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Abstract

Motivated by recent interest in physical-layer secret-key generation over wireless fading channels, we study the non-coherent
secret-key generation capacity of a block-fading wireless channel with channel reciprocity and bi-directional (two-way) commu-
nication. We assume a non-coherent main channel, i.e., the realization of channel gains on the main channel is not known to any
terminal. The eavesdropper is assumed to have both perfect CSI of its own channel and orthogonal observations from the forward
and backward channels. As our main result we establish new upper and lower bounds on the secret-key generation capacity with
public discussion, which are structurally similar.

The upper bound can be expressed as a sum of three terms — one of the terms arises due to channel reciprocity, while the
other two terms correspond to communication on the forward and backward channels respectively. In the limit of long coherence
period, the contribution from channel reciprocity vanishes to zero, whereas the other terms prevail. The lower bound is based on
a separation based scheme. In each coherence block we use the first symbol for training while the remainder of the coherence
block is devoted to source emulation i.e., to generate correlated sources between the terminals. The lower bound expression also
consists of three terms and admits an interpretation similar to the upper bound expression.

For Rayleigh fading channels, in the high signal-to-noise ratio (SNR) regime, the gap between the upper and lower bounds is
shown to vanish inversely with the coherence period. Numerical results indicate significant performance gains over training-only
schemes even for moderate values of SNR and small coherence periods.
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I. INTRODUCTION

The properties of wireless channel at the physical layer provide several new opportunities for secret-key generation that
have not been used in traditional systems. When the legitimate terminals can use the same frequency in the carrier signal
the phenomenon of channel reciprocity [1]] applies i.e., the channel measurements on the forward and reverse channels are
strongly correlated. There has been a growing interest in using channel reciprocity for secret-key generation, see e.g., [2]-
[6] and references therein. Channel reciprocity does not exist in frequency division duplex (FDD) systems when the carrier
frequencies used in the forward and reverse channels are different. In such systems secret-key generation techniques based
on bi-directional communication between the legitimate terminals may be used. Such approaches exploit the independence in
channel fluctuations or noise between the legitimate receiver and eavesdropper channels. Such fluctuations could be engineered
artificially if required [7]], [8]].

In the present paper we study secret-key generation with public discussion over a two-way, block-fading channel. We
assume that at the beginning of each coherence period, the channel gains on the main channel are sampled from known joint
distribution. The actual realization of the channel gains of the main channel is not revealed to any of the terminals. In contrast
the channel gains of the eavesdropper are perfectly known only to this terminal. As our main result, we establish upper and
lower bounds on the secret-key capacity. The upper bound expression consists of a sum of three terms. The first term arises due
to channel reciprocity. The other two terms arise due to the communication over the forward and reverse channels respectively.
The first term vanishes inversely with the coherence period, whereas the the other terms remains bounded in this limit and
provide the major contribution to the upper bound. We also propose a two-phase coding scheme consisting of channel training
followed by source-emulation in each coherence block. The achievable rate also admits an interpretation similar to the upper
bound. Through suitable power allocation between the training and source emulation phases for Rayleigh fading channels, we
show that the achievable rate coincides with the upper bound in the limit of high SNR and long coherence blocks. Numerical
evaluations further indicate significant improvements over training-only schemes.

There has been a rich literature on information theoretic secret-key generation first introduced in [9], [[10] and subsequently
studied in e.g., [11]-[15]. However these works are not directly applicable to the wireless scenario considered in the present
paper. References [16], [17] study secret-key generation over a state-controlled broadcast channel. While the state sequence
could model fading over a wireless channel, the cost of acquiring the state knowledge is not accounted for in these works.
Secret-key generation over a fast fading Rayleigh channel in the forward direction and a public discussion channel in the
reverse direction have been studied in [18]], [[19] for the case of coherent channels and in [20] for the case of non-coherent
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Fig. 1. Problem Setup. A two-way fading channel with two legitimate terminals and one eavesdropper terminal. The legitimate terminals A and B are
required to agree on a common secret-key. The fading gains h4 g and hp 4 are not revealed to any terminals, whereas the g4 and gg g are revealed to the
eavesdropper. In addition to the wireless fading channel, terminals A and B can also exchange messages over an external public discussion channel, which
are revealed to E.

channels. However these works only consider one-way fading channels and do not account for the role of channel reciprocity
in secret-key generation, which has been the central focus of practical approaches. The most closely related work to the present
paper is reference [21], where the authors study a two-way setup with perfect reciprocity over the main channel. The authors
propose a coding technique consisting of channel training and secret-message transmission. Unfortunately the secret-message
rate is non-zero only when the eavesdropper’s channel gain is, on average, weaker than the legitimate receiver’s channel. To
our understanding this is because power allocation over the fading states has to be precluded in the communication stage, as
this will leak information about the fading states to the eavesdropper. The present paper differs from [21] as it replaces the
secure communication stage with a source-emulation scheme. This yields improvement even when the eavesdropper’s channel
is statistically stronger. Furthermore assuming imperfect reciprocity over the main channel we also present a novel upper bound,
and show that it is tight in the regimes discussed above. In other related works, the delay-limited secrecy framework [22],
[23] also requires secret-key generation as an integral building block. The ergodic behaviour of the channel is exploited to
maintain a steady buffer of the secret-key whereas each transmitted message is secured using a one-time pad. The role of
channel sparsity in secret-key generation is studied in [24]], [25].

Even in the case of classical communication, without secrecy constraints, to the best of our knowledge fundamental limits
have only been investigated in the case of one-way communication [26]—[28]]. The problem of two-way communication appears
considerably more challenging and has been considered in only a limited set of papers e.g., [29], [30]. While most of the prior
work considers perfect reciprocity i.e., the channel gains in the forward and reverse link are identical, in this work we consider
imperfect reciprocity. We believe that this assumption is justified in practice. In general achieving perfect channel reciprocity
in baseband is challenging because different terminals use different I/Q mixers, amplifiers and path lengths in the RF chains.
While closed-loop calibration can be performed (see e.g. [31]], [32]), such methods can become challenging if the calibration
needs to be done in the open air. Hence we believe that our assumption of imperfect reciprocity could be more realistic. We
note in advance that while our proposed coding technique can also be applied to the case of perfect reciprocity, the upper
bound becomes degenerate in this special case.

II. SYSTEM MODEL AND MAIN RESULTS

The problem setup is described in Fig. [I] Nodes, A and B are legitimate terminals, whereas node E is the eavesdropper.
On the forward channel, at time ¢ € {1,2,..., N}, node A transmits a (complex valued) symbol x4(¢) € C, and nodes B and
E observe yp(t) and zag(t) as follows:

yB(t) = hap(t)xa(t) + np(t), (D
zap(t) = gap(t)xa(t) + nap(t). 2)

On the reverse channel, at time ¢, node B transmits a symbol xp(t) € C, and nodes A and E observe y4(t) and zpg(t) as
follows:

ya(t) = hpa(t)xp(t) + na(t), 3)
ZBE(t) :gBE(t)xB(t)+nBE(t). 4)

We assume that all the additive noise variables in (I)-(d) are mutually independent and sampled i.i.d. from CN(0,1). The



input symbols x4 (t) and xp(t) satisfy an average power constraint i.e.,

| N
~ Z xp(t)[*
t=1

We assume a block-fading channel model with a coherence period of 7" symbols and assume that the communication spans K
coherence blocks i.e., N = KT Thus for each i € {0,1,..., K —1}, the coherence block ¢ spans the interval [iT'+1, (i+1)T].
At time ¢t = iT + 1, the channel gains, hap(t), hpa(t), gap(t) and ggg(t), are sampled from a joint distribution

N

=D ()P

t=1

E <P F <P &)

Phap.hpa (hAthBA) 'pgAEygBE(gAEvgBE) (6)

and remain constant in the interval [¢7 + 1, (¢ + 1)7T]. Note that we assume that the channel gains of the eavesdropper are
independent of the channel gains over the main channel. This assumption is only made to simplify the rate expressions. We
believe that the results can be easily extended to the case where all the channel gains are drawn from some joint distribution,
although the bounds will be more involved.

Remark 1: In the proposed setup, the eavesdropper observes the forward and reverse channel outputs over orthogonal channels
(c.f. Z) and (@)). This is clearly a stronger model than the setup when only a superposition of x4(t) and xg(t) is observed by
the eavesdropper i.e., the secrecy rate in the present setup can also be achieved in the setup where the eavesdropper observes
only the superposition signal. In practice if the eavesdropper can separate out the signals over the forward and reverse channels,
by e.g., using multiple antennas, then too the present setup can be applied.

Remark 2: Note that nodes A and B are assumed to operate in a full-duplex mode i.e., they can transmit and receive
simultaneously. Our results can also be easily generalized if the terminals operate in a half-duplex mode, provided that the
transmission schedules are fixed (e.g., if the nodes alternate during transmission).

We will also assume that a public discussion channel is available for communication. After the transmission of x4(t), and
before the transmission of x4 (¢ 4+ 1) on the forward channel (and likewise after the transmission of xz(¢) and before the
transmission of xz (¢ + 1)) the terminals can exchange L rounds of messages over a separate discussion channel shown in

Flg ¢A(t) £ {wA(t? 1)7 LR ¢A(t7 L)} and ¢B(t) £ {q/jB(tv 1)7 LR wB(t7L)}a where
wA(tvj):\IlAO/f&? tB_lﬂvZ]B(tﬂl)w"»wB(tmj*1)amA) (7)
Q/JB(tmj):LI,B(yg’a Ziluwz‘l(tal)a”-va(uj_1)amB)7 (8)

denote the messages transmitted by nodes A and B respectively. The messages transmitted over the discussion channel are
also revealed to the eavesdropper. The transmitted symbols x4 (¢) and xp(t) can be expressed as:

xa(t) = faeyy s ma, ) ©)
xp(t) = feelyg ' mp, i ). (10)

The secret-key at the end of communication is generated as follows:
ka=Ka(ma,yd N, ¥%), ks =Ks(ms,yg, ¥h,¥5). (1)

Remark 3: We note that in practice the public discussion messages could also be transmitted over the wireless channel. This
will require additional overhead and thus reduce the secret-key rate. The availability of a separate public discussion channel
enables a conceptually simpler coding scheme where the relative contributions from channel reciprocity and source emulation
can be easily identified.

A secret-key rate R = %H (ka) is achievable if for every € > 0 there exists a N sufficiently large such that Pr(ks # kg) < ¢
and

1
NI(kA;ZiXV»ng¢g7¢g7gAVEaggE) S 6(5)7 (12)

for some function §(¢) that goes to zero as £ — 0.
The largest achievable rate is the secret-key capacity which is the quantity of interest. We next present upper and lower
bounds on the secret-key capacity.

A. Upper Bound

We present the following upper bound on the secret-key capacity.
Theorem 1: An upper bound on the secret-key agreement capacity, with (or without) public discussion is given by the
following:

1
RT = TI(hAB;hBA)-i-RXB—i—REA (13)



where R} ; and R}, are defined as follows:

P(hag)|has|?
RY . = max E{lo (1+ (14)
AB T p(yePr & 1+ P(hap)|gae|?

P(hpa)lhpal?
RL, = max E{lo <1+ , 15
BA ™ p()eP & 14+ P(hpa)lgse|? (1

where the maximization in is over the set Pr of all power-allocation functions on the forward channel that satisfy the
average power constraint E[P(hsp)] < P, and the maximization in (I3) is defined similarly.
]
An interpretation of the upper bound is as follows. The term I(hap;hpa) denotes the contribution from channel
correlation. The scaling factor % is due to the fact that the channel gains remain constant over the duration of one coherence
block. The other two terms Rj p and RE 4 denote the contribution to the secret-key from the forward and reverse channels
using public discussion respectively [9], [10]. The upper bound expression (I3) indicates that the total secret-key rate cannot
be larger than the sum of these three terms.

B. Lower Bound

Our lower bound involves a separation based scheme. In each coherence block we reserve the first symbol for channel
training and use the remainder of the block for source emulation [9], [10] .
Theorem 2: An achievable secret-key rate with a public discussion channel is given by:

_ 1 . A T-—-1, _ _
R :g}%{TI(hAB;hBA)+T (RAB+RBA)} (16)
where we have introduced,
R 1
hap & hap + ——=ha )
VP
N 1
hpa £ hpa + hp (18)
VP,

to be noisy observations of the channel gains on the forward and reverse channels respectively, 14 ~ CN(0,1) and np ~
CN(0,1) are independent of all other random variables and

_ Py|hap|? )] < Py >
Ryp=FE|log({l+ ————= || —log |1+ 19
AB [ g( 1+ Plgar|? & 1+ P (19)

_ Pylhpal? Py
Rgy,=FEllog(1l+ ————— || —log |1+ , 20
BA { g< 1+ Polgpn)? & 1+ P, 20)
where P; and P, are non-negative constants that satisfy

P+ (T —1)P, <TP. (1)
|

The interpretation of the achievable rate is very similar to the upper bound. The first term in is the contribution of
channel reciprocity to the overall secret-key rate. The rates corresponding to R, and Ry, are the contributions to the
secret-key rate by the forward and reverse channels when source emulation is used. The factor (1 — %) is due to the fact that
the proposed scheme only uses 7' — 1 symbols in each block for source emulation. The penalty terms in (I9) and (20) arise
because in our analysis of the source emulation phase, we will assume that the eavesdropper is revealed the true channel gains
of the main channel, whereas the intended receivers only have access to the noisy channel estimates. Finally we note that the
expressions in (I9) and 20) do not involve power allocation over fading states as this is precluded in our coding scheme.

We note that the achievable rate (I6) is structurally similar to the upper bound expression (I3). The following result shows
that the upper and lower bounds are indeed very close in the high signal to noise ratio (SNR) regime for Rayleigh fading
channels.

Corollary 1: In the high SNR regime, assuming that h4p and hp4 are jointly Gaussian, zero mean, unit variance random
variables, the upper and lower bounds satisfy the following relation:

. _ 1
Jim {RT(P)—Rg(P)} < 77 (22)
where R*, and R~ are given by (I3) and respectively and
hag|? hpal?
N AR [1og <1+ | AB|2>}+E [1og <1+ | BAL)} . (23)
lgaE| lgsE|



C. Numerical Comparisons
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Fig. 2. Bounds on the SK capacity as a function of SNR for a coherence Fig. 3. Bounds on the SK capacity as a function of coherence period for SNR
period of 7" = 10. = 30dB.

We present numerical comparisons between our upper and lower bounds in Fig. [2] and Fig. 3] Fig. 2] shows the bounds as a
function of SNR when the coherence period 7" = 10. Fig. [3] shows the bounds as a function of the coherence period 7" when
SNR = 30 dB. In both figures we assume that the channel gains are all drawn CA/(0, 1) and let p denote the cross-correlation.
In Fig. 2] we fix p = 0.95, while in Fig. [f it is fixed to p = 0.97.

The upper-most plot in Fig. 2] and Fig. ] marked with squares, is the upper bound in Theorem [T} Note that for small values
of T' the contribution from channel-reciprocity term in (I3)) is dominant. However when T increases the contribution of this
term diminishes and the achievable rate saturates to the contribution from the remaining two terms in (T3).

The plot below the upper bound, marked with asterisks, is the lower bound with public discussion in Theorem [2} As we
increase T', we note that the gap between the upper and lower bound decreases inversely with the coherence period in Fig. [3]

We also have two additional plots for comparison in both Fig. 2] and Fig. ] The plot marked with circles is an achievable
rate using the separation based scheme when the public discussion channel is not available [33]]. We do not develop this lower
bound in the paper as it appears to exhibit a considerable gap from the upper bound. The lowermost plot is a simple upper
bound on training based schemes Rtmmmg = —7 log(1— p?). This bound is attained by revealing the respective channel gains
to the legitimate receivers. Note that the training only scheme is far from optimal even when correlation coefficient is close to
1.

III. UPPER BOUND

We provide a proof of Theorem [T] in this section. We assume that the communication spans over K coherence blocks and
let N = K - T. In our analysis below we use the notation that g* = (g, g ) and 2! = (Z4 5, zh ).

NR = H(ka) (24)

= I(ka; kp) + H(kalks) (25)

= I(kaskp) = I(ka; 2", g™ 9 ¢5) + I(kas 2", g™ ¢4, 9 3) + H(kalkp) (26)

< I(kasks) = I(kas 2", g 9%, 95) + N7(e) 27)

< I(ka; kpl2™, g™, 93, ¥5) + Ny(e) (28)

< I(ma,yXsmp,yg |2V, 8", &, ¥5) + N(e) (29)

< I(ma,yd, hgasma, v, BXpl2" g™, ¥, ¥5) + Nv(e) (30)

where v(¢) is a functlon that approaches zero as ¢ — 0 and we apply Fano’s Inequality [34] and the secrecy con-
stralnt (ﬂz[) in l and ([@9) uses the fact that the secret-keys are computed using ka = Ka(ma,yY, Y, %) and kg =
Ks(mg,yp ,w A ) respectively. We next show the following lemma that successively reduces the N letter expression

in
We can successively reduce the above upper bound using the following two Lemmas. These lemmas are based on repeated
application of the chain rule of mutual information. Their proofs are delegated to the Appendix.



Lemma 1: For each t € {1,..., N}, we have that:

I(ma,yh, hyasmp,yh, hiplz' gV W, ¥h) < I(ma,yh, hiame, v, B2 g™, o' i ). €3]

Eq. (1) states that removing the conditioning of the public messages 1 4 (t) = {1a(t,1),...,%a(t, L)} as well as 15 (t) =

{¢Yp(t,1),...,¢p(t,L)} only increases the mutual information expression. The special case when ¢ = 0 is separately stated
below.

I(mA7 th; mg, th|gN7 1!’,4(0)7 ’d’B(O)) < I(mA’ th; mg, th|gN) (32)

|

Proof : See Appendix @ |
Lemma 2: For each ¢t € {1,2,..., N}, we have that:

t N . t N t N t—1 t—1 t—1 N . t—1 N t 1 t—1
I(mA7yAahBAamB7yBahAB|zug YA ¥B )SI(mA7yA 7hBA7mB7yB 7hAB‘Z 7g ¥ B )

+1(xa(t); y(1)|245(t), 848 (1), hap(t)) + I(x(t);ya(t)|z8E(t), 88E(1), hpa(l)). (33)

O
Proof : See Appendix [B] W
We show how to reduce (30) by successively applying Lemma [I] and Lemma 2} Substituting (3T)) with ¢ = N into (30) we
have:

NRSI(mAay.fl\[’th;mBayg’th‘zN Nawga¢g)+N7( ) (34)
SI('"Av.yAvhBA7”7Bv.yB7hAB‘zN N’ g 17 B )+NA/() (35)

Next substituting (33) in Lemma 2] with ¢ = N, into (33)

NR < I(ma,yy ™" hgasme,yg ~ hiplzY g™, 90 9 ™) + Nq(e)
+1(xa(N); yB(N)|zap(N), ga6(N), hAB(N)) +1(xg(N); ya(N)|zpr(N), g8E(N), hga(N)) (36)
By recursively applying (31)) and (33) for t € {N — 1, N —2,...,1} and finally applying (32) we have that
NR < I(mA7 hgfh mp, th|gN)+

N N

D I(xa(t); ys(t)|zan(t), gan(t), has () + > I(xp(t);ya(t)|zee(t), 855 (t), hpa(t)) + N7(e). (37

t=1 t=1

Recall that the random variables m4 and mp are mutually independent, and independent of (hY 5, h ., g"). Furthermore
since the channel is block fading channel model, each sequence of channel gains, e.g., h'Y is piecewise constant for a duration
of T symbols and contains only K = N/T independent channel gains. Thus we have

I(ma, th? mpg, h,IXB|gN) = I(hBA7 hAB|g ) (38)
= KI(hpa; halg) (39
— KI(hpa; hag) (40)

where @) uses the fact that the channel gains (hap, hpa) are sampled independently of (gar, gsr) (see @).
Next we show that there exists a power allocation function P(-) satisfying E[P(hap)] < P, such that:

P(hap)lhap|? )}
41
L+ P(hap)|gae/? @b

N ZI (xa(t (t)|zaE(t), gaE(t), hap(t)) < E [log (1 +

Let Pi(hap) denote the average power of symbol x4p(t) when the gain on forward-channel equals h4p i.e., we have
El|xap(t)|?|hap = hap] = Pi(hap). Using the fact that a Gaussian input distribution maximizes the conditional mutual
information (see e.g., [[35]]) it follows that:

T0ea(): y5(Olzar(8), g5 (), has(t) < E [log (1 ;

Pi(hag)|has|? )] 42)

14 Pi(haB)|gar|?
Thus we have that

P,(hap)|hap|? )]
I( h FE |1 1 43
E (xa(t);yB(t)|zap(t), gap(t), hap(t)) < ;:1 {0 < 7 T Pi(hap)lgan)? (43)

N
Pi(hag)|has|? >

log (1 44

Z Og< + 1+ Pi(hag)|garl? “)

t=1

E




&N Pohag)|hagl?
<NE llog <1+ . N - L tP h 5 (45)
+ 5 2t Pr(haB)|gaE]

P(hap)|ha|? )}
=NE |l 1 46
{Og< * 1+ P(hag)lgael?/) |’ (46)

where P(hap) 2 1{[ t 1 Pt(hAB) is the average power allocated when the fading state equals hap and (@3) uses the fact

that the function f(x) = log (1 +

) is a concave function in x and hence Jensen’s inequality [34] applies. Also note that

N
Z (har ] (47)

E[P;(haB)] (48)

1+ba:

E[P(haB)]

2 \

I
=
Mz

H
Il
—

< , < P. (49)

==
NE
N,

H
Il
—

This establishes @T). In a similar fashion we can show that there exists a power allocation function P(-) satisfying F[P(hpa)] <
P such that

%Z (t)lzBE(t), 8BE(L), hBA(t)) < E [log (1 + 141:(127&2);;?;3';9?)} . (50

(G

Substituting (@0), @6) and (50) into (B7) and using N = KT, we have that for a certain power allocation functions the
secret-key rate satisfies:

1 P(hap)|hap|? )] { < P(hpa)lhpal? ﬂ
R < —I(hag;h + FE |log |1+ + FE|log |1+ + v(e). 52
T (has; hsa) { g( L+ P(hap)|gaE|? 5 1+ P(hpa)lgBEl? ") 62

Since (52) must hold for every € > 0, and y(¢) — 0 as ¢ — 0, this completes the proof of Theorem

IV. LOWER BOUND

Our coding scheme in Theorem [2| is a two-phase scheme consisting of training followed by source-emulation. In each
coherence block, the first symbol transmitted on each of the forward and reverse channels is a training symbol i.e., x4 (iT+1) =
xg(iT +1) = /Py fori € {0,2,..., K —1}.

For each j € {2,...,T} we sample x4 (iT+j) ~ px,(-) and xp(iT + j) ~ px;(-) independently of all other symbols where
Px, (+) and py, () are fixed distributions such that both E[|x4|?] < P, and E[|xg|?] < P,. Note that P; and P, denote the
power in the training phase and the transmission phase. For convenience we denote X4 (i) € CT~1 to be the vector of 7' — 1
symbols transmitted in the i-th coherence block on the forward channel and similarly let x5 (i) € CT~! denote the vector
of T'— 1 transmitted symbols on the reverse channel. Using (I)-(d), the corresponding output in the i-th coherence block is
expressed a

(Forward Channel): yu(i) = hap(i) - X4 (i) + np(i), Zap(i) = gap(i) - xa(i) + nagp(i), (53)
(Reverse Channel): ya(i) = hpa(i) - xp(i) + na(i), Zpgp(i) = gpe(i) - xB(i) + npp(i), (54)

where y4(i),yp(i) € CT~! denote the output symbols in coherence block i over the forward and reverse channels respectively
and Z4g (i) and Zgg(i) denote the associated outputs at the eavesdropper. All the additive noise vectors have i.i.d. entries
sampled from CN(0, 1).

Let hap(i) and hp (i) denote the channel estlmates obtained by terminals B and A over the forward and reverse channels
respectively in coherence block ¢ as defined in and (I8). Thereafter terminal A observes y4(i) whereas terminal B
observes yp(i). At the end of K such coherence blocks as indicated in Table termmal A has access to (EB PR
whereas terminal B has access to (h5, XK §%). The eavesdropper observes (g%, 855,25 2, 2% ). The sequences generated
in this fashion are then used to extract a common secret-key as discussed below.

'In this section, in the analysis of our proposed coding scheme, it is convenient to let h4 (i) and hp 4 (i) denote the fading gains in coherence block 4.
Thus in Table the sequence hK denotes a length K sequence of channel gains corresponding to the K coherence blocks. The other channel sequences
have a similar interpretation. The reader is alerted that notation is different from the channel model (e.g. (I)) where the channel sequences must be of length
N.



TABLE I
SIDE INFORMATION GENERATED AT THE TERMINALS IN THE TWO-PHASE SCHEME

Sequence/Terminal A B E

Channel Sequence th hXB (gXE, ggE)
Source Sequence - Forward Channel ifg yg if B
Source Sequence - Reverse Channel yff ig ig B

A. Discretization of Continuous Valued Random Variables

In the analysis of the coding theorem, we need to consider discrete valued random variables at the legitimate receivers. We
adapt following the technique outlined in [36, pp. 50-51].

o The channel estimates h BA and h ap are discretized as follows. Let us define:
I ={-JjA1, =0 - DA1,..., (1 — DA, jAL}, (55)
where j is an integer and we select Ay = % We find elements in Z; closest to the real and imaginary parts of hap and

denote [E A B} ~as the resulting quantization. We define [773 A} ~in a similar fashion.

j J
o We discretize x4 (t) and xp(t) to [xa(t)], and [xp(t)], respectively, whose real and imaginary parts take values in the set
Io = {—kAg,—(k—1)Aq,...,(k—1)Ag, kAs}, (56)

where k is an integer and Ag = ﬁ We select [x4(t)], to be the closest such point to x4(t) with |[xa(£)],]| < |xa(t)|.

Thus we have that E [\[XA(t)]k|2] < E[|xa(t)[*] < P,. We define [xg(t)], in an analogous manner.

o We also discretize the channel output at each legitimate receiver. Note that from (I), we have yp i (t) = hap(t)[xa(t)], +
nap(t). Note that yp 1 (t) is continuous valued even through [x4 ()], is discrete. We discretize yp 1 (t) to [yp,x(t)], whose
real and imaginary parts take values over the interval

Iy = {-1A3,—(1 — DAz, ..., (I — 1)A3,lA3} (57)

where [ is an integer and As = %/l

Note that since we use scalar quantization and the sequences lAvﬁfB and Eg 4 are sampled i.i.d. the sequences [1353} ~and
J

. are also sampled ii.d. Further defining

zapk(t) = gap(t)[xa(V)]; + nap(t) and zpp i (t) = gee(t)[xp(t)], + npe(t) and using zF £ (z5p 285 5,) and g~ a
(g5, g5), we have that:

[ﬁg A} ~are also sampled iid. In a similar way the sequences [x%] , and [xE]
j

1) < (z.e") (58)

k), o (hhp, [X5],) < (2F.8%) (59)

are satisfied. Note that for each h 4B we have that

j
J — oo in a point wise fashion. In a similar manner, as & — oo, we have that [x4(t) — [xa(t)],.| = 0, [x5(t) — [x5(t)],| — 0.

Furthermore for each fixed k, as [ — oo, we have that |ya () — [yax(t)],| = 0 and |ysx(t) — [ys.x(t)],| = 0.
In the subsequent sections, we present our proposed coding scheme and the corresponding achievable rate for the discretized
variables above. Thereafter we argue that in the limit of vanishingly small quantization errors, the rate converges as expected.

EAB — {EAB} ‘ — 0, as 7 — o0, and similarly ’EBA — {EBA} — 0, as
J

B. Achievable Rate using Discretized Variables

For the discretized set of random variables we have the following achievable rate.
Proposition 1: An achievable secret-key rate using public discussion is given by:

_ 1 A - T—-1 _ _
Ry = =1 [hAB} E [hBA} B B (RAB At Rpy A) (60)
T j j T , ,
where hap and hp 4 are the MMSE estimates of channel gains hap and hp 4 respectively (c.f. (T7), (T8)) and

Rypa=1 ([}’B,k]l ; [xalys [U]j) —I(ly), ; zAEk 8AE, haB) (61)

Rpan=1(vasl s bl [u],) =1 (van); ; zzEos g8, hia) (©2)



where we have introduced [u] i £ <{/A1A B} , [713 A} ) The variables [x4], and [xp], are obtained by discretizing x4 and xp
J J

respectively as in section Furthermore x4 ~ py, (-) and xp ~ Py, (+) are sampled independently and satisfy E|[|x4|?] < P,
and E[|xp|?] < P». The powers P; (c.f. (T7), (I8)) and P, must satisfy P, + (T — 1)P, < TP.

O
The coding theorem associated with Prop. [T]is presented in Appendix [C|

C. Achievable Rate: Extension to Continuous Valued Inputs

In this section, we further analyze the achievable rate in the limit that the quantization error due to discretization in
section approaches zero. In this limit, the rate required over the public discussion channel will also increase to infinity.
However we note that there is no rate constraint imposed over the discussion channel and thus the proposed rate can be
approached arbitrarily closely. In our analysis we make use of the following fact:

Fact 1: (36, pg. 23] Let u and v be two arbitrary random variables (discrete or continuous) with a joint probability measure
w(u, v) and marginal measures p(u) and p(v). The mutual information between v and v, defined as,

jv) = _duluv) u,v
1) = [ os gy ey )

where dy(u, v)/d(u(u) x p(v)) denotes the Radon-Nikodym derivative of the joint probability measure with respect to the
product measure, can be equivalently expressed as:

I(u;v) = lim I ([ P [v]k) (64)
jyk—o00
where [u]; and [v], are any sequence of fine quantizations of u and v respectively such that ’u — [y] j‘ and |v — [v], | tend to
zero as pointwise as j — oo, and £ — oo, respectively . R
Upon examining (61),(62) and taking j,! — oo, with k fixed, we have that with u = (hap, hpa):

Jdim 1 (s, s bealgs [o],) = 200 bealo ) (65)
Jim 7 (vB.kl, i zaBk:8aE, haB) = I(yB ki ZAE K 8AE, haB) (66)
l,}iinool ([yAkl ; XB k’ 7) }/A k> XB]]ga ) (67)
llir&I (lvanrl, s zBEK 8BEhBA) = 1(YAK: ZBE K, 8BE: hBA) (68)

Similarly the first term in (60) converges as follows

lim 1 ([EAB} E [BBA} ) = I(hap: hpa). (69)
We now consider the term
I(yB.k: [xaly> u) = I(yB.k; ZAE K, 8AE, haB) = MYB k|ZAE k> 8AE, haB) — P(yB.k|[Xa]} 1) (70)

We will show that when x4 ~ CN (0, P») we have that

. Pylhag|? )}
lim inf 7 gap hap) > E |log2me (14 — 21481 71
im in (YB.k|ZAE k> 848, haB) {Og We( 15 Polgan] (71
P
lim sup Ai(yp 1 |[xal,, u) < log2me (1 + —2 (72)
k—o0 ' 1+P1

Together (71) and (72) imply that:

o Pylhap|? Py
1 f{I ; -1 ; h >E |l 1+ ——— || -1 1 7
iminf {7 (ypx; [xaly, u) = L(yp.k; 2aB,1: a8, hap)} 2 {og( 1T Polgan]? og (1415 (73)

We first establish (7T). Note that

WyB,k|zaE k) 8AE, haB) = MYB ks ZaE k|8AE, haB) — M(ZAE K |8AE, haB) (74)
= yB,ksZAE k|8AE, haB) — MzAE k|8AE) (75)

Furthermore since F [HXA] kﬂ < P,, and [x4], is independent of gap, we have, using (2)),

El|lzapx’lgar = 9ar) < |g9ap|*Ps + 1. (76)



Thus using the fact that the differential entropy under a variance constraint is maximized by a Gaussian distribution we have
that

Mzap.klgas) < Ellog (2me(|gap* P2 + 1))]. (77)

Next we show
liminf A(yp,r, g k|has, g4p) > E [(log 2me)* (1 + Polhap|* + Palgarl*)] (78)

using an argument analogous to [36] pp. 77]. Eq. (77) and (78) together complete the proof of (7I). Note that for each
(hap = hap,8AE = gar) we have that

f}’B,kJAE,k(ya Z|hAB = hAB,ZAE = gAE) = /an (y - hAB[XA]k) “frap (Z - gAE[XA]k) dF[XA]k(J") (79

= By, {an (y — haglxaly) - foaw (2 — 9aE[x4])) (80)

where np and ns g are the additive noise variables in (I) and [@). Since f,,, (-) and f,,, (-) are bounded and continuous functions

Tyszaps Y 2lhap = hap,gar = gap) converges to f,. -, (Y, 2z|hap = hap,gar = gar) as k — oo. Furthermore we
have that

1
Jyszass W 2lhas = hap,zag = gap) < nax Jns(MB) fras(nag) = o (81)

Therefore, for each a > 0 we can express:

I(yB,k, zaEk|hAB, 8AE)

1
= h zams (Y21 haB, 9ap) 1o dydzdg apdh 82
ﬁw ngEj{ithB( AB) fean(9AE) fys i2am 4 (Ys 2lhaB: 9AR) gfyBszEk(y,dhAB,gAE) ydzdgapdhap  (82)

1

> f ]f yf 7{ F(han) F(948)Fys vznm (s 21han, gar) log dyd=dgapdhas
lhap|<a J]|gae|<a J|y|<a J|z|<a fyB,k,ZAE,k(yvzmAB)gAE)
(83)

where (83) follows from the fact that from (8T)) the integrand in (82) is always positive and therefore (83) is integrating over
a smaller set. By the dominated convergence theorem [36, Appendix B], upon taking k& — oo for each fixed a, the right hand
side converges to

1
?{ 7{ }l{ 7{ f(haB)f(9aE)fys.zax (U, 2lhaB, gaE) log dydzdgapdhap. (84)
hazl<a Jigasl<a Jiyi<a Jjzi<a fys.2a5 (Y, 2lhaB, 9aE)

Upon taking a — oo, the above expression in turn converges to i(yp, zag|hap, gar). Since x4 ~ CN (0, P,) the relation @)
now follows. _
To establish we let hap be the MMSE estimation error of hap given the observation /Py hap + ng. We can express

hap = hap + eap, where the estimation error ey satisfies Efleap|?] < 1+1 . Using (), we can express
hyselxal v) < B (ve | [xaly has) (85)
(hAB xal, +nB | [x ]kleB) (86)
h(eas[xal, + n | [xaly) &7
h(eaplxaly, + np) (88)
Py

<log2 1 8
< log 7T6<+1+P1> (89)
where (89) uses the fact that since the input [x4], is generated independently of hap and satisfies E[|[xa],|?] < P» we have
E [leaplxalyl?’] = Elleas |’ Ell[xal,|?] (90)

1

< P 91

ST p on

and we use the fact that differential entropy is maximized by a Gaussian distribution under a variance constraint. Since (89)
holds for every k, the inequality in (72) now follows. The proof of (73) is now complete.
In a similar fashion we can show that

Pylh 2 P
L inf {7 (ya x; [X8)x, 4) — I(yax; 2B k> 835> hpa)} > E [log (1 + 2'“'” —log (1 + 2 ) (92)
k—o0 1 —+ P1

1+ Polgpel?
The proof of (T6) follows by substituting (69), (73) and (92) into (60).




V. PROOF OF COROLLARY [1]

In this section we analyze the high SNR behaviour of the upper and lower bounds. In particular we will show that in the
limit P — oo, the upper and lower bounds in (T3)) and (T6) reduce to the following:

1
3 t < 2
Aim BT < —7log(l —p%) +7 (93)
1 oo T—1
F}gl})OR = —Tlog(l —-p7)+ —7 - 94)

where +y is defined in (23). The claim in Corollary [T] immediately follows from (93] and (94). Note that the first term in (I3)) is
independent of P and furthermore since h4p and hp 4 are jointly Gaussian, zero mean, unit variance and with a cross-correlation
of p it can be readily shown that

I(hap; hpa) = —log(1 — p?). (95)
The remaining two terms are upper bounded as follows. For any power allocation P(h4p) note that
P(hap)|hap|? )} { ( |hAB|2)]
Ellog |1+ < FEllog|1l+ 96)
Jou (1 T e B TP (
which follows since the function f(x) = 1475 s increasing in z for any a,b > 0. Similarly we have
riimaizaem)) < |0 )
E|log |1+ <E|(1+ . 97)
[ s < 1+ P(hpa)lgsel? lgsel?

The upper bound (O3)) follows by substituting (93), (96) and (@7) into (T3).
For establishing (94), we consider the secret-key rate expression (I6) in Thm We select Py = Y2 and P, = P — /P,

T—1
Note that as P — co we have that P;, P, — oo and % — 0. Since the function f(z) = 147 is bounded for all a,b > 0 we
can apply the Dominated Convergence Theorem to interchange the limit and expectation,
| Frige) |2 o5 (- )|
lim F |log| 1+ —F—— ||=F |log |1+ (98)
Pr—o00 { 8 ( 1+ Pylgar|? & lgan|?
| Frignr)| 2 s ()|
lim E |log|1+ ——FF——— ) |=E [log |1+ 99
Py =00 { ¢ < 1+ Plgsel ® lgspl? e
Furthermore since limp_,oc log (1 + fﬁ,l) =0
clearly holds, using (T9) and it follows that
1)1131 R,5(P)+ Rp,(P) =~ (100)

We next consider the first term in (I6). When hap and hp4 are zero mean, unit variance, jointly Gaussian random variables
with a cross-correlation coefficient of p, using (17) and (18)) it can be easily shown that

I(hap; hga) = log(1 — a?p?) (101)
where o = Pf) +7- It immediately follows that
lim —log(1 — a?p?) = —log(1 — p?), (102)
P1*>OO

Eq. follows by using (T00) and (T02) in (T6).
The proof of Corollary [T is now completed.

VI. CONCLUSIONS

In this paper we study the secret-key generation capacity over a two-way reciprocal block fading channel model with public
discussion. There are two principle factors that contribute to the secret-key: (i) the reciprocity between channel gain of the
main channel and (ii) interactive communication. We propose a two-phase separation scheme consisting of channel training
and source emulation in each coherence block. Through a suitable allocation of power between the two phases, we show that
the proposed scheme is near optimal in the high SNR regime for Rayleigh fading channels. More generally our results show
that, even for moderately long coherence periods, the contribution of channel reciprocity towards the secret-key generation
capacity is generally far less significant than source emulation. Thus in designing practical secret-key generation schemes over
fading channels, one should aim to exploit the interactive nature of the system as opposed to passive training.

In future work it will be interesting to study the problem setup when an external public discussion channel is not available.
The overhead for transmitting public messages needs to be explicitly considered in such systems and corresponding upper
bounds may also have to be developed. In the low SNR regime it appears that the associated scheme may be very different
than the proposed two-phase scheme [37]]. Similarly extending the secret-key capacity results to the case of multiple antennas
also remains an interesting topic for future research.



APPENDIX A
PROOF OF LEMMAT

Recall that we can express

Py = (Y vat,1),. .. pa(t, L)) (103)
Pl = (P vp(t1),...,¥p(t L)) (104)

where ¥4 (¢, j) denotes the j-th public message transmitted by node A after x4 (¢). It can be expressed as
Yalt,g) = Yalh, ¥ Bt 1), ... vp(tj — 1), ma) (105)

The message (¢, j) is defined in a similar fashion. Now we use the following inequalities:

I(ma,yh, h3as me, yh, hipl2' g™ ¢, ¢f) (106)
= I(ma, ya, hgas mp, yg, hipl2' g™ 9, ?1 {alt, ) h<j<e{¥B(t i) hj<e) (107)
< I(ma,ya, hga ¥alt, L); mBaYBahAB|Z &V P alt gy (WB(t ) hg<r) (108)
=I(ma,yh, h§aimp.yp, haplz' g™ ¢, tgl {¢A(t MHh<i<e-1,{¥st ) h<j<r) (109)
< I(ma,yh, hgasmp, yp, hip, ¥p(t D)z, g™, ¢4 s {alt, D h<j<o— (Vs ) h<j<—)  (110)
= I(ma,yh, hya; mp, v, hipl2' g™, it vl {T/JA(t Dh<j<e—1,{¥B(t, ) h<j<r-1) (111

where the equality in (T09) follows from the fact that 14 (¢, L) is a deterministic function of

{mAv}/IEM tB_la'll)B(ta 1), BRI ¢B(t,L - ]-)}
as indicated in (T03). In a similar manner (T11)) follows from the fact that v (¢, L) is a deterministic function of

{mp,yh % L bat,1), ... a(t, L — 1)}

Note that in following (T06)-(TT1) we have eliminated the messages (¢ a(t, L), 5(t, L)). By recursively applying the same
sequence of steps we successively eliminate the entire sequence of messages {14 (t, ), ¥ 5(t,7)} and the claim in (3T) follows.

The proof of (32) uses the sequence of steps analogous to (T06)-(TT1) along with the fact that 14 (0, j) is a deterministic
function of (ma,{¥'(0,k)}i<k<j—1) and likewise ©p(0,7) is a function of (mp,{1)a(0,k)}1<k<;j—1). The details are
completely analogous and will be omitted.

APPENDIX B
PROOF OF LEMMA [2]
Using the chain rule of mutual information we have

I(mAayA7hBA7vayB7hAB|z g o 17 tBil)
:I(mAy)/AvhBAamBa - hAB|Z ,g o 17 15371)

+ I(ma, yh, hY 4; ye(t)|2! -1 h mp, it it (112)

y YA, NBAsYB 7g yYB AB>MBy¥Y A »¥pB

:I(mAayZZ?th;mBayB hAB|z g t 17 t371)

+I(mAa ! hBA,yB( )|Z ag 7}’3 1 hABamB 1/’ 5 t371)

+I(yA( )7 B( )|Z 7g 7th_1 hAB7mB7yA hBAamA7 fA_la tB_l) (113)

_ t—1 N . t 1 t—1
_I(mAa)/A 7hBA7mB7}/B hAB|Z,g y¥B )

+I(yA( )'vath71 hXBlmA7yA hBA> ’g o 17 3371)

+I(mA7y,t4 ! hBAa.yB( )|zt7g vyB ! hAB7mB7 2_13 tB_l)

+ I(ya);ys®)|2, g™, y5 b gy me, vyt AN 4 ma, ' ) (114)

where we use the chain rule of mutual information in (T12)), (T13)) and (T14). Further note that in the proposed coding scheme
xa(t) = far(ma,y'7h ") and xp(t) = fB +(mp,yst ab'1). Therefore we can express:

I(YA(t)aYB(t)‘Ztag ayB hABamBayA hgfhmAa f4717 15371)

:I(YA(t)7YB(t)|Z ag 7yB 7hABamBayA_17thvayxA(t)aXB(t)7 fqla B_ )_ 0 (115)

where we use the fact that the forward and reverse channels are memoryless and the additive noise variables n4(t) and np(t)
are independent (c.f. (T), (B)) and therefore:

ye(t) <> (xa(t), hap(t), 2, xp(t), hpa(t)) < ya(t) (116)



where

A t N —1 t—1 f 1 —1
Q—{z,g ’YA 7yB hAB?hABt+17hBA’hBAt+1va’mB’ ) }

denotes the remainder of the terms in (T13) which are all independent of {n4(t), np(t)}.
We next consider the second and third term in (I14) and show that:

I(ya(t); mp,yp b plma, vyt han 2t g™ 9l th1) < I(ya(t); x5(t)|z6e(t), g8E(t), hA(t))
I(mA7y,t4_17th;yB(t)|zt7g ayB - hAB7mB7 ?Ala B ) <I(XA( ),yB(t)|ZAE(t),gAE(t),hAB(t))
We establish (TT8) below. Eq. (IT9) can be established in an analogous fashion and its proof will be omitted.

I(ya(t)imp,ygp ' higlma, yi~ ' hia, 25 8™, 9, tB’l)
ZI(YA ) mBath_l th7XB( )‘mAmyA hBAa ag s 1a g17XA(t))
= h(ya(t)|ma,y5 hBAv N R T XA(t))

- (}/A( )lmB y - hABva(t) mA7}/A hBsz g y 1? i;lva(t))

(t
(t
W(ya(®)ma, it hga,2' g™l i xa(t) — hly ()|XB(t)7hBA(t))
< hya()|hpa(t), zse(t), g8E(t )) — h(ya(t)[xa(t), hpa(t))

= I(ya(t);xs(t)|hpa(t), z8E(1), 8BE(L))

t—1

where (T20) uses the fact that x4(t) is a function of (ma,y’ ', 1% ") and similarly xp(¢) is a function of (mp,yj ',

Eq. (122) uses the fact that with € defined in (IT7), the Markov relation

ya(t) < (hpa(t),xp(t)) < (2, xa(t), hap(t))

holds. Eq. (I23) follows from the fact that conditioning reduces entropy. This completes the proof of (TT8).
We finally show that the first term in (I14) can be upper bounded as

t—1 | N . t 1 t—1 t—1 N . t—1 N t 1 t—1
I(mA7.yA 7hBA7mB,yB hAB‘z g ¥ B )Sl(m/hyA ahBA7mBayB 7hAB|Z ag »¥B

This is also established using the chain rule of mutual information as follows.

I(mAvyA  ha; mB, )/B S-SR 17 5971)
=I(ma,yy ' hgas me, v 7/7,43\2 g zan(t), zpe(t), i Y
< I(ma,yl ' hEa, zap(t);mp,yg ' b2 g™ zpe(t), ¥y L vE )
=I(ma,ys ' hgaime,yg bl g zep(t), ¥ PE )
+1(zap(t);mp,yg ' bpl2" = 8N, zep(t), ma, yi ' by, ¥l s )
Next recall that since x4(t) = fa(ma,y’ ", ¥’ ") we have:
I(zap(t);mp,y5 o lz g ze(t), ma,yy Lohga 1]5371)
= I(za(t);mp,yg ' hipl2' " 8", 2 (t), ma, i hEa, xa(t), ¥ b5 )
=li(zap(t)lz' ", 8", z5p(t), ma. yi ' hEa xa(6), 95 ¥5 )
—h(zap(t)2 ', 8", zpp(t), ma. yi ' hpaxa(t), mp,yp ' g i )

= I(zap(t)|xa(t), gar(t)) — W(zap(t)|xa(t), gar(t)) = 0
where (130) uses the fact that the forward channel (c.f. () satisfies

ZAE(t) <~ (XA(t)agAE(t)) — (Zt_lvgt_lvgi\ilvgBE(t)szE(t)v mAvyA hBA7 mBa.yB hAB? 54_17 tB_l)'

Thus substituting (130) into (T29) we have that:

I(mAvyj\_lﬁth;vath_lvthlztvgNa f471’ gl)

< I(mA,y;‘_l,th;vayg_l,thB|zt717gN,zBE(t) fA_l’ gl)

SI(mAayj(l?th;mBa)/th717hXB>ZBE( )|Z ug o 1, 26371)

SI(mAaYZ_l’th?mB’th_l’hJXB|Z ’g W 1’ 75Bl)
+I(mAvyz_lvth;ZBE(t”va}/B ! hABa z'~ 17g o 17 tB_l)

t—1 N . t—1 N t 1 t—1
SI(mAaYA vhBAva7YB 7hAB|z 7g y¥B )
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Phase I: Reconciliation of channel-estimates. Phase II: Reconciliation of source sequences.

Fig. 4. Reconciliation of source and channel sequences in the proposed coding scheme with public discussion. The public messages are denoted by © =
(Pa,Pp, ¥4, ¥p). In the analysis of the coding scheme, we use discretized version of the source and channel sequences.

The justification that the second term in (I34) equals zero can be established in an identical fashion as (I30), and will be
omitted. This completes the proof of (126).
The claim in Lemma [2] follows upon substituting (IT3), (TT8), (IT9) and (126) into (IT4).

APPENDIX C
PROOF OF ProP.[I]

We provide the coding theorem associated with Prop. [I| below. As stated in section the two-phase transmission scheme
generates correlated sequences in Table [, which are then discretized at the legitimate terminals, as explained in section [[V-Al
For convenience table [[I] shows the sequences available at each terminal after discretization below.

TABLE II
CORRELATED SOURCE AND CHANNEL SEQUENCES AFTER DISCRETIZATION
Sequence/Terminal A B E
Channel Sequence [EgA]j [EEBL (eXKp g55)
Source Sequence - Forward Channel [)’(fg } & {9{; kL if Bk
Source Sequence - Reverse Channel [yﬁf’ k]l x5, z¥ Bk

We establish the existence of a codebook C® that satisfies the following for sufficiently large K:

1) Both the legitimate terminals can decode sequences <[E§B} g {Eg A] B [yf’k}l, [ygk}) with an error probability no
J J
greater than dx ().
2) The equivocation at the eavesdropper satisfies:

1 - - _ _ _ _ _
7 ([#5]  [W5a] (950 95, | ©2 25 28 ) = s = 00 (136
where the quantity R, is defined in (60), © denotes the collection of messages that need to be exchanged over the
discussion channel, and 0k (g), 5% (¢) are function that can be made sufficiently small by selecting K sufficiently large.

An overview of the coding scheme is illustrated in Fig. 4| Note that the proposed code construction C® will only generate
a common tuple of sequences at the legitimate receivers satisfying (I36). The secret-key generation step will be discussed
subsequently.

A. Codebook Construction and Error Analysis
We define:

H

Rp. ) +2¢ (137)

(
H([/}BAM[/%AB} ) +2¢ (138)

RA,C



Rpy o= H (195.4], | Raly [u],) + 4 (139)

Ry, = H ([9a); | Raly [u;) + 42 (140)

where [u] j = ({B A B} , {/A;B A] ] and € is a sufficiently small positive constant that will be specified in the sequel.

J J
We next randomly sample four codebooks C4, Cp, S4 and Sp as discussed below.

e The codebook Cp is sampled by randomly and uniformly partitioning the set of all typical sequences [i)fB]} €
J
TE ([/A)AB} ) into 255, bins, such that there are 2K(1([hAB]J‘ t [ma],) <) sequences per bin.
J

o The codebook C4 is sampled by randomly and uniformly partitioning the set of all typical sequences [Eg A} €
J

K ([/A)BA} ) into 2% 4. bins, such that there are 2K(1([hAB]J‘  [ma],) <) sequences per bin.
J

o The codebook Sp is sampled by randomly and uniformly partitioning the set of all typical sequences [9§7k}l €

TX ([y5,];) into 2%F5.« bins such that there are oK (1(lys sliilxali:[u];)=3¢) sequences per bin.

e The codebook S, is sampled by randomly and uniformly partitioning the set of all typical sequences [yf k} €
iy

TX ([ya],) into 25%4. bins such that there are oK (I(asl; 5 [plilu];)—3) sequences in each bin.
The encoding steps are as follows.
o Given the sequence {EQ(B] , terminal B finds bin in Cp to which it belongs and transmits the bin-index ¢p over the
discussion channel. ’
« Given the sequence Eg A] , terminal A finds the bin in C4 to which it belongs and transmits the bin index ¢4 over the

. . J
discussion channel.

o Given the sequence yj{ | » terminal A finds the bin in S4 to which it belongs and transmits the bin index 4 over the
discussion channel.
o Given the sequence yg k] , terminal B finds the bin in Sp to which it belongs and transmits the bin index g over the
discussion channel.
We next sketch the decoding at legitimate terminals. The decoding proceeds in two phases. In the first phase the terminals
attempt to reconstruct channel sequences and in the second phase they attempt to reconstruct the source sequences.

Upon receiving ¢ g, terminal A searches for all sequences in the bin associated with ¢ p that are jointly typical with [ﬁg A} .

J

If there is a unique sequence [hﬁf B} _ that satisfies this, then it is selected as the reconstruction sequence. Terminal A declares
J

[aff L. = ( [EQ(BL, {Eg AL) to be the estimate of the joint sequence pair. In a similar fashion, upon receiving ¢4, terminal

B generates [&g]j = ([EfBL, {EEAL) to be the joint sequence pair. We declare an error if either {[ﬁfﬂj # [UKL,} or

{[ag ]j # [uf ]J} Through standard arguments [36, Chapter 10], it can be shown that the error probability approaches zero

as K — oo given (I37) and (I38).

In the second phase of decoding, the terminals attempt to decode the source sequences. Upon receiving 15, and given
([)‘(f ] K [&fb), terminal A searches for all sequences in the bin associated v p that satisfy yg 5| s [)_(f ] k! [&ﬁﬂj €
Pl

T3 (¥B,kl;s [Xalg, u). If there is a unique sequence {9% k} that satisfies this, then it is selected as the reconstruction
sequence. We declare I'y = ([&ﬁf ]j, {yﬁf k} , {WB{ k} ) to be the common reconstruction sequences at terminal A. Like-
iy iy

wise terminal B reconstructs 9f »| upon receiving 14 by searching for all sequences in the associated bin of 14 that

satisfy ([y‘]“(’k]z’ (X5 ], [ﬂgh) eTk ([yAJg]l, x5],, [u]j>. We declare T'p = ([ag}j, {91}4{4[, [ygyk}l) to be the common
reconstruction sequences at terminal B. We declare an error if {I"4 # I'p}. Through standard analysis, it can be shown that

E[Pr(T4 #T|JTs #1)| C%] < 6k (e), (141)

where dx(¢) — 0 as e — 0 and K — oo where I' £ ([UK]J,, [yfjk} , {ygk} ) and C® £ (C4,Cp,SA,Sp) denotes the
gy gy
collection of all the four codebooks.



B. Equivocation Analysis

We show that our proposed random code ensemble also satisfies:

1 . - _ _ - - —
S ([#5] 1 [5a] (9500 5, | @225 2l e e ) > G = 0K (9 142

with © = (Y4,9p,¢a,¢5) and C® £ (Ca,Cp,Sa,Sp). In the following analysis we introduce zX = (ZEE’k,igE’O and

g* = (g, ghE). First consider the following:

H <|:L§B:|j’ |:i7IB§A:|j, [yg,k]la [yg,k]l ’ wAat/}B,QZSAvd)B,nggKvC@)
> H ([ivaL, () 9 9B, | 2 gK,c®) ~ H(9a|C®) ~ H(¢5|C%) — H(aC®) ~ H(1p|C?) (143)

—H ([EEBL, () 9 9B, | 2 gK) — H(9aIC®) = H(¢5|C%) — H(alC®) ~ H(5IC%)  (144)

where the last step follows from the fact that all the source and channel sequences in Table [lIf are sampled independently of
the codebooks (Ca,Cp,Sa,Sp) in our code construction. The first term in (T44) can be lower bounded as follows:

it ([50] . [A] 950 98, | 6%

> H ([%EB'  [ia] ) +H ([yfik]l, i) J2E g, [R] | [ ) (145)
47 J J J

> H ([ivifg_j, [WB{AL) + H(S 4], [V 4] 2 &% hp, ) (146)

— 1 ([5a]  [W5a] )+ HCOS ] B MS) + 9] e ) (147)

=KH ({77,43} [hBAL> + KH ([yail,|ZBEk 888, hpa) + KH([YB1),|ZAE K 84E, haB) (148)

where we use the chain rule of entropy and the fact that (h% ip: hX ,) is independent of (zX,gX) in (T43); in @) we use the
fact that conditioning reduces entropy as Well as h% AB and h 5.4 are independent of the remalmng variables given h§ p and h& BA
respectively; in (T47) we use the fact that x§ and x% are sampled independently and hence the following Markov conditions
hold:

Vi © (ZBg &b ha) ¢ (Y5.8Am: Man). (149)
i < (Zhp &k hhp) < (V. &be hisa)- (150)

which are established in Appendix [D] The discretized random variables are also inherit the same properties. Eq. (I48) follows
from the fact that the sequence pair (hf, h¥ ,) is sampled i.i.d. and furthermore xX and x& are also sampled i.i.d.

The remaining terms in (I44) can be upper bounded using (137)-(140).

H(¢A|C®)§K{ ([h ]J\[EABL)HE}, (151)
[

H(¢p | C¥) < K{H< lA"AB]j‘ {%BAL) +25}, (152)
H(a | €2) < K {H ([yar); | Kl [u];) + 42}, (153)
H(yp | C¥) < K{H ([YB,k]l | [xaly [u ]j) +4a}. (154)

Using (I51) and (132), we have the following:

KH ([EABL_, [ivBAL) — H(¢4|C®) — H(¢p|C®)

> KH ([EABL, [/BBAL) ~KH ([EABU [/BBAL) ~“KH ([EBAU [/BABL) _4Ke (155)

—K-1 ([EABL; {/}BAL) — 4Ke. (156)



Using the fact that each element in [x], = ([xg(1)],,. .., [xg(T — 1)],) is sampled i.i.d. and using (I53) and letting &’ =
we have

KH([yax),|ZBE K 885 hpa) — H(4|C%)

> KH(yakl|285, 880, hpa) = KH([ya k]| X5l [u];) — 4Ke (157)

> K(T = 1) {H(lyas)|z55. 885, hpa) = H(lyas] sl [u],) — 4’} (158)

= KT = D{ I(lyanl;i [xales [6]) = L(yasl s zms g, hoa) — 4€'} (159)
The justification of @ is as follows. From the channel model (@) and (@) the sequence [y x], =

(yarx@)],, -, [yar(T —1)],) of T — 1 random variables, when conditioned on hp, is an i.i.d. sequence and similarly the
sequence iBE,k = (ZBE k(1),...,zeE (T — 1)) when conditioned on ggg is an ii.d. sequence. Therefore the first term

in can be expressed as
H([yar),|ZBE K, 8BE, hBA) = (T — 1)H([ya),|2BE k> EBE, hBA)- (160)
Furthermore using the fact that conditioning reduces entropy, the second term in (I37) can be upper bounded as
H (5l |®slys (1) < (T = DH (yanl lixelis ],) (161)
Note that (T38) follows by substituting (T60) and (I61) into (T37). In a similar fashion we can show that
KH([yB.k|,|ZaB k848, has) — H(¥B|C®)
> K(T = 1) {I(lyma)i xales o)) = L(vmali 2ames gams hap) — 42’} (162)
Combining (T36), (139) and (162) we obtain that
H([yA k], [YB L], [“K]j|ikagK7¢A7¢37¢Aa7/13ac®)
> KI ([/BABL; [/BBAL) _ 4Ke — 8Ke'
+K(T —1) {I([yA,k]l; (xBly, [u];) — I([yakl;; 26K, 8BE hBA) — 25/}
+ K(T = 1) {1(ymlsbealys [u],) = L(lvmali 2ams, gam, han)2<'} (163)
Dividing both sides by N = K - T the relation (T42)) now follows. By examining (141) and (142) it follows that there exists

a deterministic codebook C® in the ensemble, that simultaneously satisfies the equivocation constraint (136) and

Pr(I'y #T(JTp #T) < 8(e). (164)

C. Secret-Key Generation

Our analysis thus far has established the existence of a codebook C?® that generates a common tuple of sequences
([uK ] [yﬁf k} ; {95 k} ) , satisfies the equivocation constraint (I36) and the reliability constraint (I64). We next discuss how
g ATV

one can use the codebook C® to generate a common secret-key at the two terminals.

We consider transmission over a total of M macro-blocks. Each macro-block 7 spans K coherence blocks the terminals
sample sequences X% “ (1) and X33 &(4) in an i.i.d. fashion, independently from the previous blocks. Thereafter we execute the steps
discussed in the previous sections, which results in the following observations at the legitimate receivers and the eavesdropper:

rali) = ([656)], V5R6)], 95 0], (165)
ra(i) = ([a5 ()], V5 @), Y5 0], (166)
Qi) = (2f (1), 8" (1), ¥ (i), ¥5(i), pa(i), p5(i)) . (167)

Note that {T'4(¢),T'g(i), (i)} are sampled i.i.d. across the macro-blocks. Furthermore for each ¢ € {1,2,..., M}, they
satlsfy (T64) and (136). Thus an achievable one-way secret-key generation rate for the sequence {I' 4 (), ['5(i), (i)} is (see
- [15D):

R

[[(Ta;Tp) — I(I"a; Q)] (168)

2=zl

[H(I'A[2) = HT4[T'p)] (169)



> H(T]Q) ~ Nag(o)] (170)
> Ry —0k(e) — vk (e) (171)

where (I70) follows Fano’s inequality and (I71) follows from (I36). Since we can make ¢ arbitrarily small and K sufficiently
large, the achievability of the proposed rate follows.

APPENDIX D

PROOF OF (149)

To establish (T49) consider

p(?f | 2IB(E‘v ggE7 tha yga g.fl(Ea th) = Zp(yfi(z )_(IB{| 2IB(E‘v ggEv tha yga g.fl(Ea th) (172)
XIS

= ZP(Y§| igE7ggE7 hIB(Av ygvgfl(Ea h§B7 )_(IB()p()_(IB{| igEvggEh hIB(Av yga gfl(E’ th) (173)
I

= pYXIhE . X5)p(X5| 255, g5 8) (174)
I

= pYXIhEA. XS, 250, 85p)D(XE| 255, 855 hisa) (175)
xis

=> pYX.xE|h5a 255 858) = pYX [ME A, 255 &) (176)
I

where (T74) follows from the fact that x¥ is sampled independently of x% and the channel estimates, and using the structure
of the channel (3) we also have that

yi o (X5, ha) © (Zhp. 855 Y5 8hp haB) (177)

This establishes (I49). Eq (I50) can be established in an analogous fashion and its proof will be omitted.
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