A Fresh Look at Wireless Security and Multimedia

Ashish Khisti

Department of Electrical and Computer Engineering University of Toronto

February 4, 2013

Information Theoretic Approaches to Security (ITAS)

- Physical Layer Resources
- Secret-Key Generation
- Multiple Antennas for Secure Communication

Streaming Communications Systems — Fundamental Limits

- Error Correction Codes for Streaming Data
- Sequential Compression for Streaming Sources
- Streaming over Wireless Fading Channels
- Deterministic Channel Approximations

Security at PHY-Layer

Use PHY Resources for designing security mechanisms.

Wireless Systems

Applications:

- Secret-Key Generation
- Secure Message Transmission
- Physical Layer Authentication
- Jamming Resistance

Motivation

Secret-Key Generation in Wireless Fading Channels

February 4, 2013

Motivation

Secret-Key Generation in Wireless Fading Channels

time

Secret-Key Generation - A Systems Approach

Key Generation in Wireless Systems

- UWB Systems: Wilson-Tse-Scholz ('07), M. Ko ('07), Madiseh-Neville-McGuire('12)
- Narrowband Systems: Azimi Sadjadi- Kiayias-Mercado-Yener ('07), Mathur-Trappe-Mandayam -Ye-Reznick ('10), Patware and Kasera ('07)
- OFDM reciprocity: Haile ('09), Tsouri and Wulich ('09)

Implementations

- Experimental UWB: Measurements for Key Generation Madiseh ('12)
- Software Radio Implementations: Jana et. al. ('09)
- MIMO systems: Wallace and Sharma ('10), Shimizu et al. Zeng-Wu-Mohapatra

Signal Processing for Secret-Key Generation

- Quantization Techniques: Ye-Reznik-Shah ('07), Hamida-Pierrot-Castelluccia ('09), Sun-Zhu-Jiang-Zhao ('11)
- Adaptive Channel Probing: Wei-Zheng-Mohapatra ('10)
- Mobility Assisted Key Generation: Gungor-Chen-Koksal ('11)

Attacks

- Active Eavesdroppers: Ebrez et. al ('11) Zafer-Agrawal-Srivatsa ('11),
- Unauthenticated Channels: Mathur et al. ('10), Xiao-Greenstein-Mandayam-Trappe ('07).

Secret-Key Generation: A Systems Approach II

Secret-Key Generation - Source Model Maurer ('93), Ahlswede-Csiszar ('93)

- DMMS Model: $(\mathbf{x}_A^N, \mathbf{x}_B^N) \sim \prod_{i=1}^N p_{\mathbf{x}_A, \mathbf{x}_B}(x_A(i), x_B(i))$
- Interactive Public Communication: F
- Key Generation: $k_i = \mathcal{F}_i(\mathbf{x}_i^N, \mathbf{F}), i \in \{A, B\}.$
- Reliability: $\Pr(k_A \neq k_B) \leq \varepsilon_N$,
- Secrecy: $\frac{1}{N}I(\mathbf{k}_A;\mathbf{F}) \leq \varepsilon_N$
- Secret-Key Rate: $R = \frac{1}{N}H(k_A)$

Secret-Key Generation - Source Model Maurer ('93), Csiszar-Ahlswede ('93)

- Capacity: $C = I(x_A; x_B)$
- One-Round of Communication
- Capacity Unknown when Eavesdropper also observes a source sequence

Two-Way Reciprocal Fading Channel

$y_B(i) = h_{AB}(i) \mathbf{x}_A(i) + n_{AB}(i),$	$y_A(i) = h_{BA}(i) \mathbf{x}_B(i) + n_{BA}(i)$
$\mathbf{z}_A(i) = \mathbf{g}_A(i) \mathbf{x}_A(i) + \mathbf{n}_{AE}(i),$	$\mathbf{z}_B(i) = \mathbf{g}_B(i)\mathbf{x}_B(i) + \mathbf{n}_{BE}(i)$

Problem Setup

Channel Model Assumptions:

- Non-Coherent Model: $h_{AB}(i)$ and $h_{BA}(i)$
- Perfect Eavesdropper CSI: $g_A(i)$ & $g_B(i)$ known to Eve
- Block-Fading Channel with Coherence Period: T.
- Approximate Reciprocity: $(h_{AB}, h_{BA}) \sim p_{h_{AB}, h_{BA}}(\cdot, \cdot)$
- Independence: $(g_A, g_B) \perp (h_{AB}, h_{BA})$

Problem Setup

- Secret-Key Agreement Protocols: Interactive: $x_A(i) = f_A(m_A, y_A^{i-1}), x_B(i) = f_B(m_B, y_B^{i-1})$
 - Average Power Constraints $E[|\mathbf{x}_{A}|^{2}] \leq P, E[|\mathbf{x}_{B}|^{2}] \leq P$.
 - $k_A = \mathcal{K}_A(y_A^N, m_A), \ k_B = \mathcal{K}_B(y_B^N, m_B)$
 - Reliability and Secrecy Constraint.
 - Secret-Key Capacity

- Upper Bound
- Lower Bound With Public Discussion
- Lower Bound No Public Discussion
- Asymptotic Regimes and Numerical Results

Theorem

An upper bound on the secret-key capacity is $C \leq R^+$:

$$R^{+} = \frac{1}{T}I(h_{AB}; h_{BA}) + \max_{P(h_{AB})\in\mathcal{P}} E\left[\log\left(1 + \frac{P(h_{AB})|h_{AB}|^{2}}{1 + P(h_{AB})|g_{A}|^{2}}\right)\right] + \max_{P(h_{BA})\in\mathcal{P}} E\left[\log\left(1 + \frac{P(h_{BA})|h_{BA}|^{2}}{1 + P(h_{BA})|g_{B}|^{2}}\right)\right]$$

where $P(h_{AB})$ and $P(h_{BA})$ are power allocation function across the fading states.

Genie-Aided Channel:

$NTR \leq I(\mathbf{m}_{A}, \mathbf{h}_{BA}^{N}, \mathbf{y}_{A}^{NT}; \mathbf{m}_{B}, \mathbf{h}_{AB}^{N}, \mathbf{y}_{B}^{NT} | \mathbf{z}^{NT}, \mathbf{g}^{N})$

Genie-Aided Channel:

$$NTR \leq I(m_A, h_{BA}^N, y_A^{NT}; m_B, h_{AB}^N, y_B^{NT} | \mathbf{z}^{NT}, \mathbf{g}^N)$$

$$\leq I(x_A(NT); y_B(NT) | h_{AB}(N), z_A(NT), g_A(N))$$

$$+ I(x_B(NT); y_A(NT) | h_{BA}(N), z_B(NT), g_B(N))$$

$$+ I(m_A, h_{BA}^N, y_A^{NT-1}; m_B, h_{AB}^N, y_B^{NT-1} | \mathbf{z}^{NT-1}, \mathbf{g}^N)$$

$$NTR \leq I(m_A, h_{BA}^N, y_A^{NT}; m_B, h_{AB}^N, y_B^{NT} | \mathbf{z}^{NT}, \mathbf{g}^N)$$

$$\leq \sum_{n=1}^{NT} I(\mathbf{x}_A(n); \mathbf{y}_B(n) | \bar{h}_{AB}(n), \mathbf{z}_A(n), \bar{\mathbf{g}}_A(n))$$

$$+ \sum_{n=1}^{NT} I(\mathbf{x}_B(n); \mathbf{y}_A(n) | \bar{h}_{BA}(n), \mathbf{z}_B(n), \bar{\mathbf{g}}_B(n))$$

$$+ NI(h_{AB}; h_{BA})$$

Genie-Aided Channel:

Interpretation of the Upper Bound:

- Channel Reciprocity: $\frac{1}{T}I(h_{AB}; h_{BA})$
- Forward Channel: $I(y_B; x_A | h_{AB}, z_A, g_A)$
- Reverse Channel: $I(y_A; x_B | h_{BA}, z_B, g_B)$

Interpretation of the Upper Bound:

- Channel Reciprocity: $\frac{1}{T}I(h_{AB}; h_{BA})$
- Forward Channel: $I(y_B; x_A | h_{AB}, z_A, g_A)$
- Reverse Channel: $I(y_A; x_B | h_{BA}, z_B, g_B)$

Upper Bound also holds if a public discussion channel is available.

Lower Bound: Separation Based Scheme Khisti '12

• Training:
$$x_A(i,1) = \sqrt{P_1}$$

- Randomness Sharing: $x_A(i,t) \sim \mathcal{CN}(0,P_2)$ for $t = 2, \ldots, T$ $\mathbf{x}_A(i) = [x_A(i,2), \ldots, x_A(i,T)] \in \mathbb{C}^{T-1}.$
- Training: $\hat{h}_{AB}(i)$ and $\hat{h}_{BA}(i)$
- Correlated Sources: Forward Channel: $\mathbf{y}_B(i) = h_{AB}(i)\mathbf{x}_A(i) + \mathbf{n}_B(i) \in \mathbb{C}^{T-1}$, Reverse Channel: $\mathbf{y}_A(i) = h_{BA}(i)\mathbf{x}_B(i) + \mathbf{n}_A(i) \in \mathbb{C}^{T-1}$.

Lower Bound: Separation Based Scheme Khisti '12

	A	В	E
Channel State	\hat{h}_{BA}^{K}	\hat{h}_{AB}^{K}	$(\boldsymbol{g}_A^K, \boldsymbol{g}_B^K)$
Forward Channel	\mathbf{x}_A^K	\mathbf{y}_B^K	z_A^K
Reverse Channel	\mathbf{y}_A^K	\mathbf{x}_B^K	\mathbf{z}_B^K

Lower Bound: Separation Based Scheme Khisti '12

	A	В	E
Channel State	\hat{h}_{BA}^{K}	\hat{h}_{AB}^{K}	$(\boldsymbol{g}_A^K, \boldsymbol{g}_B^K)$
Forward Channel	\mathbf{x}_A^K	\mathbf{y}_B^K	\mathbf{z}_A^K
Reverse Channel	\mathbf{y}_A^K	\mathbf{x}_B^K	\mathbf{z}_B^K

Generate a secret-key from these sequences.

Lower Bound — Overview

Theorem (Public Discussion)

An achievable rate when a public discussion channel is available is

$$\begin{aligned} R_{\text{key}} &= \left\{ \frac{1}{T} \underbrace{I(\hat{h}_{AB}; \hat{h}_{BA})}_{\text{Training}} \\ &+ \frac{T-1}{T} \underbrace{\left[I(y_B; x_A, \hat{h}_{AB}) - I(y_B; z_A, g_A, h_{AB})\right]}_{\text{Forward Channel}} \\ &+ \frac{T-1}{T} \underbrace{\left[I(y_A; x_B, \hat{h}_{BA})) - I(y_A; z_B, g_B, h_{BA})\right]}_{\text{Reverse Channel}} \right\} \end{aligned}$$

Theorem (Public Discussion)

An achievable rate when a public discussion channel is available is

$$\begin{aligned} R_{\text{key}} &= \left\{ \frac{1}{T} \underbrace{I(\hat{h}_{AB}; \hat{h}_{BA})}_{\text{Training}} \\ &+ \frac{T-1}{T} \underbrace{\left[I(y_B; x_A, \hat{h}_{AB}) - I(y_B; z_A, g_A, h_{AB})\right]}_{\text{Forward Channel}} \\ &+ \frac{T-1}{T} \underbrace{\left[I(y_A; x_B, \hat{h}_{BA})) - I(y_A; z_B, g_B, h_{BA})\right]}_{\text{Reverse Channel}} \right\} \end{aligned}$$

Theorem

In the high SNR regime our upper and lower bound (with public discussion) coincide:

$$\lim_{P \to \infty} \left\{ R^+(P) - R^-_{\rm PD}(P) \right\} \le \frac{c}{T}$$

where

$$c = E\left[\log\left(1 + \frac{|\boldsymbol{h}_{AB}|^2}{|\boldsymbol{g}_A|^2}\right)\right] + E\left[\log\left(1 + \frac{|\boldsymbol{h}_{BA}|^2}{|\boldsymbol{g}_B|^2}\right)\right]$$

Lower Bound Without Public Discussion

Phase	Coherence Blocks
Probing + Randomness Sharing	K
Channel-Sequence Reconciliation	$\varepsilon_1 \cdot K$
Source-Sequence Reconciliation	$\varepsilon_2 \cdot K$

Numerical Plot

SNR =35 dB, $h_1, h_2 \sim C\mathcal{N}(0, 1)$, $\rho = 0.99$.

Symmetric MIMO Extension

M. Andersson, A. Khisti and M. Skoglund, 2012

$$\mathbf{y}_B = \mathbf{H}_{AB}\mathbf{x}_A + \mathbf{n}_{AB}, \quad \mathbf{z}_A = \mathbf{G}_{AE}\mathbf{x}_A + \mathbf{n}_{AE}$$
$$\mathbf{y}_A = \mathbf{H}_{BA}\mathbf{x}_B + \mathbf{n}_{BA}, \quad \mathbf{z}_B = \mathbf{G}_{BE}\mathbf{x}_B + \mathbf{n}_{BE}$$

•
$$\mathbf{H}_A, \mathbf{H}_B \in \mathbb{C}^{M \times M}, \, \mathbf{G}_{AE}, \mathbf{G}_{BE} \in \mathbb{C}^{N_E \times M}$$

- Independent Rayleigh Fading, Approximate Reciprocity
- Block Fading with Coherence Period T
- $T \ge M \ge N_E$

Training + Source Emulation achieves degrees of freedom given by:

$$d = \max_{M^{\star} \in [1,M]} 2 \frac{(T - M^{\star})(M^{\star} - N_E)}{T}$$

Secure Communication — A Physical Layer Approach Wyner'75, Csiszar-Korner '78

- Reliability Constraint : $Pr(M \neq \hat{M}) \xrightarrow{n} 0$
- Secrecy Constraint : $\frac{1}{n}H(M|Y_e^n) = \frac{1}{n}H(M) o_n(1)$

Secrecy Capacity

Secure Communication — A Physical Layer Approach Wyner'75, Csiszar-Korner '78

Csiszar-Korner '78

The Secrecy Capacity of DMC Channels is given by

$$C_{s} = \max_{p_{U,X}} \{ I(U; Y_{r}) - I(U; Y_{e}) \}$$

where the auxiliary variable U satisfies $U \to X \to (Y_r, Y_e)$.

Secure Communication — A Physical Layer Approach Wyner'75, Csiszar-Korner '78

(L. Y. Cheong and M. Hellman '78)

The secrecy capacity of the AWGN Model is:

$$C_s = \log(1 + SNR_r) - \log(1 + SNR_e)$$
$$= C(SNR_r) - C(SNR_e)$$

Multi-antenna wiretap channel

- Fixed Channel matrices: $H_r \in \mathbb{C}^{N_r \times N_t}$, $H_e \in \mathbb{C}^{N_e \times N_t}$
- AWGN noise

Multiple Antennas

Multi-antenna wiretap channel

Theorem (Khisti-Wornell (Allerton '07, IT-Trans '10), Oggier-Hassibi (ISIT '08))

Secrecy capacity of the Multi-antenna wiretap channel is given by,

$$C_s = \max_{\substack{Q \succeq 0: Tr(Q) \le P}} \log \det(I_r + H_r Q H_r^{\dagger}) - \log \det(I_e + H_e Q H_e^{\dagger})$$

Lower Bounds: Parada-Blahut '05, Li-Yates-Trappe '07
Compound Wiretap Channel

- M transmit Antennas
- Legitimate Receiver: $y_j = \mathbf{h}_j^{\dagger} \mathbf{x} + w_j$,
- Eavesdropper: $z_k = \mathbf{g}_k^{\dagger} \mathbf{x} + w_k$,

- Reliability: $\Pr(w \neq \hat{w}_i) \rightarrow 0, i \in \{1, \dots, J\}$
- Secrecy: $\frac{1}{n}I(w; \mathbf{z}_j^n) \rightarrow 0, \ j \in \{1, \dots, K\}$

Compound Wiretap Channel

Khisti (IT-Trans 2011): Degree of Freedom Analysis

The degrees of freedom of the MISO Compound Wiretap Channel with M Tx antennas and $\min(J, K) \ge M$, satisfy (with high probability) $d_L \le d \le d_U$

$$d_L \ge 1 - \frac{1}{M}$$
$$d_U \le 1 - \frac{1}{M^2 - M + 1}$$

Secure Multi-Antenna Multicast

A. Khisti, "Interference Alignment for Multi-Antenna Wiretap Channel," IEEE Trans. Inf. Theory, Mar. 2011

- Align Noise Symbols at Legitimate Receivers
- Mask Information Symbols at Eavesdroppers
- Only channel knowledge of legitimate receivers is needed.
- Compound Multi-Antenna Wiretap Channel

February 4, 2013

Information Theoretic Approaches to Security (ITAS)

- Physical Layer Resources
- Secret-Key Generation
- Multiple Antennas for Secure Communication

Streaming Communications Systems — Fundamental Limits

- Error Correction Codes for Streaming Data
- Sequential Compression for Streaming Sources
- Streaming over Wireless Fading Channels
- Deterministic Channel Approximations

Joint Source-Channel Coding

Multimedia Streaming over Wireless Links

Model	Architectures
• Source Signal <i>s</i> ⁿ	 Separation Theorem
• Encoder: $s^n o x^N$	Unequal Error Protection
• Decoder: $y_i^N o \hat{s}_i^n$	• Scalable Video Coding
• Distortion: $\sum_i d(\mathbf{s}_i, \hat{\mathbf{s}}_i)$	Multiple Descriptions

Joint Source-Channel Coding

Multimedia Streaming over Wireless Links

Suitable model for static sources and not streaming

New Models to address:

- Streaming Sources
- Delay Constraints

- Common Source
- Streaming Encoder
- Delay Constrained Receivers

- Common Source
- Streaming Encoder
- Delay Constrained Receivers

- Common Source
- Streaming Encoder
- Delay Constrained Receivers

- Common Source
- Streaming Encoder
- Delay Constrained Receivers

- Common Source
- Streaming Encoder
- Delay Constrained Receivers

Error-Correction for Streaming Data

Model: Streaming Codes

- Source Model : i.i.d. sequence $w[t] \sim p_w(\cdot) = \text{Unif}\{(\mathbb{F}_q)^k\}$
- Streaming Encoder: $x[t] = f_t(w[1], \dots, w[t]), x[t] \in (\mathbb{F}_q)^n$
- Erasure Channel
- Delay-Constrained Decoder: $\hat{w}[t] = g_t(y[1], \dots, y[t+T])$

• Rate
$$R = \frac{H(w)}{n} = \frac{k}{n}$$

"Erasure" Codes

 $\mathbf{x}_i = \mathbf{w}_i \cdot G_0 + \mathbf{w}_{i-1} \cdot G_1 + \ldots + \mathbf{w}_{i-M} \cdot G_M, \qquad G_i \in \mathbb{F}_q^{k \times n}$

"Erasure" Codes

$$x_i = w_i \cdot G_0 + w_{i-1} \cdot G_1 + \ldots + w_{i-M} \cdot G_M, \qquad G_i \in \mathbb{F}_q^{k \times n}$$

-

$$\begin{bmatrix} x_4 \\ x_5 \\ x_6 \end{bmatrix} = \underbrace{\begin{bmatrix} G_2 & G_1 & G_0 & 0 & 0 \\ G_3 & G_2 & G_1 & G_0 & 0 \\ G_4 & G_3 & G_2 & G_1 & G_0 \end{bmatrix}}_{\text{full rank}} \begin{bmatrix} w_2 \\ w_3 \\ w_4 \\ w_5 \\ w_6 \end{bmatrix}$$

Sequential Recovery R = 1/2

Erasure Codes

Burst-Erasure Codes (Martinian-Sundberg '04)

• Can we improve upon "Erasure Codes" for Realistic Channel Models

• Can we improve upon "Erasure Codes" for Realistic Channel Models

Gilbert-Elliott Model

Fritchman Channel Model

• Can we improve upon "Erasure Codes" for Realistic Channel Models

Gilbert-Elliott Model

Fritchman Channel Model

• What are the fundamental metrics for low-delay error correction codes?

• Can we improve upon "Erasure Codes" for Realistic Channel Models

Gilbert-Elliott Model

Fritchman Channel Model

- What are the fundamental metrics for low-delay error correction codes?
- How much performance gains can we obtain?

- N erasures in arbitrary locations (or)
- B erasure in a single burst

Deterministic Channel Model (W = 5, N = 2, B = 3)

- Find (nearly) optimal codes for a deterministic approximation.
- Evaluate performance over stochastic models.
- We will take W = T + 1

- N erasures in arbitrary locations (or)
- B erasure in a single burst

Deterministic Channel Model (W = 5, N = 2, B = 3)

- Find (nearly) optimal codes for a deterministic approximation.
- Evaluate performance over stochastic models.
- We will take W = T + 1

- N erasures in arbitrary locations (or)
- B erasure in a single burst

Deterministic Channel Model (W = 5, N = 2, B = 3)

- Find (nearly) optimal codes for a deterministic approximation.
- Evaluate performance over stochastic models.
- We will take W = T + 1

- N erasures in arbitrary locations (or)
- B erasure in a single burst

Deterministic Channel Model (W = 5, N = 2, B = 3)

- Find (nearly) optimal codes for a deterministic approximation.
- Evaluate performance over stochastic models.
- We will take W = T + 1

Theorem

For any feasible rate R code, we must have that:

$$N + B\left(\frac{R}{1-R}\right) \le T+1, \quad N \le B, \quad N, B \ge 0.$$

There exists a construction that achieves any (N, B) that satisfies: $N + B\left(\frac{R}{1-R}\right) \le T, \quad N \le B, \quad N, B \ge 0.$

This characterizes the optimal region to within one erasure.

- Split each source packet into two groups
- Unequal Error Protection

- Split each source packet into two groups
- Unequal Error Protection

Proposed Coding Scheme-II

T = 5, B = 2.

Burst-Erasure Code, $R = \frac{T}{T+B}$, N = 1

Ì	u₁[0]	u₁[1]	u ₁ [2]	u ₁ [3]	u ₁ [4]	u₁[5]	u₁[6]
ь Ц	u ₂ [0]	u ₂ [1]	u ₂ [2]	u ₂ [3]	u ₂ [4]	u ₂ [5]	u ₂ [6]
Î	n ₀ [0]	n ₀ [1]	n ₀ [2]	n ₀ [3]	n ₀ [4]	n ₀ [5]	n ₀ [6]
т - в	n ₁ [0]	n ₁ [1]	n ₁ [2]	n ₁ [3]	n ₁ [4]	n₁[5]	n₁[6]
ļ	n ₂ [0]	n ₂ [1]	n ₂ [2]	n ₂ [3]	n ₂ [4]	n ₂ [5]	n ₂ [6]
∱ B	p ₁ [0]	p₁[1]	p ₁ [2]	p₁[3]	p ₁ [4]	u ₁ [0]+ p ₁ [5]	u ₁ [1]+ p ₁ [6]
ļ	p ₂ [0]	p ₂ [1]	p ₂ [2]	p ₂ [3]	p ₂ [4]	u ₂ [0]+ p ₂ [5]	u ₁ [1]+ p ₂ [6]
←							

Proposed Coding Scheme-II

T = 5, B = 2.

Burst-Erasure Code, $R = \frac{T}{T+B}$, N = 1

* u[0] u[1] n[0] n[1]								[1]
								ļ
ļ	p ₂ [0]	p ₂ [1]	p ₂ [2]	p ₂ [3]	p ₂ [4]	u ₂ [0]+ p ₂ [5]	u ₁ [1]+ p ₂ [6]	
∱ B	p ₁ [0]	p ₁ [1]	p ₁ [2]	p₁[3]	p ₁ [4]	u ₁ [0]+ p ₁ [5]	u ₁ [1]+ p ₁ [6]	
Ļ	n ₂ [0]	n ₂ [1]	n ₂ [2]	n ₂ [3]	n ₂ [4]	n ₂ [5]	n ₂ [6]	
т-в	n ₁ [0]	n ₁ [1]	n ₁ [2]	n ₁ [3]	n ₁ [4]	n₁[5]	n₁[6]	
Î	n ₀ [0]	n _o [1]	n ₀ [2]	n ₀ [3]	n ₀ [4]	n ₀ [5]	n ₀ [6]	
Ļ	u ₂ [0]	u ₂ [1]	u ₂ [2]	u ₂ [3]	u ₂ [4]	u ₂ [5]	u ₂ [6]	
1	u ₁ [0]	u ₁ [1]	u ₁ [2]	u ₁ [3]	u ₁ [4]	u ₁ [5]	u ₁ [6]	
1	u.[0]	u.[1]	u.[2]	u.[3]	u.[4]	u.[5]	u.	[6]

February 4, 2013

Proposed Coding Scheme-II

$$T = 5, B = 2.$$

Step III: $R = \frac{T}{T+B+K}, \quad N = \min\left(\frac{K}{K+B}T, B\right)$

Ì	u ₁ [0]	u ₁ [1]	u ₁ [2]	u ₁ [3]	u ₁ [4]	u₁[5]	u₁[6]
, B	u ₂ [0]	u ₂ [1]	u ₂ [2]	u ₂ [3]	u ₂ [4]	u ₂ [5]	u ₂ [6]
	n ₀ [0]	n ₀ [1]	n ₀ [2]	n ₀ [3]	n ₀ [4]	n ₀ [5]	n ₀ [6]
т-в	n ₁ [0]	n ₁ [1]	n ₁ [2]	n ₁ [3]	n ₁ [4]	n₁[5]	n₁[6]
ļ	n ₂ [0]	n ₂ [1]	n ₂ [2]	n ₂ [3]	n ₂ [4]	n ₂ [5]	n ₂ [6]
† ₿	p ₁ [0]	p₁[1]	p ₁ [2]	p₁[3]	p ₁ [4]	u ₁ [0]+ p ₁ [5]	u ₁ [1]+ p ₁ [6]
ļ	p ₂ [0]	p ₂ [1]	p ₂ [2]	p ₂ [3]	p ₂ [4]	u ₂ [0]+ p ₂ [5]	u ₁ [1]+ p ₂ [6]
∱ K	q[0]	q[1]	q[2]	q[3]	q[4]	q[5]	q[6]

Simulation Result

Gilbert-Elliott Channel $(\alpha,\beta)=(5 imes 10^{-4},0.5),\,T=12$ and R=12/23

•
$$\alpha = 5 \times 10^{-4}$$

• $\beta = 0.5$

February 4, 2013

Simulation Result

Gilbert-Elliott Channel (α, β) = (5 × 10⁻⁴, 0.5), T = 12 and R = 12/23

Simulation Result-II

Fritchman Channel $(\alpha, \beta) = (1e - 5, 0.5)$ and T = 40 and R = 40/79, 9 states

Histogram of Burst Lengths for 9–States Fritchman Channel – $(\alpha,\beta) = (1E-5,0.5)$

February 4, 2013

Simulation Result-II

Fritchman Channel $(\alpha, \beta) = (1e - 5, 0.5)$ and T = 40 and R = 40/79, 9 states

Original Construction

Extensions — Dealing with Burst+Isolated Erasures

Modified Construction — K_0 erasures

•
$$(B+1)n \leq (\Delta - B - 1)u + (T - B)s$$

• $n \geq s(T + K_0 - \Delta)$
• $R = \frac{u+n}{2u+n+s}$
Extensions — Dealing with Burst+Isolated Erasures

Modified Construction — K_0 erasures

•
$$(B+1)n \le (\Delta - B - 1)u + (T - B)s$$

• $n \ge s(T + K_0 - \Delta)$
• $R = \frac{u+n}{2u+n+s}$
 $K_0 = 1$
• $\Delta^* = T + 1 - \sqrt{T - B}$
• $R = \frac{T+1-2\sqrt{T-B}}{T+B+1-2\sqrt{T-B}}$

February 4, 2013

Compression Vs Error Propagation

GOP Picture Structure¹

	Compression	Error Propagation
Predictive Coding	\checkmark	×
Still Image Coding	×	

- Interleaving Approach
- Error Control Coding

¹Source : http://www.networkwebcams.com

Information Theoretic Model

- Compression Rate: R
- Erasure Burst Length: B
- Recovery Window: W

Rate Recovery Function: R(B, W).

Problem Setup

 Source Model: Sequence of vectors — Temporally Markov and Spatially i.i.d.

$$\Pr(\mathbf{s}_i^n | \mathbf{s}_{i-1}^n, \mathbf{s}_{i-2}^n, \dots,) = \prod_{j=1}^n \Pr(\mathbf{s}_{ij} | \mathbf{s}_{i-1,j})$$

• Channel Model: Burst Erasure Model

$$g_i = \begin{cases} f_i, & i \notin \{j, j+1, \dots, j+B-1\} \\ \star, & \text{otherwise} \end{cases}$$

Problem Setup

 Source Model: Sequence of vectors — Temporally Markov and Spatially i.i.d.

$$\Pr(\mathbf{s}_i^n | \mathbf{s}_{i-1}^n, \mathbf{s}_{i-2}^n, \dots,) = \prod_{j=1}^n \Pr(\mathbf{s}_{ij} | \mathbf{s}_{i-1,j})$$

• Channel Model: Burst Erasure Model

$$g_i = \begin{cases} f_i, & i \notin \{j, j+1, \dots, j+B-1\} \\ \star, & \text{otherwise} \end{cases}$$

- Encoder: $\mathcal{F}_i : \{\mathbf{s}_0^n, \dots, \mathbf{s}_i^n\} \to f_i \in [1, 2^{nR}].$
- Decoder: $\mathcal{G}_i : \{g_0, \ldots, g_i\} \to \hat{s}_i^n$.

$$\Pr(\hat{\mathbf{s}}_i^n \neq \mathbf{s}_i^n) \le \varepsilon_n$$

except for $i \in [j, \ldots, j + B + W - 1]$.

Definition (Rate-Recovery Function)

The minimum compression rate R(B, W) that is achieved when:

- Burst-Erasure Length = B
- Recovery Window = W

Error Propagation Window

Upper and Lower Bounds on R(B, W):

$$R^{+}(B,W) = H(s_{1}|s_{0}) + \frac{1}{W+1}I(s_{B};s_{B-1}|s_{-1})$$
$$R^{-}(B,W) = H(s_{1}|s_{0}) + \frac{1}{W+1}I(s_{B+W};s_{B-1}|s_{-1})$$

Upper and Lower Bounds on R(B, W):

$$R^{+}(B,W) = H(s_{1}|s_{0}) + \frac{1}{W+1}I(s_{B};s_{B-1}|s_{-1})$$
$$R^{-}(B,W) = H(s_{1}|s_{0}) + \frac{1}{W+1}I(s_{B+W};s_{B-1}|s_{-1})$$

- Upper bound : Binning based scheme.
- Upper and Lower Bounds Coincide: W = 0 and $W \to \infty$.
- Identical Scaling of Upper and Lower Bounds
- Lower Bound is tight for certain models.
- Extensions to Gaussian Case

Lower Bound

Let B = 1 and W = 1. Encoding of s_j^n, s_{j+1}^n

Lower Bound

Let B = 1 and W = 1. Encoding of s_j^n, s_{j+1}^n

Lower Bound

Let B = 1 and W = 1. Encoding of s_j^n, s_{j+1}^n

Lower Bound $R_j + R_{j+1} \ge H(s_j | s_{j-1}, s_{j+1}) + H(s_{j+1} | s_{j-B-1}).$

Fading Channels

Block Fading Channel

$$\mathbf{y}_i = h_i \mathbf{x}_i + \mathbf{z}_i$$

- Block Fading Channels: n symbols per block
- Source Packet: One in each coherence block nR bits
- Decoding Delay: T coherence blocks

Block Fading Channel Model

Fading Channels

Block Fading Channel

$$\mathbf{y}_i = h_i \mathbf{x}_i + \mathbf{z}_i$$

- Block Fading Channels: n symbols per block
- Source Packet: One in each coherence block nR bits
- Decoding Delay: T coherence blocks

Fading Channels

Block Fading Channel

$$\mathbf{y}_i = h_i \mathbf{x}_i + \mathbf{z}_i$$

- Block Fading Channels: n symbols per block
- Source Packet: One in each coherence block nR bits
- Decoding Delay: T coherence blocks

Diversity-Multiplexing Tradeoff

Quasi-static fading Channels

$$\mathbf{y} = h\mathbf{x} + \mathbf{z}$$

- Quasi-static Channel
- SNR $\equiv \rho$, Rate $= R(\rho)$
- Multiplexing: $r = \lim_{\rho \to \infty} \frac{R(\rho)}{\log \rho}$
- Diversity $d = \lim_{\rho \to \infty} \frac{-\log \Pr(\rho)}{\log \rho}$

Theorem (Zheng-Tse 2003)

The diversity multiplexing tradeoff for a MIMO Rayleigh Fading channel with N_t transmit antennas and N_r receive antennas is a piecewise constant curve connecting the ponts $(N_t - k)(N_r - k)$ for $k = 0, 1, \ldots, \min(N_r, N_t)$

Diversity-Multiplexing Tradeoff

Quasi-static fading Channels

$$\mathbf{y} = h\mathbf{x} + \mathbf{z}$$

• Quasi-static Channel

• SNR
$$\equiv \rho$$
, Rate $= R(\rho)$

• Multiplexing:
$$r = \lim_{\rho \to \infty} \frac{R(\rho)}{\log \rho}$$

• Diversity
$$d = \lim_{\rho \to \infty} \frac{-\log \Pr(\rho)}{\log \rho}$$

Theorem (Khisti-Draper 2011)

The diversity multiplexing tradeoff for streaming source with a delay of T coherence blocks and a block-fading channel model is

 $d(r) = Td_1(r)$

where $d_1(r)$ is the quasi-static DMT.

- Upper Bound: Outage Amplification Argument
- Lower Bound: Random Tree Codes $\mathbf{X}_i = f_i(\mathbf{S}_0, \dots, \mathbf{S}_i)$.
- Delay Universal

Physical Layer Security

- Secret-Key Generation Using Channel Reciprocity
- Fundamental Limits of Secret-Key Capacity
- Multiple Antennas for Secure Communication

Fundamental Limits of Streaming Communications

- Error Correction Codes For Streaming Data
- Deterministic Channel Models
- Sequential Compression under Error Propagation Constraints
- Streaming Data over Block Fading Channels (DMT)