A Fresh Look at Wireless Security and Multimedia

Ashish Khisti
Department of Electrical and Computer Engineering
University of Toronto

February 4, 2013

Talk Outline

Information Theoretic Approaches to Security (ITAS)

- Physical Layer Resources
- Secret-Key Generation
- Multiple Antennas for Secure Communication

Streaming Communications Systems - Fundamental Limits

- Error Correction Codes for Streaming Data
- Sequential Compression for Streaming Sources
- Streaming over Wireless Fading Channels
- Deterministic Channel Approximations

Security at PHY-Layer

Use PHY Resources for designing security mechanisms.

Application Layer (Semantics of Information)
Transport Layer (End to End Connectivity)
Network Layer (Routing and Path Discovery)
Data Link Layer
(Error Correction Codes)
Physical Layer
(Signals, RF hardware)

Wireless Systems

Applications:

- Secret-Key Generation
- Secure Message Transmission
- Physical Layer Authentication
- Jamming Resistance

Motivation

Secret-Key Generation in Wireless Fading Channels

Fading:

$$
y_{B}(t)=h_{A B}(t) x_{A}(t)+n_{B}(t)
$$

Reciprocity:

$$
\begin{aligned}
y_{B}(t) & =h_{A B}(t) x_{A}(t)+n_{B}(t) \\
y_{A}(t) & =h_{B A}(t) x_{B}(t)+n_{A}(t)
\end{aligned}
$$

Motivation

Secret-Key Generation in Wireless Fading Channels

time

Secret-Key Generation - A Systems Approach

Key Generation in Wireless Systems

- UWB Systems: Wilson-Tse-Scholz ('07), M. Ko ('07), Madiseh-Neville-McGuire('12)
- Narrowband Systems: Azimi Sadjadi- Kiayias-Mercado-Yener ('07), Mathur-Trappe-Mandayam -Ye-Reznick ('10), Patware and Kasera ('07)
- OFDM reciprocity: Haile ('09), Tsouri and Wulich ('09)

Implementations

- Experimental UWB: Measurements for Key Generation Madiseh ('12)
- Software Radio Implementations: Jana et. al. ('09)
- MIMO systems: Wallace and Sharma ('10), Shimizu et al. Zeng-Wu-Mohapatra

Signal Processing for Secret-Key Generation

- Quantization Techniques: Ye-Reznik-Shah ('07), Hamida-Pierrot-Castelluccia ('09), Sun-Zhu-Jiang-Zhao ('11)
- Adaptive Channel Probing: Wei-Zheng-Mohapatra ('10)
- Mobility Assisted Key Generation: Gungor-Chen-Koksal ('11)

Attacks

- Active Eavesdroppers: Ebrez et. al ('11) Zafer-Agrawal-Srivatsa ('11),
- Unauthenticated Channels: Mathur et al. ('10), Xiao-Greenstein-Mandayam-Trappe ('07).

Secret-Key Generation: A Systems Approach II

Secret-Key Generation - Source Model

Maurer ('93), Ahlswede-Csiszar ('93)

- DMMS Model: $\left(x_{A}^{N}, x_{B}^{N}\right) \sim \prod_{i=1}^{N} p_{x_{A}, x_{B}}\left(x_{A}(i), x_{B}(i)\right)$
- Interactive Public Communication: \mathbf{F}
- Key Generation: $k_{i}=\mathcal{F}_{i}\left(x_{i}^{N}, \mathbf{F}\right), i \in\{A, B\}$.
- Reliability: $\operatorname{Pr}\left(k_{A} \neq k_{B}\right) \leq \varepsilon_{N}$,
- Secrecy: $\frac{1}{N} I\left(k_{A} ; \mathbf{F}\right) \leq \varepsilon_{N}$
- Secret-Key Rate: $R=\frac{1}{N} H\left(k_{A}\right)$

Secret-Key Generation - Source Model

Maurer ('93), Csiszar-Ahlswede ('93)

- Capacity: $C=I\left(x_{A} ; x_{B}\right)$
- One-Round of Communication
- Capacity Unknown when Eavesdropper also observes a source sequence

Problem Setup

Two-Way Reciprocal Fading Channel

$$
\begin{array}{lr}
y_{B}(i)=h_{A B}(i) x_{A}(i)+n_{A B}(i), & y_{A}(i)=h_{B A}(i) x_{B}(i)+n_{B A}(i) \\
z_{A}(i)=g_{A}(i) x_{A}(i)+n_{A E}(i), & z_{B}(i)=g_{B}(i) x_{B}(i)+n_{B E}(i)
\end{array}
$$

Problem Setup

Two-Way Reciprocal Fading Channel

$$
\begin{array}{lr}
y_{B}(i)=h_{A B}(i) x_{A}(i)+n_{A B}(i), & y_{A}(i)=h_{B A}(i) x_{B}(i)+n_{B A}(i) \\
z_{A}(i)=g_{A}(i) x_{A}(i)+n_{A E}(i), & z_{B}(i)=g_{B}(i) x_{B}(i)+n_{B E}(i)
\end{array}
$$

Channel Model Assumptions:

- Non-Coherent Model: $h_{A B}(i)$ and $h_{B A}(i)$
- Perfect Eavesdropper CSI: $g_{A}(i) \& g_{B}(i)$ known to Eve
- Block-Fading Channel with Coherence Period: T.
- Approximate Reciprocity: $\left(h_{A B}, h_{B A}\right) \sim p_{h_{A B}, h_{B A}}(\cdot, \cdot)$
- Independence: $\left(g_{A}, g_{B}\right) \perp\left(h_{A B}, h_{B A}\right)$

Problem Setup

Two-Way Reciprocal Fading Channel

$$
\begin{array}{lr}
y_{B}(i)=h_{A B}(i) x_{A}(i)+n_{A B}(i), & y_{A}(i)=h_{B A}(i) x_{B}(i)+n_{B A}(i) \\
z_{A}(i)=g_{A}(i) x_{A}(i)+n_{A E}(i), & z_{B}(i)=g_{B}(i) x_{B}(i)+n_{B E}(i)
\end{array}
$$

Secret-Key Agreement Protocols:

- Interactive: $x_{A}(i)=f_{A}\left(m_{A}, y_{A}^{i-1}\right), x_{B}(i)=f_{B}\left(m_{B}, y_{B}^{i-1}\right)$
- Average Power Constraints $E\left[\left|x_{A}\right|^{2}\right] \leq P, E\left[\left|x_{B}\right|^{2}\right] \leq P$.
- $k_{A}=\mathcal{K}_{A}\left(y_{A}^{N}, m_{A}\right), k_{B}=\mathcal{K}_{B}\left(y_{B}^{N}, m_{B}\right)$
- Reliability and Secrecy Constraint.
- Secret-Key Capacity

Outline

- Upper Bound
- Lower Bound - With Public Discussion
- Lower Bound - No Public Discussion
- Asymptotic Regimes and Numerical Results

Secret-Key Capacity — Upper Bound

Theorem

An upper bound on the secret-key capacity is $C \leq R^{+}$:

$$
\begin{aligned}
R^{+}= & \frac{1}{T} I\left(h_{A B} ; h_{B A}\right)+\max _{P\left(h_{A B}\right) \in \mathcal{P}} E\left[\log \left(1+\frac{\left.P\left(h_{A B}\right)\left|h_{A B}\right|^{2}\right)}{1+P\left(h_{A B}\right)\left|g_{A}\right|^{2}}\right)\right] \\
& +\max _{P\left(h_{B A}\right) \in \mathcal{P}} E\left[\log \left(1+\frac{P\left(h_{B A}\right)\left|h_{B A}\right|^{2}}{\left.1+P\left(h_{B A}\right)\left|g_{B}\right|^{2}\right)}\right)\right]
\end{aligned}
$$

where $P\left(h_{A B}\right)$ and $P\left(h_{B A}\right)$ are power allocation function across the fading states.

Secret-Key Capacity - Upper Bound

Genie-Aided Channel:

Secret-Key Capacity — Upper Bound

Genie-Aided Channel:

$N T R \leq I\left(m_{A}, h_{B A}^{N}, y_{A}^{N T} ; m_{B}, h_{A B}^{N}, y_{B}^{N T} \mid \mathbf{z}^{N T}, \mathbf{g}^{N}\right)$

Secret-Key Capacity — Upper Bound

Genie-Aided Channel:

$$
\begin{aligned}
N T R & \leq I\left(m_{A}, h_{B A}^{N}, y_{A}^{N T} ; m_{B}, h_{A B}^{N}, y_{B}^{N T} \mid \mathbf{z}^{N T}, \mathbf{g}^{N}\right) \\
& \leq I\left(x_{A}(N T) ; y_{B}(N T) \mid h_{A B}(N), z_{A}(N T), g_{A}(N)\right) \\
& +I\left(x_{B}(N T) ; y_{A}(N T) \mid h_{B A}(N), z_{B}(N T), g_{B}(N)\right) \\
& +I\left(m_{A}, h_{B A}^{N}, y_{A}^{N T-1} ; m_{B}, h_{A B}^{N}, y_{B}^{N T-1} \mid \mathbf{z}^{N T-1}, \mathbf{g}^{N}\right)
\end{aligned}
$$

Secret-Key Capacity — Upper Bound

Genie-Aided Channel: $h_{A B}$

$$
\begin{aligned}
N T R & \leq I\left(m_{A}, h_{B A}^{N}, y_{A}^{N T} ; m_{B}, h_{A B}^{N}, y_{B}^{N T} \mid \mathbf{z}^{N T}, \mathbf{g}^{N}\right) \\
& \leq \sum_{n=1}^{N T} I\left(x_{A}(n) ; y_{B}(n) \mid \bar{h}_{A B}(n), z_{A}(n), \bar{g}_{A}(n)\right) \\
& +\sum_{n=1}^{N T} I\left(x_{B}(n) ; y_{A}(n) \mid \bar{h}_{B A}(n), z_{B}(n), \bar{g}_{B}(n)\right) \\
& +N I\left(h_{A B} ; h_{B A}\right)
\end{aligned}
$$

Secret-Key Capacity — Upper Bound

Genie-Aided Channel:

Interpretation of the Upper Bound:

- Channel Reciprocity: $\frac{1}{T} I\left(h_{A B} ; h_{B A}\right)$
- Forward Channel: $I\left(y_{B} ; x_{A} \mid h_{A B}, z_{A}, g_{A}\right)$
- Reverse Channel: $I\left(y_{A} ; x_{B} \mid h_{B A}, z_{B}, g_{B}\right)$

Secret-Key Capacity — Upper Bound

Genie-Aided Channel:

Interpretation of the Upper Bound:

- Channel Reciprocity: $\frac{1}{T} I\left(h_{A B} ; h_{B A}\right)$
- Forward Channel: $I\left(y_{B} ; x_{A} \mid h_{A B}, z_{A}, g_{A}\right)$
- Reverse Channel: $I\left(y_{A} ; x_{B} \mid h_{B A}, z_{B}, g_{B}\right)$

Upper Bound also holds if a public discussion channel is available.

Lower Bound: Separation Based Scheme

Khisti '12

- Training: $x_{A}(i, 1)=\sqrt{P_{1}}$
- Randomness Sharing: $x_{A}(i, t) \sim \mathcal{C N}\left(0, P_{2}\right)$ for $t=2, \ldots, T$ $\mathbf{x}_{A}(i)=\left[x_{A}(i, 2), \ldots, x_{A}(i, T)\right] \in \mathbb{C}^{T-1}$.
- Training: $\hat{h}_{A B}(i)$ and $\hat{h}_{B A}(i)$
- Correlated Sources:

Forward Channel: $\mathbf{y}_{B}(i)=h_{A B}(i) \mathbf{x}_{A}(i)+\mathbf{n}_{B}(i) \in \mathbb{C}^{T-1}$, Reverse Channel: $\mathbf{y}_{A}(i)=h_{B A}(i) \mathbf{x}_{B}(i)+\mathbf{n}_{A}(i) \in \mathbb{C}^{T-1}$.

Lower Bound: Separation Based Scheme

Khisti '12

	A	B	E
Channel State	$\hat{h}_{B A}^{K}$	$\hat{h}_{A B}^{K}$	$\left(g_{A}^{K}, g_{B}^{K}\right)$
Forward Channel	\mathbf{x}_{A}^{K}	\mathbf{y}_{B}^{K}	\mathbf{z}_{A}^{K}
Reverse Channel	\mathbf{y}_{A}^{K}	\mathbf{x}_{B}^{K}	\mathbf{z}_{B}^{K}

Lower Bound: Separation Based Scheme

Khisti '12

	A	B	E
Channel State	$\hat{h}_{B A}^{K}$	$\hat{h}_{A B}^{K}$	$\left(g_{A}^{K}, g_{B}^{K}\right)$
Forward Channel	\mathbf{x}_{A}^{K}	\mathbf{y}_{B}^{K}	\mathbf{z}_{A}^{K}
Reverse Channel	\mathbf{y}_{A}^{K}	\mathbf{x}_{B}^{K}	\mathbf{z}_{B}^{K}

Generate a secret-key from these sequences.

Lower Bound - Overview

Achievable Rate with Public Discussion

Theorem (Public Discussion)

An achievable rate when a public discussion channel is available is

$$
\begin{aligned}
R_{\text {key }}= & \{\frac{1}{T} \underbrace{I\left(\hat{h}_{A B} ; \hat{h}_{B A}\right)}_{\text {Training }} \\
& +\frac{T-1}{T} \underbrace{\left[I\left(y_{B} ; x_{A}, \hat{h}_{A B}\right)-I\left(y_{B} ; z_{A}, g_{A}, h_{A B}\right)\right]}_{\text {Forward Channel }} \\
& +\frac{T-1}{T} \underbrace{\left.\left[I\left(y_{A} ; x_{B}, \hat{h}_{B A}\right)\right)-I\left(y_{A} ; z_{B}, g_{B}, h_{B A}\right)\right]}_{\text {Reverse Channel }}\}
\end{aligned}
$$

Achievable Rate with Public Discussion

Theorem (Public Discussion)

An achievable rate when a public discussion channel is available is

$$
\begin{aligned}
R_{\mathrm{key}}= & \{\frac{1}{T} \underbrace{I\left(\hat{h}_{A B} ; \hat{h}_{B A}\right)}_{\text {Training }} \\
& +\frac{T-1}{T} \underbrace{\left[I\left(y_{B} ; x_{A}, \hat{h}_{A B}\right)-I\left(y_{B} ; z_{A}, g_{A}, h_{A B}\right)\right]}_{\text {Forward Channel }} \\
& +\frac{T-1}{T} \underbrace{\left.\left[I\left(y_{A} ; x_{B}, \hat{h}_{B A}\right)\right)-I\left(y_{A} ; z_{B}, g_{B}, h_{B A}\right)\right]}_{\text {Reverse Channel }}\}
\end{aligned}
$$

High SNR Regime

Theorem

In the high SNR regime our upper and lower bound (with public discussion) coincide:

$$
\lim _{P \rightarrow \infty}\left\{R^{+}(P)-R_{\mathrm{PD}}^{-}(P)\right\} \leq \frac{c}{T}
$$

where

$$
c=E\left[\log \left(1+\frac{\left|h_{A B}\right|^{2}}{\left|g_{A}\right|^{2}}\right)\right]+E\left[\log \left(1+\frac{\left|h_{B A}\right|^{2}}{\left|g_{B}\right|^{2}}\right)\right]
$$

Lower Bound

Phase	Coherence Blocks
Probing + Randomness Sharing	K
Channel-Sequence Reconciliation	$\varepsilon_{1} \cdot K$
Source-Sequence Reconciliation	$\varepsilon_{2} \cdot K$

Numerical Plot

$\mathrm{SNR}=35 \mathrm{~dB}, h_{1}, h_{2} \sim \mathcal{C N}(0,1), \rho=0.99$.

Symmetric MIMO Extension

M. Andersson, A. Khisti and M. Skoglund, 2012

$$
\begin{aligned}
\mathbf{y}_{B}=\mathbf{H}_{A B} \mathbf{x}_{A}+\mathbf{n}_{A B}, & \mathbf{z}_{A}=\mathbf{G}_{A E} \mathbf{x}_{A}+\mathbf{n}_{A E} \\
\mathbf{y}_{A}=\mathbf{H}_{B A} \mathbf{x}_{B}+\mathbf{n}_{B A}, & \mathbf{z}_{B}=\mathbf{G}_{B E} \mathbf{x}_{B}+\mathbf{n}_{B E}
\end{aligned}
$$

- $\mathbf{H}_{A}, \mathbf{H}_{B} \in \mathbb{C}^{M \times M}, \mathbf{G}_{A E}, \mathbf{G}_{B E} \in \mathbb{C}^{N_{E} \times M}$
- Independent Rayleigh Fading, Approximate Reciprocity
- Block Fading with Coherence Period T
- $T \geq M \geq N_{E}$

Training + Source Emulation achieves degrees of freedom given by:

$$
d=\max _{M^{\star} \in[1, M]} 2 \frac{\left(T-M^{\star}\right)\left(M^{\star}-N_{E}\right)}{T}
$$

Physical Layer Security

Wireless Security (Physical Layer)

Secure Communication - A Physical Layer Approach

 Wyner'75, Csiszar-Korner '78
Wiretap Channel Model

- Reliability Constraint : $\operatorname{Pr}(M \neq \hat{M}) \xrightarrow{n} 0$
- Secrecy Constraint : $\frac{1}{n} H\left(M \mid Y_{e}^{n}\right)=\frac{1}{n} H(M)-o_{n}(1)$

Secrecy Capacity

Secure Communication - A Physical Layer Approach

 Wyner'75, Csiszar-Korner '78
Wiretap Channel Model

Csiszar-Korner '78

The Secrecy Capacity of DMC Channels is given by

$$
C_{s}=\max _{p_{U, X}}\left\{I\left(U ; Y_{r}\right)-I\left(U ; Y_{e}\right)\right\}
$$

where the auxiliary variable U satisfies $U \rightarrow X \rightarrow\left(Y_{r}, Y_{e}\right)$.

Secure Communication - A Physical Layer Approach

 Wyner'75, Csiszar-Korner '78
Wiretap Channel Model

(L. Y. Cheong and M. Hellman '78)

The secrecy capacity of the AWGN Model is:

$$
\begin{aligned}
C_{s} & =\log \left(1+S N R_{r}\right)-\log \left(1+S N R_{e}\right) \\
& =C\left(\mathrm{SNR}_{r}\right)-C\left(\mathrm{SNR}_{e}\right)
\end{aligned}
$$

Multiple Antennas

Multi-antenna wiretap channel

Channel Model
$Y_{r}=H_{r} X+Z_{r}$
$Y_{e}=H_{e} X+Z_{e}$

- Fixed Channel matrices:

$$
H_{r} \in \mathbb{C}^{N_{r} \times N_{t}}, H_{e} \in \mathbb{C}^{N_{e} \times N_{t}}
$$

- AWGN noise

Multiple Antennas

Multi-antenna wiretap channel

Theorem (Khisti-Wornell (Allerton '07, IT-Trans '10), Oggier-Hassibi (ISIT '08))
Secrecy capacity of the Multi-antenna wiretap channel is given by,

$$
C_{s}=\max _{Q \succeq 0: \operatorname{Tr}(Q) \leq P} \log \operatorname{det}\left(I_{r}+H_{r} Q H_{r}^{\dagger}\right)-\log \operatorname{det}\left(I_{e}+H_{e} Q H_{e}^{\dagger}\right)
$$

Lower Bounds: Parada-Blahut '05, Li-Yates-Trappe '07

Compound Wiretap Channel

- M transmit Antennas
- Legitimate Receiver:
$y_{j}=\mathbf{h}_{j}^{\dagger} \mathbf{x}+w_{j}$,
- Eavesdropper:
$z_{k}=\mathbf{g}_{k}^{\dagger} \mathbf{x}+w_{k}$,
- Reliability:

$$
\operatorname{Pr}\left(w \neq \hat{w}_{i}\right) \rightarrow 0, i \in\{1, \ldots, J\}
$$

- Secrecy:

$$
\frac{1}{n} I\left(w ; z_{j}^{n}\right) \rightarrow 0, j \in\{1, \ldots, K\}
$$

Compound Wiretap Channel

Khisti (IT-Trans 2011): Degree of Freedom Analysis

The degrees of freedom of the MISO Compound Wiretap Channel with $M \mathrm{Tx}$ antennas and $\min (J, K) \geq M$, satisfy (with high probability) $d_{L} \leq d \leq d_{U}$

$$
\begin{aligned}
d_{L} & \geq 1-\frac{1}{M} \\
d_{U} & \leq 1-\frac{1}{M^{2}-M+1}
\end{aligned}
$$

Secure Multi-Antenna Multicast

A. Khisti, "Interference Alignment for Multi-Antenna Wiretap Channel," IEEE Trans. Inf. Theory, Mar. 2011

Artificial Noise Alignment

Transmitter

- Align Noise Symbols at Legitimate Receivers
- Mask Information Symbols at Eavesdroppers
- Only channel knowledge of legitimate receivers is needed.
- Compound Multi-Antenna Wiretap Channel

Talk Outline

Information Theoretic Approaches to Security (ITAS)

- Physical Layer Resources
- Secret-Key Generation
- Multiple Antennas for Secure Communication

Streaming Communications Systems - Fundamental Limits

- Error Correction Codes for Streaming Data
- Sequential Compression for Streaming Sources
- Streaming over Wireless Fading Channels
- Deterministic Channel Approximations

Joint Source-Channel Coding

Multimedia Streaming over Wireless Links

Model

- Source Signal s^{n}
- Encoder: $s^{n} \rightarrow x^{N}$
- Decoder: $y_{i}^{N} \rightarrow \hat{s}_{i}^{n}$
- Distortion: $\sum_{i} d\left(s_{i}, \hat{s}_{i}\right)$

Architectures

- Separation Theorem
- Unequal Error Protection
- Scalable Video Coding
- Multiple Descriptions

Joint Source-Channel Coding

Multimedia Streaming over Wireless Links

Suitable model for static sources and not streaming
New Models to address:

- Streaming Sources
- Delay Constraints

Delay Constrained Streaming

- Common Source
- Streaming Encoder
- Delay Constrained Receivers

Delay Constrained Streaming

- Common Source
- Streaming Encoder
- Delay Constrained Receivers

Delay Constrained Streaming

- Common Source
- Streaming Encoder
- Delay Constrained Receivers

Delay Constrained Streaming

- Common Source
- Streaming Encoder
- Delay Constrained Receivers

Delay Constrained Streaming

- Common Source
- Streaming Encoder
- Delay Constrained Receivers

Outline

Real-Time Streaming Communication

Error-Correction for Streaming Data

Model: Streaming Codes

- Source Model : i.i.d. sequence $w[t] \sim p_{w}(\cdot)=\operatorname{Unif}\left\{\left(\mathbb{F}_{q}\right)^{k}\right\}$
- Streaming Encoder: $x[t]=f_{t}(w[1], \ldots, w[t]), x[t] \in\left(\mathbb{F}_{q}\right)^{n}$
- Erasure Channel
- Delay-Constrained Decoder: $\hat{w}[t]=g_{t}(y[1], \ldots, y[t+T])$
- Rate $R=\frac{H(w)}{n}=\frac{k}{n}$

"Erasure" Codes

"Erasure" Codes

$$
\left[\begin{array}{l}
x_{4} \\
x_{5} \\
x_{6}
\end{array}\right]=\underbrace{\left[\begin{array}{lllcc}
G_{2} & G_{1} & G_{0} & 0 & 0 \\
G_{3} & G_{2} & G_{1} & G_{0} & 0 \\
G_{4} & G_{3} & G_{2} & G_{1} & G_{0}
\end{array}\right]}_{\text {full rank }}\left[\begin{array}{l}
w_{2} \\
w_{3} \\
w_{4} \\
w_{5} \\
w_{6}
\end{array}\right]
$$

Sequential Recovery

$R=1 / 2$

Erasure Codes

Burst-Erasure Codes (Martinian-Sundberg '04)

Motivating Questions

- Can we improve upon "Erasure Codes" for Realistic Channel Models

Motivating Questions

- Can we improve upon "Erasure Codes" for Realistic Channel Models

Gilbert-Elliott Model
Fritchman Channel Model

Motivating Questions

- Can we improve upon "Erasure Codes" for Realistic Channel Models

Gilbert-Elliott Model
Fritchman Channel Model

- What are the fundamental metrics for low-delay error correction codes?

Motivating Questions

- Can we improve upon "Erasure Codes" for Realistic Channel Models

Gilbert-Elliott Model
Fritchman Channel Model

- What are the fundamental metrics for low-delay error correction codes?
- How much performance gains can we obtain?

Deterministic Approximation

In any sliding window of length W the channel introduces either

- N erasures in arbitrary locations (or)
- B erasure in a single burst

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

Deterministic Channel Model $(W=5, N=2, B=3)$

Our Approach:

- Find (nearly) optimal codes for a deterministic approximation.
- Evaluate performance over stochastic models.
- We will take $W=T+1$

Deterministic Approximation

In any sliding window of length W the channel introduces either

- N erasures in arbitrary locations (or)
- B erasure in a single burst

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

Deterministic Channel Model $(W=5, N=2, B=3)$

Our Approach:

- Find (nearly) optimal codes for a deterministic approximation.
- Evaluate performance over stochastic models.
- We will take $W=T+1$

Deterministic Approximation

In any sliding window of length W the channel introduces either

- N erasures in arbitrary locations (or)
- B erasure in a single burst

Deterministic Channel Model $(W=5, N=2, B=3)$

Our Approach:

- Find (nearly) optimal codes for a deterministic approximation.
- Evaluate performance over stochastic models.
- We will take $W=T+1$

Deterministic Approximation

In any sliding window of length W the channel introduces either

- N erasures in arbitrary locations (or)
- B erasure in a single burst

Deterministic Channel Model $(W=5, N=2, B=3)$

Our Approach:

- Find (nearly) optimal codes for a deterministic approximation.
- Evaluate performance over stochastic models.
- We will take $W=T+1$

Main Result

Theorem

For any feasible rate R code, we must have that:

$$
N+B\left(\frac{R}{1-R}\right) \leq T+1, \quad N \leq B, \quad N, B \geq 0
$$

There exists a construction that achieves any (N, B) that satisfies:

$$
N+B\left(\frac{R}{1-R}\right) \leq T, \quad N \leq B, \quad N, B \geq 0
$$

This characterizes the optimal region to within one erasure.

Proposed Coding Scheme

Badr-Khisti-Tan-Apostolopoulos '2012

- Split each source packet into two groups
- Unequal Error Protection

Proposed Coding Scheme

Badr-Khisti-Tan-Apostolopoulos '2012

- Split each source packet into two groups
- Unequal Error Protection

Proposed Coding Scheme-II

$T=5, B=2$.
Burst-Erasure Code, $R=\frac{T}{T+B}, \quad N=1$

Proposed Coding Scheme-II

$T=5, B=2$.
Burst-Erasure Code, $R=\frac{T}{T+B}, \quad N=1$

Proposed Coding Scheme-II

$T=5, B=2$.
Step III: $R=\frac{T}{T+B+K}, \quad N=\min \left(\frac{K}{K+B} T, B\right)$

	$\mathrm{u}_{1}[0]$	$\mathrm{u}_{1}[1]$	$\mathrm{u}_{1}[2]$	$\mathrm{u}_{1}[3]$	$\mathrm{u}_{1}[4]$	$\mathrm{u}_{1}[5]$	$\mathrm{u}_{1}[6]$
B	$\mathrm{u}_{2}[0]$	$\mathrm{u}_{2}[1]$	$\mathrm{u}_{2}[2]$	$\mathrm{U}_{2}[3]$	$\mathrm{u}_{2}[4]$	$\mathrm{U}_{2}[5]$	$\mathrm{u}_{2}[6]$
	$\mathrm{n}_{0}[0]$	$\mathrm{n}_{0}[1]$	$\mathrm{n}_{0}[2]$	$\mathrm{n}_{0}[3]$	$\mathrm{n}_{0}[4]$	$\mathrm{n}_{0}[5]$	$\mathrm{n}_{0}[6]$
	$\mathrm{n}_{1}[0]$	$\mathrm{n}_{1}[1]$	$\mathrm{n}_{1}[2]$	$\mathrm{n}_{1}[3]$	$\mathrm{n}_{1}[4]$	$\mathrm{n}_{1}[5]$	$\mathrm{n}_{1}[6]$
	$\mathrm{n}_{2}[0]$	$\mathrm{n}_{2}[1]$	$\mathrm{n}_{2}[2]$	$\mathrm{n}_{2}[3]$	$\mathrm{n}_{2}[4]$	$\mathrm{n}_{2}[5]$	$\mathrm{n}_{2}[6]$
B	$\mathrm{p}_{1}[0]$	$\mathrm{p}_{1}[1]$	$p_{1}[2]$	$p_{1}[3]$	$p_{1}[4]$	$\begin{gathered} \mathrm{u}_{1}[0]+ \\ \mathrm{p}_{1}[5] \end{gathered}$	$\begin{gathered} \mathrm{u}_{1}[1]+ \\ \mathrm{p}_{1}[6] \end{gathered}$
	$\mathrm{p}_{2}[0]$	$\mathrm{p}_{2}[1]$	$p_{2}[2]$	$\mathrm{p}_{2}[3]$	$p_{2}[4]$	$\begin{gathered} \mathrm{u}_{2}[0]+ \\ \mathrm{p}_{2}[5] \end{gathered}$	$\begin{gathered} \mathrm{u}_{1}[1]+ \\ \mathrm{p}_{2}[6] \end{gathered}$
K	$\mathrm{q}[0]$	$\mathrm{q}[1]$	$\mathrm{q}[2]$	q[3]	q[4]	$\mathrm{q}[5]$	$\mathrm{q}[6]$

Simulation Result

Gilbert-Elliott Channel $(\alpha, \beta)=\left(5 \times 10^{-4}, 0.5\right), T=12$ and $R=12 / 23$

Simulation Result

Gilbert-Elliott Channel $(\alpha, \beta)=\left(5 \times 10^{-4}, 0.5\right), T=12$ and $R=12 / 23$

Simulation Result-II

Fritchman Channel $(\alpha, \beta)=(1 e-5,0.5)$ and $T=40$ and $R=40 / 79,9$ states

- $\alpha=1 e-5$
- $\beta=0.5$

Histogram of Burst Lengths for 9 -States Fritchman Channel - $(\alpha, \beta)=(1 E-5,0.5)$

Simulation Result-II

Fritchman Channel $(\alpha, \beta)=(1 e-5,0.5)$ and $T=40$ and $R=40 / 79,9$ states

Extensions - Dealing with Burst+Isolated Erasures

Original Construction

Extensions - Dealing with Burst+Isolated Erasures

Modified Construction - K_{0} erasures

- $(B+1) n \leq$
$(\Delta-B-1) u+(T-B) s$
- $n \geq s\left(T+K_{0}-\Delta\right)$
- $R=\frac{u+n}{2 u+n+s}$

Extensions - Dealing with Burst+Isolated Erasures

Modified Construction - K_{0} erasures

- $(B+1) n \leq$

$$
(\Delta-B-\overline{1}) u+(T-B) s
$$

$$
K_{0}=1
$$

- $n \geq s\left(T+K_{0}-\Delta\right)$

$$
\text { - } \Delta^{\star}=T+1-\sqrt{T-B}
$$

- $R=\frac{T+1-2 \sqrt{T-B}}{T+B+1-2 \sqrt{T-B}}$
- $R=\frac{u+n}{2 u+n+s}$

Simulations

Outline

Real-Time Streaming Communication

Compression Vs Error Propagation

GOP Picture Structure ${ }^{1}$

	Compression	Error Propagation
Predictive Coding	$\sqrt{ }$	\times
Still Image Coding	\times	$\sqrt{ }$

- Interleaving Approach
- Error Control Coding
${ }^{1}$ Source : http://www.networkwebcams.com

Information Theoretic Model

- Compression Rate: R
- Erasure Burst Length: B
- Recovery Window: W

Rate Recovery Function: $R(B, W)$.

Problem Setup

- Source Model: Sequence of vectors - Temporally Markov and Spatially i.i.d.

$$
\operatorname{Pr}\left(s_{i}^{n} \mid s_{i-1}^{n}, s_{i-2}^{n}, \ldots,\right)=\prod_{j=1}^{n} \operatorname{Pr}\left(s_{i j} \mid s_{i-1, j}\right)
$$

- Channel Model: Burst Erasure Model

$$
g_{i}= \begin{cases}f_{i}, & i \notin\{j, j+1, \ldots, j+B-1\} \\ \star, & \text { otherwise }\end{cases}
$$

Problem Setup

- Source Model: Sequence of vectors - Temporally Markov and Spatially i.i.d.

$$
\operatorname{Pr}\left(s_{i}^{n} \mid s_{i-1}^{n}, s_{i-2}^{n}, \ldots,\right)=\prod_{j=1}^{n} \operatorname{Pr}\left(s_{i j} \mid s_{i-1, j}\right)
$$

- Channel Model: Burst Erasure Model

$$
g_{i}= \begin{cases}f_{i}, & i \notin\{j, j+1, \ldots, j+B-1\} \\ \star, & \text { otherwise }\end{cases}
$$

- Encoder: $\mathcal{F}_{i}:\left\{s_{0}^{n}, \ldots, s_{i}^{n}\right\} \rightarrow f_{i} \in\left[1,2^{n R}\right]$.
- Decoder: $\mathcal{G}_{i}:\left\{g_{0}, \ldots, g_{i}\right\} \rightarrow \hat{s}_{i}^{n}$.

$$
\operatorname{Pr}\left(\hat{s}_{i}^{n} \neq s_{i}^{n}\right) \leq \varepsilon_{n}
$$

except for $i \in[j, \ldots, j+B+W-1]$.

Rate-Recovery Function

Definition (Rate-Recovery Function)

The minimum compression rate $R(B, W)$ that is achieved when:

- Burst-Erasure Length $=B$
- Recovery Window $=W$

Main Results

Upper and Lower Bounds on $R(B, W)$:

$$
\begin{aligned}
R^{+}(B, W) & =H\left(s_{1} \mid s_{0}\right)+\frac{1}{W+1} I\left(s_{B} ; s_{B-1} \mid s_{-1}\right) \\
R^{-}(B, W) & =H\left(s_{1} \mid s_{0}\right)+\frac{1}{W+1} I\left(s_{B+W} ; s_{B-1} \mid s_{-1}\right)
\end{aligned}
$$

Main Results

Upper and Lower Bounds on $R(B, W)$:

$$
\begin{aligned}
& R^{+}(B, W)=H\left(s_{1} \mid s_{0}\right)+\frac{1}{W+1} I\left(s_{B} ; s_{B-1} \mid s_{-1}\right) \\
& R^{-}(B, W)=H\left(s_{1} \mid s_{0}\right)+\frac{1}{W+1} I\left(s_{B+W} ; s_{B-1} \mid s_{-1}\right)
\end{aligned}
$$

- Upper bound: Binning based scheme.
- Upper and Lower Bounds Coincide: $W=0$ and $W \rightarrow \infty$.
- Identical Scaling of Upper and Lower Bounds
- Lower Bound is tight for certain models.
- Extensions to Gaussian Case

Lower Bound

Let $B=1$ and $W=1$.
Encoding of s_{j}^{n}, s_{j+1}^{n}

Lower Bound

Let $B=1$ and $W=1$.
Encoding of s_{j}^{n}, s_{j+1}^{n}

Lower Bound

Let $B=1$ and $W=1$.
Encoding of s_{j}^{n}, s_{j+1}^{n}

Lower Bound $R_{j}+R_{j+1} \geq H\left(s_{j} \mid s_{j-1}, s_{j+1}\right)+H\left(s_{j+1} \mid s_{j-B-1}\right)$.

Fading Channels

Block Fading Channel

$$
\mathbf{y}_{i}=h_{i} \mathbf{x}_{i}+\mathbf{z}_{i}
$$

- Block Fading Channels: n symbols per block
- Source Packet: One in each coherence block $n R$ bits
- Decoding Delay: T coherence blocks

Block Fading Channel Model

Fading Channels

Block Fading Channel

$$
\mathbf{y}_{i}=h_{i} \mathbf{x}_{i}+\mathbf{z}_{i}
$$

- Block Fading Channels: n symbols per block
- Source Packet: One in each coherence block $n R$ bits
- Decoding Delay: T coherence blocks

Fading Channels

Block Fading Channel

$$
\mathbf{y}_{i}=h_{i} \mathbf{x}_{i}+\mathbf{z}_{i}
$$

- Block Fading Channels: n symbols per block
- Source Packet: One in each coherence block $n R$ bits
- Decoding Delay: T coherence blocks

Diversity-Multiplexing Tradeoff

Quasi-static fading Channels

$$
\mathbf{y}=h \mathbf{x}+\mathbf{z}
$$

- Quasi-static Channel
- $\mathrm{SNR} \equiv \rho$, Rate $=R(\rho)$
- Multiplexing: $r=\lim _{\rho \rightarrow \infty} \frac{R(\rho)}{\log \rho}$
- Diversity $d=\lim _{\rho \rightarrow \infty} \frac{-\log \operatorname{Pr}(\rho)}{\log \rho}$

Theorem (Zheng-Tse 2003)

The diversity multiplexing tradeoff for a MIMO Rayleigh Fading channel with N_{t} transmit antennas and N_{r} receive antennas is a piecewise constant curve connecting the ponts $\left(N_{t}-k\right)\left(N_{r}-k\right)$ for $k=0,1, \ldots, \min \left(N_{r}, N_{t}\right)$

Diversity-Multiplexing Tradeoff

Quasi-static fading Channels

$$
\mathbf{y}=h \mathbf{x}+\mathbf{z}
$$

- Quasi-static Channel
- $\mathrm{SNR} \equiv \rho$, Rate $=R(\rho)$
- Multiplexing: $r=\lim _{\rho \rightarrow \infty} \frac{R(\rho)}{\log \rho}$
- Diversity $d=\lim _{\rho \rightarrow \infty} \frac{-\log \operatorname{Pr}(\rho)}{\log \rho}$

Diversity-Multiplexing Tradeoff

Theorem (Khisti-Draper 2011)

The diversity multiplexing tradeoff for streaming source with a delay of T coherence blocks and a block-fading channel model is

$$
d(r)=T d_{1}(r)
$$

where $d_{1}(r)$ is the quasi-static $D M T$.

- Upper Bound: Outage Amplification Argument
- Lower Bound: Random Tree Codes $\mathbf{X}_{i}=f_{i}\left(\mathbf{S}_{0}, \ldots, \mathbf{S}_{i}\right)$.
- Delay Universal

Conclusions

Physical Layer Security

- Secret-Key Generation Using Channel Reciprocity
- Fundamental Limits of Secret-Key Capacity
- Multiple Antennas for Secure Communication

Fundamental Limits of Streaming Communications

- Error Correction Codes For Streaming Data
- Deterministic Channel Models
- Sequential Compression under Error Propagation Constraints
- Streaming Data over Block Fading Channels (DMT)

