. Matrices are denoted using upper case bold font, e.g. P.
The function H(·) denotes the entropy function and I(·; ·) the
mutual information between two random variables.

II. SYSTEM MODEL

Consider that we have two source streams {sa[t]}t≥0 and
{sb[t]}t≥0. Assume that each source-packet in stream a,
sa[t] ∈ Fkaq and likewise in stream b, sb[t] ∈ Fkbq , where Fq
denotes the underlying field for the source symbols. We
assume that for each time t ≥ 0, the source-packets sa[t]
and sb[t] are revealed to the encoder at time t. The encoder
generates a channel-packet x[t] ∈ Fnq that can depend on all
the past source-packets, i.e.,

x[t] = ft

(
sa

[
t
0

]
, sb

[
t
0

])
, t ≥ 0,

where recall that sa

[
t2
t1

]
refers to the collection of pack-

ets {sa[t1], . . . , sa[t2]} etc. and ft(·) denotes the encoding
function at time t. The channel is a burst erasure channel,

i.e., starting at some arbitrary time j, it erases at-most B
consecutive packets. The output y[t] is defined as

y[t] =

{
?, t ∈ [j, j +B′ − 1]
x[t], otherwise

for some integer j ≥ 0 and B′ ≤ B.
Finally, we specify the decoding of the source-packets sa[t]

and sb[t]. Source stream a has the decoding delay Ta and
source stream b has the decoding delay Tb,

ŝa[t] = ga,t

(
y
[
t+Ta

0

])
, ŝb[t] = gb,t

(
y
[
t+Tb

0

])
(1)

where ga,t(·) and gb,t(·) denote the decoding functions asso-
ciated with streams a and b respectively.

A (B, Ta, Tb) code is able to recover each source-packet
sa[t] with a delay of Ta and each source-packet sb[t] with a
delay of Tb, i.e., we require that ŝa[t] = sa[t] and ŝb[t] = sb[t]
for all t ≥ 0. The rate of the code will be characterized by an
ordered pair which has the rate for source a and the rate for
source b.

(Ra, Rb) =

(
ka
n
,
kb
n

)
(2)

A rate pair (Ra, Rb) is achievable if there exist a (B, Ta, Tb)
code over some field Fq such that ka, kb, n satisfy (2). The
capacity region is the convex hull of all achievable rate pairs
(Ra, Rb).

Throughout, without loss of generality, assume that B ≤
Tb < Ta. Stream “b” is the urgent stream whereas stream
“a” as the less urgent stream. All our construction will be
systematic codes where the channel packet at time t will
include both the source packets sa[t] and sb[t] i.e.,

x[t] =

 sa[t]
sb[t]
p[t]

 (3)

where p[t] is the parity check packet at time t consisting of
n − (ka + kb) symbols. Such constructions are practically
important as each received channel packet guarantees the
immediate recovery of the associated source packets.

Remark 1: Note that our channel introduces a single erasure
burst of maximum length B. It can be easily seen that all our
constructions immediately apply to a channel that introduces
multiple erasure bursts, each of length at-most B and having
a guard separation of at-least Ta where there are no erasures.
This follows since each burst is fully recovered with a delay of
Ta and thus the system will reset at this point and can handle
a fresh erasure burst. Furthermore in our simulations we will
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consider Gilbert channels, where both the erasure burst length,
and gaps between successive bursts are not fixed, but random
variables.

III. MAIN RESULTS

The analysis of the capacity region involves three different
regimes based on the delay constraint of the less urgent stream
with delay Ta as discussed below.

A. Large Delay Regime: Ta ≥ Tb + 2B

Theorem 1: An achievable rate region when Ta ≥ Tb + 2B
consists of all rate pairs satisfying: Ra, Rb ≥ 0 and(

Tb
Tb +B

)
Ra +Rb ≤

Tb
Tb +B

, (4a)

Ra +Rb ≤
Ta

Ta +B
. (4b)

Furthermore the above region is the capacity region in the
following special cases (i) the delay of urgent stream is
minimum possible, i.e., Tb = B, (ii) the class of systematic
codes, see Eq. (3), and (iii) when Ta−Tb

Ta+B
≤ Ra ≤ Ta

Ta+B
is

satisfied. �
Fig. 2a illustrates the region associated with Theorem 1.

Note that the region has three corner points. The point Ra =
Ta

Ta+B
and Rb = 0 corresponds to the single flow capacity [1],

[23] when only flow a is present, whereas the point Ra = 0
and Rb = Tb

Tb+B
corresponds to the other extreme case when

only flow b is present. The third corner point is Ra = Ta−Tb

Ta+B

and Rb = Tb

Tb+B
. At this point both flows simultaneously

co-exist, even though the sum-rate equals Ta

Ta+B
, i.e., the

capacity associated with stream a only. We will provide a
code construction that achieves this corner point and then
explain how the rest of the capacity region can be obtained
using the other two extreme points. Note that in the range
Ta−Tb

Ta+B
≤ Ra ≤ Ta

Ta+B
, the sum rate constraint (4b) is active

and the proposed coding scheme is optimal. We will establish
the upper bound (4a) for the case of systematic codes and also
for non-systematic codes in the special case when Tb = B.

B. Low Delay Regime: Tb < Ta ≤ Tb +B

We next consider the case when the less urgent stream has
a delay Ta ∈ (Tb, Tb +B]. In this case we have been able to
find a complete characterization of the capacity region.

Theorem 2: The capacity region for a system with Tb <
Ta ≤ Tb +B is given by the set of all rate pairs that satisfy:
Ra, Rb ≥ 0 and(

2Tb +B − Ta
Tb +B

)
Ra +Rb ≤

Tb
Tb +B

, (5a)

Ra +Rb ≤
Ta

Ta +B
. (5b)

�
Fig. 2b illustrates the tradeoff between Ra and Rb. Again

note that the region has three corner points. The points Ra =
Ta

Ta+B
, Rb = 0 and Ra = 0, Rb = Tb

Tb+B
, correspond to

single-flow capacities. The point Ra = B
Ta+B

and Rb = Ta−B
Ta+B

corresponds to the case when both flows simultaneously exist,
yet sum rate is given by the capacity of flow a only. We will
propose a code construction that achieves this corner point,
and explain how the rest of the region can be achieved by
“time-sharing” with the other two extreme points. Also note
that whenever B

Ta+B
≤ Ra ≤ Ta

Ta+B
, holds the sum-rate

constraint (5b) will be active and our proposed scheme is
clearly optimal. Thus we will provide a converse for upper
bound associated with (5a) for the general case of non-
systematic codes.

C. Intermediate Delay Regime: Tb +B < Ta < Tb + 2B

In the intermediate delay regime we have that the following
rate region is achievable.

Theorem 3: When Tb + B < Ta < Tb + 2B, all rate pairs
that satisfy Ra ≥ 0, Rb ≥ 0,

Ra +Rb ≤
Ta

Ta +B
, (6)(

Tb
Tb +B

)
Ra +Rb ≤

Tb
Tb +B

, (7)

(4B + 3Tb − 2Ta)Ra + (3B + 2Tb − Ta)Rb

≤ (2B + 2Tb − Ta) (8)

are achievable. Furthermore for the case of systematic
codes (3) any achievable rate pair satisfies Ra ≥ 0, Rb ≥ 0 as
well as the conditions in (4a) and (4b). �

Fig. 2c illustrates the achievable region and the outer
bound stated in Theorem 3. In the inner-bound we have two
corner points: (Ra, Rb) =

(
B

Tb+2B ,
Tb

Tb+2B

)
and (Ra, Rb) =(

2B
Ta+B

, Ta−2B
Ta+B

)
. The upper bound for systematic codes meets

the inner bound for the entire region except the segment
joining these two corner points (shown by the red-line).

Before presenting the proofs we discuss the following
example.

D. Example: Tb = B, Ta = 2B

Our code construction simplifies considerably in the special
case when Ta = T = 2B and Tb = B holds. It follows from
Theorem 2 that Ra = Rb = 1

3 is a point on the boundary of the
capacity region. The optimality is immediate since the sum rate
Ra +Rb = 2

3 , corresponds to the single-flow capacity with
the delay of T = 2B. For the achievability, assume that both
sa[t], sb[t] ∈ Fkq and let:

x[t] =

 sa[t]
sb[t]

sa[t− 2B] + sb[t−B]

 ∈ F3k
q . (9)

It follows that this construction satisfies Ra = Rb = 1
3 . To

see the feasibility, we need to show that when the channel
introduces an erasure burst of length B, the delays associated
with streams a and b are given by Ta = 2B and Tb =
B respectively. Suppose without loss of generality that the
erasure burst spans the interval t ∈ [i, i+B−1]. Note that since
the construction in (9) is systematic, all the source-packets
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(a) Achievable Region: Ta ≥ Tb + 2B.
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(b) Capacity when Tb < Ta < Tb +B.

Ra

Rb

0

Tb

Tb+B
Tb

Tb+2B

2B
Ta+B

Ta−2B
Ta+B

(
Ta−Tb
Ta+B

,
Tb

Ta+B

)

B
Tb+2B

Ta

Ta+B

(c) Bounds on capacity of (B, T,B) code
where 2B < T < 3B.

Fig. 2: The solid line shows the rate region achievable with joint coding scheme for the three cases. A sub-optimal scheme that
encodes the two source streams separately using the constructions in [1], [23], and concatenates them, achieves the straight
line connecting

(
0, Ta

Ta+B

)
and

(
0, Tb

Tb+B

)
. This is shown by the dashed line connecting these points.

before time t = i are available to the decoder and likewise
all source-packets from time t = i + B are also available
immediately. We need to show that for t ∈ [i, i+B− 1] each
source-packet sa[t] is recovered with a delay of Ta = 2B and
each source-packet sb[t] is recovered with a delay of Tb = B
respectively. In particular let t′ = t + B. The parity check at
time t′ can be expressed as p[t′] = sa[t − B] + sb[t]. Since
t − B < i it follows that sa[t] is available to the decoder.
Hence it can be cancelled and the remaining source-packet
sb[t] is recovered at time t′ = t+ B, i.e., with a delay of B.
Since the above argument holds for each t ∈ [i, i+B − 1] it
follows that each erased source-packet sb[t] is recovered with
a delay of B. Next consider t′′ = t+ 2B and observe that the
parity check, p[t′′] = sa[t]+sb[t+B]. Since t+B > i+B−1
it follows that sb[t] is available to the decoder. Hence it can be
cancelled and the remaining source-packet sa[t] is recovered
at time t′′ = t+ 2B, i.e., with a delay of 2B as required.

For general values of T , while the basic idea of recovering
the source-packets of sb[t] first is still used, the underlying
constructions are based on a more complex class of streaming
codes, as discussed next.

IV. BACKGROUND

We discuss two schemes from prior works for the single
stream setting. Our constructions for the multi-stream setting
will build upon these codes.

A. Random Linear Codes

A systematic Random Linear Code (RLC) maps the stream
of source packets s[t] ∈ Fkq into a stream of channel packets
x[t] ∈ Fnq where x[t] = (s[t],p[t]). The parity check packet
p[t] ∈ Fn−kq is generated as a linear combination of the past
M source packets, where M denotes the memory of the code:

p[t] =

M∑
j=1

s[t− j] ·Pj , (10)

where the matrices Pj are k× (n− k) parity matrices whose
entries are selected at random (see e.g., [24], [25]) from a
sufficiently large field to guarantee linear independence of the
parity check equations. Deterministic variants of these codes
are also known, see e.g., [26].

In the streaming setting following an erasure burst of length
B, each source packet can be recovered with a delay of T
using a RLC with memory M ≥ T , provided that:

B ≤ (1−R)(T + 1) (11)

where R = k/n is the rate of RLC. We note that the right
hand side in (11) also corresponds to the maximum possible
column distance of a convolutional code of rate R, see [2].

B. Maximally-Short (MS) Codes

A (B, T ) MS code is a rate R = T
T+B convolutional code

that can recover from a single erasure burst of maximum length
B within a delay of max(B, T ). MS codes were introduced
in [1], [23]. The construction described here is based on the
layered coding approach in [2].

1) Code Construction: We assume that each source packet
consists of k symbols and split it into sub-packets:

s[t] = (u[t],v[t]), (12)

where u[t] ∈ F
B
T k
q and v[t] ∈ F

T−B
T k

q . The parity-check packet
at time t is given by,

p[t] = u[t− T ] +

T∑
j=1

v[t− j]Pj , (13)

where Pj ∈ F
T−B

T k×B
T k

q are the matrices of a RLC, see Eq.
(10). Hence the parity-check packets p[t] ∈ F

B
T k
q and the

channel packet is x[t] = (s[t],p[t]). The rate of the code is
R = T

T+B .
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2) Decoding: Suppose that the erasure burst spans the
interval [i, i+B−1]. Since the code is systematic the decoder
has all the source packets before time i and after time i+B−1
immediately available. We need to show that every source
packet s[t] = (u[t],v[t]) for t ∈ [i, i+B− 1] is recovered by
time t+T . Towards that end we will show that (i) all the source
sub-packets v[i], . . . ,v[i+B−1] are recovered simultaneously
at time i+T − 1 and (ii) each u[t] is recovered at time t+T .

First note that in the interval t ∈ [i+B, i+T−1] the parity-
check packets p[t] = u[t−T ]+

∑T
j=0 v[t−j]Pj consist of two

parts. The contribution of u[t − T ], which is available to the
decoder as t− T < i and the contribution q[t] =

∑T
j=0 v[t−

j]Pj , which is a random linear code applied to the v[·] packets
of rate R′ = T−B

T . Thus the decoder can recover q[t] for t ∈
[i+B, i+T−1], yielding a total of (T−B)BkT equations. These
suffice to recover all the erased v[·] packets in the interval
[i, i+B−1] consisting of (T−B)BkT symbols. The expression
in (11) with a delay of T − 1 and rate R = T−B

T can be used
to show the recovery as well.

By time i + T − 1 all the packets in the v[·] have been
recovered. In the interval [i+T, i+T +B−1] we can cancel
the contribution of

∑T
j=0 v[t − j]Pj from p[t] and recover

u[t − T ]. At this point the entire source packet s[t − T ] is
recovered by time t i.e., with a delay of T as required.

C. MS Codes for Multiple Streams

For the multi-stream setting a straightforward approach for
constructing a (B, Ta, Tb) multi-stream code is to apply a
(B, Ta) MS code to stream a and a (B, Tb) MS code to stream
b and then to concatenate the resulting parity check packets.
Let us denote the resulting parity check packets from flows
a and b by pa[·] and pb[·], respectively. The overall channel
packet is given by,

x[t] =


sa[t]
sb[t]
pa[t]
pb[t]

 (14)

In order to compute the associated rate region, let us assume
that sa[t] ∈ Fkaq and sb[t] ∈ Fkbq . From the construction of the

MS codes, note that pa[t] ∈ F
ka

B
Ta

q and pb[t] ∈ F
kb

B
Tb

q . Using
the fact that n = ka

(
1 + B

Ta

)
+ kb

(
1 + B

Tb

)
. It follows that

the rate region that is achieved is given by:

Ta +B

Ta
Ra +

Tb +B

Tb
Rb ≤ 1 (15)

Remark 2: The rate region in (15) is just a straight line
connecting the extreme points

(
Ta

Ta+B
, 0
)

and
(

0, Tb

Tb+B

)
.

We will hence refer to it as time-sharing scheme. In our
subsequent constructions, when showing the achievability of
a rate pair on a straight-line connecting two corner points, we
will invoke such a time-sharing approach.

V. PROOF OF THEOREM 1
We provide a proof of Theorem 1 by presenting an achiev-

ability for Ta ≥ Tb + 2B and later prove the optimality for
the special cases listed in Theorem 1.

As noted in Fig. 2c, the boundary of the capacity region is
a piecewise linear function. It suffices to show that the point

R̄a =
Ta − Tb
Ta +B

, (16a)

R̄b =
Tb

Ta +B
(16b)

is achievable. The rest of the boundary can be traced by “time-
sharing,” i.e., splitting each source-packet into two parts, ap-
plying a single-flow code achieving either (Ra = Ta

Ta+B
, Rb =

0) or (Ra = 0, Rb = Tb

Tb+B
) in one part, and the code

achieving (R̄a, R̄b) in the other part; see remark 2.
We now provide a detailed construction for the point

(R̄a, R̄b). The high level idea in the construction is to apply
MS codes to both stream a and b. We apply a (B, Tb) MS
code to stream b and a (B, Ta − Tb −B) MS code to stream
a. We shift the parity checks of stream a by Tb +B to avoid
interference with stream b. This allows us to recover the source
packets in stream b first with a delay of Tb. It turns out that
the shift of Tb +B for stream a, also allows us to embed an
additional set of source packets in stream a using a repetition
code. This is described in detail below.

• Let sa[t] ∈ F
Ta−Tb

Ta
k

q and split it into sa[t] = (sa,1[t], sa,2[t]),

where sa,1[t] ∈ F
Ta−Tb−B

Ta
k

q , sa,2[t] ∈ F
B
Ta
k

q . The sub-packet
sa,1[t] will be protected using a MS code, while sa,2[t] will
be protected using a repetition code.

• Apply a (B, Ta − Tb − B) MS code to sa,1[t] =
(ua,1[t],va,1[t]) and shift the resulting parities by Tb + B,
i.e.,

pa,1[t] = ua,1[t− Ta] +

Ta∑
j=Tb+B

va,1[t− j] ·Pa,j , (17)

where ua,1[t] ∈ F
B
Ta
k

q , va,1[t] ∈ F
Ta−Tb−2B

Ta
k

q and Pa,j ∈

F
Ta−Tb−2B

Ta
k× B

Ta
k

q . Recall that Ta ≥ Tb + 2B guarantees
that such a construction is feasible.

• Apply a Tb+B shifted repetition code to sa,2[·] generating,

pa,2[t] = sa,2[t− Tb −B]. (18)

• Let sb[t] ∈ F
Tb
Ta
k

q and apply a (B, Tb) MS code to sb[t] to
generate the parity-check packets,

pb[t] = ub[t− Tb] +

Tb∑
j=0

vb[t− j] ·Pb,j , (19)

where ub[t] ∈ F
B
Ta
q and vb[t] ∈ F

Tb−B

Ta
q , sb[t] = (ub[t],vb[t])

and Pb,j ∈ F
Tb−B

Ta
k× B

Ta
k

q .
• The channel packet at time t is

x[t] =

 sa[t]
sb[t]

p[t] = pa[t] + pb[t]

 (20)

where pa[t] = pa,1[t] + pa,2[t].
The code in (20) achieves the rate-pair in (16).

To demonstrate the feasibility, assume that an erasure burst
spans the interval [i, i+B− 1]. Since the construction in (20)
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is a systematic code, the source-packets sa[t] and sb[t] for
t /∈ [i, i + B − 1] are immediately available to the decoder.
The decoder proceeds as follows to recover the erased source
packets.

(1) Recover sb[i], . . . , sb[i+ B − 1]. Let t ∈ [i+ B, i+ Tb +
B − 1]:
• According to (17), the shift of Tb + B guarantees that the

parities pa,1[t] combine sa,1[·] from time i− 1 and earlier,
which are not erased. Also, the parities pa,2[t] = sa,2[t −
Tb − B] are before the erasure burst, and are not erased.
Therefore, both pa,1[t] and pa,2[t] can be computed and
subtracted from p[t] to recover pb[t].

• The recovered parities, pb[t], are (B, Tb) MS code parities
that can recover sb[i], . . . , sb[i+B − 1] with a delay of Tb.

(2) Recover va,1[i], . . . ,va,1[i + B − 1]. Let t ∈ [i + Tb +
2B, i+ Ta − 1]:
• All sb[·] packets are recovered in the previous step and

hence pb[t] can be computed and subtracted to recover pa[t].
Furthermore, the parities pa,2[t] combine sa,2[t − Tb − B]
which are after the erasure burst and hence can be subtracted
from pa[t] to recover pa,1[t].

• The ua,1[t] are from before the burst and can also be
subtracted from p[t] leaving out pa,2[t] = sa,2[t − Ta] for
t ∈ [i+Tb+2B, i+Ta−1]. This gives (Ta−Tb−2B)B k

Ta

equations which suffice to recover va,1[i], . . . ,va,1[i+B−1]
at time i+ Ta − 1, i.e., with a maximum delay of Ta − 1.

(3) Recover sa,2[i], . . . , sa,2[i+B−1]. Let t ∈ [i+Tb+B, i+
Tb + 2B − 1]:
• Since all erased sb[·] and va,1[·] packets are decoded at time
i+Tb+B−1 and i+Ta−1 in the previous steps, their effect
can be subtracted from p[t] to recover pa,2[t]+ua,1[t−Ta].

• The ua,1[t−Ta] are from before the erasure burst and hence
can also be subtracted to recover sa,2[i], . . . , sa,2[i+B−1]
can be recovered.

(4) Recover ua,1[i], . . . ,ua,1[i + B − 1]. Let t ∈ [i + Ta, i +
Ta +B − 1]:
• Since all erased sb[·], va,1[·] and sa,2[·] packets are recov-

ered by time i+Ta−1, the decoder can subtract their effect
from the p[t] to recover ua,1[i], . . . ,ua,1[i+B − 1] with a
delay of Ta.

At this point the source packet sa[t] = (ua,1[t],va,1[t], sa,2[t])
is recovered with a delay of Ta.

A. Converse: Systematic Codes

Note that the inequality (4b) follows by relaxing the delay
constraint of flow b to Tb = Ta. It follows from the single
flow capacity [1] that Ra + Rb ≤ Ta

Ta+B
must hold for any

code, systematic or non-systematic.

In the case of systematic codes (3), the constraint (4a) can
be established by the following argument. Suppose the erasure
burst spans the interval [0, B−1] and assume that Tb symbols
following it are not erased. Since the code is systematic we

· · ·

a = B

b = B + Tb

Fig. 3: The erasure channel used to establish (4a) for system-
atic codes. Grey and white squares denote erased and unerased
symbols respectively.

have that the following conditions hold:

H
(
sa

[
Tb+B−1

B

]∣∣x[Tb+B−1
B

])
= 0 (21)

H
(
sb

[
Tb+B−1

B

]∣∣x[Tb+B−1
B

])
= 0 (22)

Furthermore since each source packet in sb[·] must be recov-
ered with a delay of Tb it follows that:

H
(
sb

[
B−1
0

]∣∣x[Tb+B−1
B

])
= 0 (23)

Thus we have that:

TbH(x) ≥ H
(
x
[
Tb+B−1

B

])
(24)

= H
(
sa

[
Tb+B−1

B

]
, sb

[
Tb+B−1

B

]
, sb

[
B−1
0

]
,x
[
Tb+B−1

B

])
(25)

≥ H
(
sa

[
Tb+B−1

B

]
, sb

[
Tb+B−1

B

]
, sb

[
B−1
0

])
(26)

= TbH(sa) + (Tb +B)H(sb) (27)

where (25) follows from (21),(22) and (23). Thus we have
that:

Tb
Tb +B

H(x) ≥ Tb
Tb +B

H(sa)

H(x)
+H(sb) (28)

Since H(sa) = ka and H(sb) = kb and n ≥ H(x), dividing
throughout by n we recover (4a).

Remark 3: The derivation of upper bounds (4a) and (4b)
does not make any assumption on Ta and applies to all the
three cases for the case of systematic codes.

B. Converse: Non-Systematic Codes, Tb = B

For non-systematic codes, we focus on the special case of
Tb = B. One can show that for any r ≥ Ta we must have
that:

r−1∑
i=0

H(x[i])

≥ H
(
sa

[
r−Ta−1

0

])
+H

(
sb

[
r−B−1
Ta−B

])
+H

(
sb

[
r−1
Ta

])
+H

(
x
[
r−1
0

]∣∣∣sa[ r−Ta−1
0

]
sb

[
r−B−1
Ta−B

]
sb

[
r−1
Ta

])
. (29)

As a consequence of (29) we have that:

r−1∑
i=0

H(x[i]) ≥ H
(
sa

[
r−Ta−1

0

])
+H

(
sb

[
r−B−1
Ta−B

])
+H

(
sb

[
r−1
Ta

])
(30)
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r ·H(x) ≥ (r − Ta) ·H(sa) + 2 · (r − Ta) ·H(sb)

r

r − Ta
≥ H(sa)

H(x)
+

2H(sb)

H(x)
. (31)

Finally, this gives us

Ra + 2Rb ≤
r

r − Ta
r→∞−−−→ 1, (32)

which is equivalent to (4a) at Tb = B.
The proof of (29) is established using mathematical induc-

tion and is relegated to Appendix I.

VI. PROOF OF THEOREM 2

Theorem 2 considers the case when Tb ≤ Ta ≤ Tb + B.
Its proof consists of two parts, an achievability scheme and a
converse proof.

A. Achievability

From Fig. 2b it suffices to show that the following corner
point is achievable:

R̄a =
B

Ta +B
, (33a)

R̄b =
Ta −B
Ta +B

. (33b)

The rest of the capacity region consists of straight lines
connecting this corner point with the single-stream rates:(

Ta

Ta+B
, 0
)

and
(

0, Tb

Tb+B

)
as shown in Fig. 2b. These points

can be attained by a time-sharing argument as indicated in
remark 2.

Our code that achieves the rate pair (R̄a, R̄b) in (33) is
described next. The high level idea is to protect stream a using
a repetition code, so that its interfering parity packets start
appearing at time i + Ta and later. This leaves a window of
[i+B, i+ Ta− 1] to decode stream b. We accomplish this as
follows. We first assume that Ta ≥ 2B:

• Let sa[t] ∈ F
B
Ta
k

q and apply a repetition code with a shift
of Ta,

pa[t] = sa[t− Ta] ∈ F
B
Ta
k

q . (34)

• Let sb[t] ∈ F
Ta−B

Ta
k

q and apply a (B, Ta − B) MS code to
sb[t] to generate the parity-check packets,

pb[t] = ub[t− Ta +B] +

Ta−B∑
j=0

vb[t− j]Pb,j , (35)

where ub[t] ∈ F
B
Ta
k

q , vb[t] ∈ F
Ta−2B

Ta
k

q , sb[t] = (ub[t],vb[t]),

Pb,j ∈ F
Ta−2B

Ta
k× B

Ta
k

q are the matrices in the MS code. Note

that pb[t] ∈ F
B
Ta
k

q .
• The channel packet at time t is

x[t] =

 sa[t]
sb[t]

p[t] = pa[t] + pb[t]

 . (36)

It is clear that x[t] ∈ F
Ta+B

Ta
k

q and the rate pair achieved is
(R̄a, R̄b) in (33).

To show that the proposed construction is feasible suppose
that an erasure burst spans the interval [i, i + B − 1]. Since
the code in (36) is systematic, all source packets, sa[t] and
sb[t], outside the erased interval are available at the decoder.
The decoder recovers the erased source packets in the interval
[i, i+B − 1] as follows:
(1) Recover sb[i], . . . , sb[i+B−1]: Let t ∈ [i+B, i+Ta−1],
• The decoder first subtracts the parities pa[t] = sa[t − Ta]

which are not erased in the interval [i + B, i + Ta − 1] to
recover pb[t].

• Since we apply a (B, Ta−B) MS code, each source packet
is recovered with a delay of Ta − B. Thus the last erased
source packet sb[i+B− 1] is recovered at time i+Ta− 1
as required.

(2) Recover sa[i], . . . , sa[i+B− 1]: Let t ∈ [i+Ta, i+Ta +
B − 1],
• Since all sb[·] are recover by time i+Ta−1 in the previous

step, the decoder can compute the parities pb[t] and subtract
them to recover pa[t].

• These parities combine repetitions of sa[t− Ta] and hence
sa[i], . . . , sa[i + B − 1] can be recovered with a delay of
Ta.
In the case when Ta < 2B, one cannot use a (Ta − B,B)

MS code on stream b. Instead we use a combination of a
repetition code and RLC as discussed next. In particular let

pb,1[t] = sb[t−B] (37)

be a repetition code with shift B. Note that pb,1[t] ∈ F
Ta−B

Ta
k

q .
Furthermore let

pb,2[t] =

Ta−1∑
j=0

sb[t− j]Pb,2,j (38)

where Pb,2,j ∈ F
Ta−B

Ta
k× 2B−Ta

Ta
k

q are the encoding matrices of
RLC (see section IV-A) with memory Ta. We let

pb[t] =

(
pb,1[t]
pb,2[t]

)
∈ F

B
Ta
k

q . (39)

The parity checks pa[t] for stream a are generated as before
using shifted repetition code and the overall channel packet is
as in (36).

To show the feasibility of the proposed construction we
assume that an erasure burst spans the interval [i, i + B − 1]
and show that the source packets sb[i], . . . , sb[i+B − 1] can
be recovered in the interval [i + B, i + Ta − 1]. Note that
in this interval the parity pa[t] = sa[t − Ta] are non-erased
and can be cancelled out to recover pb[t]. The parity packets
pb,1[t] are repetition codes that can be used to directly recover
sb[i], . . . , sb[[i+Ta−B−1] with a delay of B. The remaining
source packets sb[i+Ta−B], . . . , sb[i+B−1] have a deadline
after time i + Ta − 1 and can be simultaneously recovered
at time i + Ta − 1 using pb,2[i + B], . . . ,pb,2[i + Ta − 1].

Note that each pb,2[t] ∈ F
2B−Ta

Ta
k

q and thus we have a total
of
(

2B−Ta

Ta

)
(Ta − B)k equations from these parity-check

packets. These equal the number of symbols in sb[i + Ta −
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B], . . . , sb[i+B−1], as each source packet consists of Ta−B
Ta

k
symbols over Fq . Thus all the erased source symbols in sb[·]
can be recovered by time i+ Ta − 1 as required1.

B. Converse

We will establish the non-trivial bound (5a) in the converse.
We first outline the converse argument for the case of sys-
tematic codes. Our proof is based on the erasure sequence in
Figure 3. We consider B + Tb channel packets with the first
B of which are erased followed by Tb non-erasures in the
interval [0, Tb +B− 1]. The first B source packets of the first
stream, sb[0], . . . , sb[B − 1] can be decoded with a delay of
Tb, i.e., by time Tb +B − 1.

H
(
sb

[
B−1
0

]∣∣x[Tb+B−1
B

])
= 0 (40)

The source packets of the less urgent stream, sa[·], require a
delay of Ta. Hence, only the first B+Tb−Ta can be decoded
by the end of the period, i.e., at Tb +B − 1.

H
(
sa

[
B+Tb−Ta−1

0

]∣∣x[Tb+B−1
B

])
= 0 (41)

In case of systematic codes, all source packets in the
interval, [B, Tb +B − 1], can be directly decoded.

H
(
sa

[
Tb+B−1

B

]
, sb

[
Tb+B−1

B

]∣∣x[Tb+B−1
B

])
= 0 (42)

(43)

By combining (40), (41) and (42) and along the lines of (28)
we can establish that:

TbH(x) ≥ (Tb +B)H(sb) + (B + 2Tb − Ta)H(sa), (44)

which then results in (5a).
For non-systematic codes, a formal proof involves informa-

tion theoretic argument involving a periodic erasure channel.
It is provided in Appendix II.

VII. PROOF OF THEOREM 3

To prove Theorem 3, it suffices to establish the achievability
at two points:

R̄a =
B

Tb + 2B
, (45a)

R̄b =
Tb

Tb + 2B
(45b)

and

R̃a =
2B

Ta +B
, (46a)

R̃b =
Ta − 2B

Ta +B
(46b)

are achievable. The rest of the boundary can be achieved using
“time-sharing” with the extreme points given by single-stream
codes as in Remark 2.

The first corner point, (R̄a, R̄b), in (45) can be achieved by
reducing the value of the delay of stream a to T ?a = Tb+B <

1Alternately we can use the recovery condition in (11)

Figure R kb ka Rb Ra B Bms Regime
Fig. 4 5/7 3 2 3/7 2/7 4 2 Low-Delay
Fig. 5 11/16 6 5 6/16 5/16 5 3 Medium-Delay
Fig. 6 5/7 1 4 1/7 4/7 8 6 Medium-Delay
Fig. 7 3/4 1 2 1/4 2/4 8 4 Large-Delay

TABLE I: Code parameters used in the simulations.

Ta and use the low-delay regime construction in Section VI
which achieves the rate pair,(

B

T ?a +B
,
T ?a −B
T ?a +B

)
=

(
B

Tb + 2B
,

Tb
Tb + 2B

)
= (R̄a, R̄b).

(47)

The second corner point, (R̃a, R̃b), in (45) can be achieved
by reducing the value of Tb to T ?b = Ta−2B < Tb and use the
large-delay regime construction in Section V which achieves
the rate pair,(
Ta − T ?b
Ta +B

,
T ?b

Ta +B

)
=

(
2B

Ta +B
,
Ta − 2B

Ta +B

)
= (R̃a, R̃b).

(48)

We remark that the upper bound is the same as in Theorem 1
for systematic codes; see Remark 3.

VIII. SIMULATION RESULTS

In this section, we compare the performance of the proposed
codes to existing codes over statistical channel models such as
Gilbert and Extended-Gilbert channels. A Gilbert channel is
a two-state Markov model. In the “good state”, each channel
packet is received perfectly, whereas in the “bad state” each
channel packet is lost with a probability of 1. We will use
the symbols α and β to denote the transition probabilities
from the good state to the bad state and vice versa. As long
as the channel stays in the bad state the channel behaves
as a burst-erasure channel. The length of each burst is a
Geometric random variable of mean 1

β while the gap between
successive bursts is also a geometric random variable with
mean 1

α . An extended Gilbert-Channel is an extension of the
Gilbert channel model with a total of N + 1 states, denoted
by {0, 1, . . . ,N}. State ’0’ is the good state and the remaining
N states are bad states. We let the transition probability from
the good state to the first bad state to be α whereas the
transition probability from state i to state (i + 1), as well
as the transition probability from state N to state 0 equals
β. The burst length distribution in such a model is a hyper-
geometric random variable as it is a sum of N i.i.d. geometric
random variables. We will consider a setting where two source
streams with different delays are multiplexed into a single
channel packet stream. We denote the rates by Ra and Rb.
Our baseline scheme is the MS code applied separately to the
two streams in Section IV-B. The parameters are outlined in
Table I.

In Fig. 4 and 5, we consider a Gilbert channel with α =
10−3 and β ∈ [0.3, 0.7]. We plot β on the x-axis and the
residual packet loss rate on the y-axis. In Fig. 4, the rate
for the two streams are Ra = 2/7 and Rb = 3/7 while the
associated delays are Ta = 10 and Tb = 6. It can be shown that
this choice of parameters corresponds to the low delay regime
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Fig. 4: Simulation Results over Gilbert Channel model in the
low delay regime.
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Fig. 5: Simulation Results over Gilbert Channel model in the
medium delay regime.

in Section VI and maximum recoverable burst length for our
proposed B = 4. The MS code in Section IV-B achieves a
B = 2 for these parameters. This explains the gap in the
residual loss rates in Fig. 4. We note that both the streams
exhibit the same residual loss rate for each of the two codes,
as they are affected by the same set of long burst patterns.

In Fig. 5, the rates of the two streams are Rb = 6/16 and
Ra = 5/16 and the delays are Tb = 6 and Ta = 12. For this
choice of parameters the recoverable burst length achieved by
the optimal code is B = 5 and uses the intermediate-delay
construction in (45). The MS code achieves B = 3 at this rate
and delay constraints and hence achieves a larger residual loss
rate.

In Fig. 6 and 7, we consider an Extended-Gilbert channel
with α = 10−3 and β = 0.5. We plot the number of states
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Fig. 6: Simulation Results over the Extended Gilbert Channel
model in the medium delay regime.
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Fig. 7: Simulation Results over the Extended Gilbert Channel
model in the large delay regime.

N on the x-axis and the residual packet loss rate on the y-
axis. In Fig. 6, the rates for the two streams are Ra = 4/7 and
Rb = 1/7 and the associated delays are Tb = 10 and Ta = 20.
The optimal burst length is 8 compared to the the MS code,
that achieves B = 6. In Fig. 7, the rates of the two streams
are Ra = 2/4 and Rb = 1/4 and the associated delays are
Tb = 8 and Ta = 24. The optimal burst length that can be
achieved is B = 8 while the MS code only achieves B = 4.

IX. CONCLUSIONS

Error correction codes for streaming applications are dif-
ferent from traditional codes in many fundamental ways. In
this paper we introduce the problem of multiplexing two
source streams with different decoding delays into a single
channel packet stream. We consider a burst erasure channel
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that introduces an erasure burst of maximum length B, and
develop a new class of streaming codes that apply joint FEC
across the two streams. The nature of our coding scheme
depends on the relative magnitude of the delays in the two
streams. We propose three operating regimes for the system
and propose a coding scheme for each case. We also establish
the optimality of our proposed codes for a certain range of
system parameters. We note that simply encoding the source
streams separately using previously proposed single-stream
codes, and concatenating the resulting outputs is suboptimal
in general.

As future work one can consider channels that introduce
both burst and isolated losses. Our constructions can be
naturally extended using the layered coding framework in [2],
but the optimality remains to be verified. One can consider
rank-metric extensions of these codes. Such extensions would
be of interest if the underlying network applies a linear
network code, while the streaming code is applied at the end
nodes. In the single stream case such extensions have been
proposed in [3]. Furthermore in our setup we considered the
case when the source and transmission rates are matched,
i.e., in each slot one packet from each source stream arrives
and one channel packet is transmitted. One can also consider
the mismatched settings where multiple channel packets are
transmitted between successive source packet, along the lines
of [2], [4], [11]. Finally one can also consider settings with
more than two source streams, multiple parallel links between
the source and destination, as well as providing unequal error
protection for the two streams.

APPENDIX I
PROOF OF (29)

We use mathematical induction. For the base case we
substitute we substitute r = Ta, we have

Ta−1∑
i=0

H(x[i])

≥ H
(
sa

[
−1
0

])
+H

(
sb

[
Ta−B−1
Ta−B

])
+H

(
sb

[
Ta−1
Ta

])
+H

(
x
[
Ta−1

0

]∣∣∣sa[−10 ]sb[Ta−B−1
Ta−B

]
sb

[
Ta−1
Ta

])
= H

(
x
[
Ta−1

0

])
(49)

which is true and establishes the base case. Before conducting
the induction step, we first take H(x[i]) where i ≥ B:

H(x[i]) ≥ H
(
x[i]
∣∣∣x[ i−B−10

])
= H

(
sb[i−B]x[i]

∣∣∣x[ i−B−10

])
−H

(
sb[i−B]

∣∣∣x[i]x
[
i−B−1

0

])
(a)
= H

(
sb[i−B]x[i]

∣∣∣x[ i−B−10

])
(b)
= H(sb[i−B]) +H

(
x[i]
∣∣∣sb[i−B]x

[
i−B−1

0

])
(50)

where (a) uses the fact that sb[i − B] is recovered from
x[i],x

[
i−B−1

0

]
, and (b) uses the fact that sb[i − B] is in-

dependent of all source-packets and also all channel-packets
with time index less than i−B.

Now let us assume that (29) is true for r = q where q ≥ Ta.
When we combine this with (50), we have

q∑
i=0

H(x[i]) =

q−1∑
i=0

H(x[i]) +H(x[q])

≥ H
(
sa

[
q−Ta−1

0

])
+H

(
sb

[
q−B−1
Ta−B

])
+H

(
sb

[
q−1
Ta

])
+H

(
x
[
q−1
0

]∣∣∣sa[ q−Ta−1
0

]
sb

[
q−B−1
Ta−B

]
sb

[
q−1
Ta

])
+H(sb[q −B]) +H

(
x[q]

∣∣∣sb[q −B]x
[
q−B−1

0

])
≥ H

(
sa

[
q−Ta−1

0

])
+H

(
sb

[
q−B
Ta−B

])
+H

(
sb

[
q−1
Ta

])
+H

(
x
[
q
0

]∣∣∣sa[ q−Ta−1
0

]
sb

[
q−B
Ta−B

]
sb

[
q−1
Ta

])
= H

(
sa

[
q−Ta−1

0

])
+H

(
sb

[
q−B
Ta−B

])
+H

(
sb

[
q−1
Ta

])
+H

(
sa[q − Ta]x

[
q
0

]∣∣∣sa[ q−Ta−1
0

]
sb

[
q−B
Ta−B

]
sb

[
q−1
Ta

])
−H

(
sa[q − Ta]

∣∣∣sa[ q−Ta−1
0

]
sb

[
q−B
Ta−B

]
sb

[
q−1
Ta

]
x
[
q
0

])
(a)
= H

(
sa

[
q−Ta−1

0

])
+H

(
sb

[
q−B
Ta−B

])
+H

(
sb

[
q−1
Ta

])
+H

(
sa[q − Ta]x

[
q
0

]∣∣∣sa[ q−Ta−1
0

]
sb

[
q−B
Ta−B

]
sb

[
q−1
Ta

])
(b)
= H

(
sa

[
q−Ta

0

])
+H

(
sb

[
q−B
Ta−B

])
+H

(
sb

[
q−1
Ta

])
+H

(
x
[
q
0

]∣∣∣sa[ q−Ta

0

]
sb

[
q−B
Ta−B

]
sb

[
q−1
Ta

])
= H

(
sa

[
q−Ta

0

])
+H

(
sb

[
q−B
Ta−B

])
+H

(
sb

[
q−1
Ta

])
+H

(
sb[q]x

[
q
0

]∣∣∣sa[ q−Ta

0

]
sb

[
q−B
Ta−B

]
sb

[
q−1
Ta

])
−H

(
sb[q]

∣∣∣sa[ q−Ta

0

]
sb

[
q−B
Ta−B

]
sb

[
q−1
Ta

]
x
[
q
0

])
(c)
= H

(
sa

[
q−Ta

0

])
+H

(
sb

[
q−B
Ta−B

])
+H

(
sb

[
q−1
Ta

])
+H

(
sb[q]x

[
q
0

]∣∣∣sa[ q−Ta

0

]
sb

[
q−B
Ta−B

]
sb

[
q−1
Ta

])
(d)
= H

(
sa

[
q−Ta

0

])
+H

(
sb

[
q−B
Ta−B

])
+H

(
sb

[
q
Ta

])
+H

(
x
[
q
0

]∣∣∣sa[ q−Ta

0

]
sb

[
q−B
Ta−B

]
sb

[
q
Ta

])
(51)

where step (a) uses the fact that sa[q− Ta] is recovered from
x
[
q
0

]
, (b) uses the fact that sa[q − Ta] is independent of all

source and channel-packets before time q − Ta, (c) uses the
fact that sb[q] must be recovered from x

[
q
0

]
when there is an

erasure burst spanning [q + 1, q + B], and (d) uses the fact
that source-packets are independent of each other. The result
is the formula in (29) for r = q + 1.

APPENDIX II
CONVERSE PROOF OF THEOREM 2

The argument used to prove (4b) can be used to prove (5b).
We now prove the inequality in (5a). We start by defining a
periodic erasure channel with a period of Tb+B packets. The
first B packets are erased whereas the remaining Tb packets
are not. For any j ≥ 0, the indices of the packets in the j-th
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Bj

Tb +B − Ta

Cj

Ta − Tb

Dj

Tb

Aj

B

Ej

Tb +B

Fig. 8: The jth period of the periodic erasure channel used in proving (5a) in Theorem 2. Grey and white squares denote
erased and unerased packets respectively. The sets of indices in (52) are also shown.

period are grouped as follows,

Aj = [j(Tb +B), j(Tb +B) +B − 1] , (52a)
Bj = [j(Tb +B), j(Tb +B) + Tb +B − Ta − 1] , (52b)
Cj = [j(Tb +B) + Tb +B − Ta, j(Tb +B) +B − 1] ,

(52c)
Dj = [j(Tb +B) +B, (j + 1)(Tb +B)− 1] , (52d)
Ej = [j(Tb +B), (j + 1)(Tb +B)− 1] , (52e)

and are shown in Fig. 8 at j = 0. For the sake of simplicity,
we use the notation Aj2j1 to denote,

Aj2j1 =

{
∪j2j=j1Aj , j2 ≥ j1,
∅, otherwise,

(53)

and s(Aj) to denote the set of source symbols with indices in
Aj .

Through a direct application of (1), one can write,

H
(
sb(Aj)

∣∣∣s(Ej−10 ),x(Dj)
)

= 0, (54a)

H
(
sa(Bj)

∣∣∣s(Ej−10 ),x(Dj)
)

= 0, (54b)

H
(
s(Dj)

∣∣∣s(Ej−10 ), s(Aj),x(Dj+1)
)

= 0, (54c)

which are useful in the following inequalities

rBkb + r(Tb +B − Ta)ka + rTb(ka + kb)

= H
(
sb(Ar−10 ), sa(Br−10 ), s(Dr−10 )

)
(55a)

= H
(
sb(Ar−10 ), sa(Br−10 ), sa(Cr−10 ), s(Dr−10 )

)
−H

(
sa(Cr−10 )

)
(55b)

≤ H
(
sb(Ar−10 ), sa(Br−10 ), sa(Cr−10 ), s(Dr−10 ),x(Dr0)

)
−H

(
sa(Cr−10 )

)
= H

(
s(Er−10 ),x(Dr0)

)
−H

(
sa(Cr−10 )

)
= H (x(Dr0)) +

r−1∑
j=0

(
H
(
sb(Aj)

∣∣s(Ej−10 ),x(Dr0)
)

+H
(
sa(Bj)

∣∣sb(Aj), s(Ej−10 ),x(Dr0)
)

+H
(
sa(Cj)

∣∣sb(Aj), sa(Bj), s(Ej−10 ),x(Dr0)
)

−H
(
sa(Cj)

∣∣sa(Cj−10 )
)

+H
(
s(Dj)

∣∣sb(Aj), sa(Bj), sa(Cj), s(Ej−10 ),x(Dr0)
))

≤ H (x(Dr0)) +

r−1∑
j=0

(
H
(
sb(Aj)

∣∣s(Ej−10 ),x(Dr0)
)

+H
(
sa(Bj)

∣∣sb(Aj), s(Ej−10 ),x(Dr0)
)

+H
(
s(Dj)

∣∣sb(Aj), sa(Bj), sa(Cj), s(Ej−10 ),x(Dr0)
))
(55c)

≤ H (x(Dr0)) +

r−1∑
j=0

(
H
(
sb(Aj)

∣∣s(Ej−10 ),x(Dr0)
)

+H
(
sa(Bj)

∣∣sb(Aj), s(Ej−10 ),x(Dr0)
)

+H
(
s(Dj)

∣∣sb(Aj), sa(Bj), sa(Cj), s(Ej−10 ),x(Dr0)
))

= H (x(Dr0)) (55d)
≤ (r + 1)Tbn, (55e)

where (55a) and (55b) follows from the independence of
source symbols, (55c) uses the fact that conditioning reduces
the entropy and also

H
(
sa(Cj)

∣∣sa(Cj−10 )
)

= H (sa(Cj))

since the source packets are i.i.d., and (55d) uses (54).
By substituting Rb = kb/n and Ra = ka/n in (55e), we

get (
B + Tb
Tb

)
Rb +

(
2Tb +B − Ta

Tb

)
Ra

≤ r + 1

r

r→∞−−−→ 1 (56)

and (5a) follows.
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