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Secret-Key Agreement over Non-Coherent
Block-Fading Channels with Public Discussion

Ashish Khisti Member, IEEE

Abstract

Motivated by recent interest in physical-layer secret-key generation over wireless fading channels, we study the non-coherent
secret-key generation capacity of a block-fading wireless channel with channel reciprocity and bi-directional (two-way) commu-
nication. We assume a non-coherent main channel, i.e., the realization of channel gains on the main channel is not known to any
terminal. The eavesdropper is assumed to have both perfect CSI of its own channel and orthogonal observations from the forward
and backward channels. As our main result we establish new upper and lower bounds on the secret-key generation capacity with
public discussion, which are structurally similar.

The upper bound can be expressed as a sum of three terms — one of the terms arises due to channel reciprocity, while the
other two terms correspond to communication on the forward and backward channels respectively. In the limit of long coherence
period, the contribution from channel reciprocity vanishes to zero, whereas the other terms prevail. The lower bound is based on
a separation based scheme. In each coherence block we use the first symbol for training while the remainder of the coherence
block is devoted to source emulation i.e., to generate correlated sources between the terminals. The lower bound expression also
consists of three terms and admits an interpretation similar to the upper bound expression.

For Rayleigh fading channels, in the high signal-to-noise ratio (SNR) regime, the gap between the upper and lower bounds is
shown to vanish inversely with the coherence period. Numerical results indicate significant performance gains over training-only
schemes even for moderate values of SNR and small coherence periods.

Index Terms

Information Theoretic Security, Secret-Key Agreement, Wireless Fading Channels, Two-Way Channels

I. INTRODUCTION

The properties of wireless channel at the physical layer provide several new opportunities for secret-key generation that
have not been used in traditional systems. When the legitimate terminals can use the same frequency in the carrier signal
the phenomenon of channel reciprocity [1] applies i.e., the channel measurements on the forward and reverse channels are
strongly correlated. There has been a growing interest in using channel reciprocity for secret-key generation, see e.g., [2]–
[6] and references therein. Channel reciprocity does not exist in frequency division duplex (FDD) systems when the carrier
frequencies used in the forward and reverse channels are different. In such systems secret-key generation techniques based
on bi-directional communication between the legitimate terminals may be used. Such approaches exploit the independence in
channel fluctuations or noise between the legitimate receiver and eavesdropper channels. Such fluctuations could be engineered
artificially if required [7], [8].

In the present paper we study secret-key generation with public discussion over a two-way, block-fading channel. We
assume that at the beginning of each coherence period, the channel gains on the main channel are sampled from known joint
distribution. The actual realization of the channel gains of the main channel is not revealed to any of the terminals. In contrast
the channel gains of the eavesdropper are perfectly known only to this terminal. As our main result, we establish upper and
lower bounds on the secret-key capacity. The upper bound expression consists of a sum of three terms. The first term arises due
to channel reciprocity. The other two terms arise due to the communication over the forward and reverse channels respectively.
The first term vanishes inversely with the coherence period, whereas the the other terms remains bounded in this limit and
provide the major contribution to the upper bound. We also propose a two-phase coding scheme consisting of channel training
followed by source-emulation in each coherence block. The achievable rate also admits an interpretation similar to the upper
bound. Through suitable power allocation between the training and source emulation phases for Rayleigh fading channels, we
show that the achievable rate coincides with the upper bound in the limit of high SNR and long coherence blocks. Numerical
evaluations further indicate significant improvements over training-only schemes.

There has been a rich literature on information theoretic secret-key generation first introduced in [9], [10] and subsequently
studied in e.g., [11]–[15]. However these works are not directly applicable to the wireless scenario considered in the present
paper. References [16], [17] study secret-key generation over a state-controlled broadcast channel. While the state sequence
could model fading over a wireless channel, the cost of acquiring the state knowledge is not accounted for in these works.
Secret-key generation over a fast fading Rayleigh channel in the forward direction and a public discussion channel in the
reverse direction have been studied in [18], [19] for the case of coherent channels and in [20] for the case of non-coherent
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Fig. 1. Problem Setup. A two-way fading channel with two legitimate terminals and one eavesdropper terminal. The legitimate terminals A and B are
required to agree on a common secret-key. The fading gains hAB and hBA are not revealed to any terminals, whereas the gAE and gBE are revealed to the
eavesdropper. In addition to the wireless fading channel, terminals A and B can also exchange messages over an external public discussion channel, which
are revealed to E.

channels. However these works only consider one-way fading channels and do not account for the role of channel reciprocity
in secret-key generation, which has been the central focus of practical approaches. The most closely related work to the present
paper is reference [21], where the authors study a two-way setup with perfect reciprocity over the main channel. The authors
propose a coding technique consisting of channel training and secret-message transmission. Unfortunately the secret-message
rate is non-zero only when the eavesdropper’s channel gain is, on average, weaker than the legitimate receiver’s channel. To
our understanding this is because power allocation over the fading states has to be precluded in the communication stage, as
this will leak information about the fading states to the eavesdropper. The present paper differs from [21] as it replaces the
secure communication stage with a source-emulation scheme. This yields improvement even when the eavesdropper’s channel
is statistically stronger. Furthermore assuming imperfect reciprocity over the main channel we also present a novel upper bound,
and show that it is tight in the regimes discussed above. In other related works, the delay-limited secrecy framework [22],
[23] also requires secret-key generation as an integral building block. The ergodic behaviour of the channel is exploited to
maintain a steady buffer of the secret-key whereas each transmitted message is secured using a one-time pad. The role of
channel sparsity in secret-key generation is studied in [24], [25].

Even in the case of classical communication, without secrecy constraints, to the best of our knowledge fundamental limits
have only been investigated in the case of one-way communication [26]–[28]. The problem of two-way communication appears
considerably more challenging and has been considered in only a limited set of papers e.g., [29], [30]. While most of the prior
work considers perfect reciprocity i.e., the channel gains in the forward and reverse link are identical, in this work we consider
imperfect reciprocity. We believe that this assumption is justified in practice. In general achieving perfect channel reciprocity
in baseband is challenging because different terminals use different I/Q mixers, amplifiers and path lengths in the RF chains.
While closed-loop calibration can be performed (see e.g. [31], [32]), such methods can become challenging if the calibration
needs to be done in the open air. Hence we believe that our assumption of imperfect reciprocity could be more realistic. We
note in advance that while our proposed coding technique can also be applied to the case of perfect reciprocity, the upper
bound becomes degenerate in this special case.

II. SYSTEM MODEL AND MAIN RESULTS

The problem setup is described in Fig. 1. Nodes, A and B are legitimate terminals, whereas node E is the eavesdropper.
On the forward channel, at time t ∈ {1, 2, . . . , N}, node A transmits a (complex valued) symbol xA(t) ∈ C, and nodes B and
E observe yB(t) and zAE(t) as follows:

yB(t) = hAB(t)xA(t) + nB(t), (1)
zAE(t) = gAE(t)xA(t) + nAE(t). (2)

On the reverse channel, at time t, node B transmits a symbol xB(t) ∈ C, and nodes A and E observe yA(t) and zBE(t) as
follows:

yA(t) = hBA(t)xB(t) + nA(t), (3)
zBE(t) = gBE(t)xB(t) + nBE(t). (4)

We assume that all the additive noise variables in (1)-(4) are mutually independent and sampled i.i.d. from CN (0, 1). The
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input symbols xA(t) and xB(t) satisfy an average power constraint i.e.,

E

[
1

N

N∑
t=1

|xA(t)|2
]
≤ P, E

[
1

N

N∑
t=1

|xB(t)|2
]
≤ P. (5)

We assume a block-fading channel model with a coherence period of T symbols and assume that the communication spans K
coherence blocks i.e., N = KT . Thus for each i ∈ {0, 1, . . . ,K−1}, the coherence block i spans the interval [iT+1, (i+1)T ].
At time t = iT + 1, the channel gains, hAB(t), hBA(t), gAE(t) and gBE(t), are sampled from a joint distribution

phAB ,hBA
(hAB , hBA) · pgAE ,gBE

(gAE , gBE) (6)

and remain constant in the interval [iT + 1, (i + 1)T ]. Note that we assume that the channel gains of the eavesdropper are
independent of the channel gains over the main channel. This assumption is only made to simplify the rate expressions. We
believe that the results can be easily extended to the case where all the channel gains are drawn from some joint distribution,
although the bounds will be more involved.

Remark 1: In the proposed setup, the eavesdropper observes the forward and reverse channel outputs over orthogonal channels
(c.f. (2) and (4)). This is clearly a stronger model than the setup when only a superposition of xA(t) and xB(t) is observed by
the eavesdropper i.e., the secrecy rate in the present setup can also be achieved in the setup where the eavesdropper observes
only the superposition signal. In practice if the eavesdropper can separate out the signals over the forward and reverse channels,
by e.g., using multiple antennas, then too the present setup can be applied.

Remark 2: Note that nodes A and B are assumed to operate in a full-duplex mode i.e., they can transmit and receive
simultaneously. Our results can also be easily generalized if the terminals operate in a half-duplex mode, provided that the
transmission schedules are fixed (e.g., if the nodes alternate during transmission).

We will also assume that a public discussion channel is available for communication. After the transmission of xA(t), and
before the transmission of xA(t + 1) on the forward channel (and likewise after the transmission of xB(t) and before the
transmission of xB(t + 1)) the terminals can exchange L rounds of messages over a separate discussion channel shown in
Fig. 1: ψA(t) , {ψA(t, 1), . . . , ψA(t, L)} and ψB(t) , {ψB(t, 1), . . . , ψB(t, L)}, where

ψA(t, j) = ΨA(y t
A,ψ

t−1
B , ψB(t, 1), . . . , ψB(t, j − 1),mA) (7)

ψB(t, j) = ΨB(y t
B ,ψ

t−1
A , ψA(t, 1), . . . , ψA(t, j − 1),mB), (8)

denote the messages transmitted by nodes A and B respectively. The messages transmitted over the discussion channel are
also revealed to the eavesdropper. The transmitted symbols xA(t) and xB(t) can be expressed as:

xA(t) = fA,t(y
t−1
A ,mA,ψ

t−1
B ) (9)

xB(t) = fB,t(y
t−1
B ,mB ,ψ

t−1
A ). (10)

The secret-key at the end of communication is generated as follows:

kA = KA(mA, y
N
A ,ψ

N
A ,ψ

N
B ), kB = KB(mB , y

N
B ,ψ

N
A ,ψ

N
B ). (11)

Remark 3: We note that in practice the public discussion messages could also be transmitted over the wireless channel. This
will require additional overhead and thus reduce the secret-key rate. The availability of a separate public discussion channel
enables a conceptually simpler coding scheme where the relative contributions from channel reciprocity and source emulation
can be easily identified.

A secret-key rate R = 1
NH(kA) is achievable if for every ε > 0 there exists a N sufficiently large such that Pr(kA 6= kB) ≤ ε

and
1

N
I(kA; zNA , z

N
B ,ψ

N
A ,ψ

N
B , g

N
AE , g

N
BE) ≤ δ(ε), (12)

for some function δ(ε) that goes to zero as ε→ 0.
The largest achievable rate is the secret-key capacity which is the quantity of interest. We next present upper and lower

bounds on the secret-key capacity.

A. Upper Bound

We present the following upper bound on the secret-key capacity.
Theorem 1: An upper bound on the secret-key agreement capacity, with (or without) public discussion is given by the

following:

R+ =
1

T
I(hAB ; hBA) +R+

AB +R+
BA (13)
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where R+
AB and R+

BA are defined as follows:

R+
AB = max

P (·)∈PF

E

[
log

(
1 +

P (hAB)|hAB |2

1 + P (hAB)|gAE |2

)]
(14)

R+
BA = max

P (·)∈PR

E

[
log

(
1 +

P (hBA)|hBA|2

1 + P (hBA)|gBE |2

)]
, (15)

where the maximization in (14) is over the set PF of all power-allocation functions on the forward channel that satisfy the
average power constraint E[P (hAB)] ≤ P , and the maximization in (15) is defined similarly.

�
An interpretation of the upper bound (13) is as follows. The term I(hAB ; hBA) denotes the contribution from channel

correlation. The scaling factor 1
T is due to the fact that the channel gains remain constant over the duration of one coherence

block. The other two terms R+
AB and R+

BA denote the contribution to the secret-key from the forward and reverse channels
using public discussion respectively [9], [10]. The upper bound expression (13) indicates that the total secret-key rate cannot
be larger than the sum of these three terms.

B. Lower Bound

Our lower bound involves a separation based scheme. In each coherence block we reserve the first symbol for channel
training and use the remainder of the block for source emulation [9], [10] .

Theorem 2: An achievable secret-key rate with a public discussion channel is given by:

R− = max
P1,P2

{
1

T
I(ĥAB ; ĥBA) +

T − 1

T

(
R−AB +R−BA

)}
(16)

where we have introduced,

ĥAB , hAB +
1√
P1

n̂A (17)

ĥBA , hBA +
1√
P1

n̂B (18)

to be noisy observations of the channel gains on the forward and reverse channels respectively, n̂A ∼ CN (0, 1) and n̂B ∼
CN (0, 1) are independent of all other random variables and

R−AB = E

[
log

(
1 +

P2|hAB |2

1 + P2|gAE |2

)]
− log

(
1 +

P2

1 + P1

)
(19)

R−BA = E

[
log

(
1 +

P2|hBA|2

1 + P2|gBE |2

)]
− log

(
1 +

P2

1 + P1

)
, (20)

where P1 and P2 are non-negative constants that satisfy

P1 + (T − 1)P2 ≤ TP. (21)

�
The interpretation of the achievable rate is very similar to the upper bound. The first term in (16) is the contribution of

channel reciprocity to the overall secret-key rate. The rates corresponding to R−AB and R−BA are the contributions to the
secret-key rate by the forward and reverse channels when source emulation is used. The factor

(
1− 1

T

)
is due to the fact that

the proposed scheme only uses T − 1 symbols in each block for source emulation. The penalty terms in (19) and (20) arise
because in our analysis of the source emulation phase, we will assume that the eavesdropper is revealed the true channel gains
of the main channel, whereas the intended receivers only have access to the noisy channel estimates. Finally we note that the
expressions in (19) and (20) do not involve power allocation over fading states as this is precluded in our coding scheme.

We note that the achievable rate (16) is structurally similar to the upper bound expression (13). The following result shows
that the upper and lower bounds are indeed very close in the high signal to noise ratio (SNR) regime for Rayleigh fading
channels.

Corollary 1: In the high SNR regime, assuming that hAB and hBA are jointly Gaussian, zero mean, unit variance random
variables, the upper and lower bounds satisfy the following relation:

lim
P→∞

{
R+(P )−R−G(P )

}
≤ 1

T
γ (22)

where R+, and R− are given by (13) and (16) respectively and

γ ,E

[
log

(
1 +
|hAB |2

|gAE |2

)]
+E

[
log

(
1 +
|hBA|2

|gBE |2

)]
. (23)

�



5

C. Numerical Comparisons
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Fig. 2. Bounds on the SK capacity as a function of SNR for a coherence
period of T = 10.
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Fig. 3. Bounds on the SK capacity as a function of coherence period for SNR
= 30dB.

We present numerical comparisons between our upper and lower bounds in Fig. 2 and Fig. 3. Fig. 2 shows the bounds as a
function of SNR when the coherence period T = 10. Fig. 3 shows the bounds as a function of the coherence period T when
SNR = 30 dB. In both figures we assume that the channel gains are all drawn CN (0, 1) and let ρ denote the cross-correlation.
In Fig. 2 we fix ρ = 0.95, while in Fig. 3 it is fixed to ρ = 0.97.

The upper-most plot in Fig. 2 and Fig. 3, marked with squares, is the upper bound in Theorem 1. Note that for small values
of T the contribution from channel-reciprocity term in (13) is dominant. However when T increases the contribution of this
term diminishes and the achievable rate saturates to the contribution from the remaining two terms in (13).

The plot below the upper bound, marked with asterisks, is the lower bound with public discussion in Theorem 2. As we
increase T , we note that the gap between the upper and lower bound decreases inversely with the coherence period in Fig. 3.

We also have two additional plots for comparison in both Fig. 2 and Fig. 3. The plot marked with circles is an achievable
rate using the separation based scheme when the public discussion channel is not available [33]. We do not develop this lower
bound in the paper as it appears to exhibit a considerable gap from the upper bound. The lowermost plot is a simple upper
bound on training based schemes R+

training = − 1
T log(1−ρ2). This bound is attained by revealing the respective channel gains

to the legitimate receivers. Note that the training only scheme is far from optimal even when correlation coefficient is close to
1.

III. UPPER BOUND

We provide a proof of Theorem 1 in this section. We assume that the communication spans over K coherence blocks and
let N = K · T . In our analysis below we use the notation that gt = (g t

AE , g
t
BE) and zt = (ztAE , z

t
BE).

NR = H(kA) (24)
= I(kA; kB) +H(kA|kB) (25)

= I(kA; kB)− I(kA; zN , gN ,ψN
A ,ψ

N
B ) + I(kA; zN , gN ,ψN

A ,ψ
N
B ) +H(kA|kB) (26)

≤ I(kA; kB)− I(kA; zN , gN ,ψN
A ,ψ

N
B ) +Nγ(ε) (27)

≤ I(kA; kB |zN , gN ,ψN
A ,ψ

N
B ) +Nγ(ε) (28)

≤ I(mA, y
N
A ;mB , y

N
B |zN , gN ,ψN

A ,ψ
N
B ) +Nγ(ε) (29)

≤ I(mA, y
N
A , h

N
BA;mB , y

N
B , h

N
AB |zN , gN ,ψN

A ,ψ
N
B ) +Nγ(ε) (30)

where γ(ε) is a function that approaches zero as ε → 0 and we apply Fano’s Inequality [34] and the secrecy con-
straint (12) in (27), and (29) uses the fact that the secret-keys are computed using kA = KA(mA, y

N
A ,ψ

N
A ,ψ

N
B ) and kB =

KB(mB , y
N
B ,ψ

N
A ,ψ

N
B ) respectively. We next show the following lemma that successively reduces the N letter expression

in (30).
We can successively reduce the above upper bound using the following two Lemmas. These lemmas are based on repeated

application of the chain rule of mutual information. Their proofs are delegated to the Appendix.
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Lemma 1: For each t ∈ {1, . . . , N}, we have that:

I(mA, y
t
A, h

N
BA;mB , y

t
B , h

N
AB |zt, gN ,ψt

A,ψ
t
B) ≤ I(mA, y

t
A, h

N
BA;mB , y

t
B , h

N
AB |zt, gN ,ψt−1

A ,ψt−1
B ). (31)

Eq. (31) states that removing the conditioning of the public messages ψA(t) , {ψA(t, 1), . . . , ψA(t, L)} as well as ψB(t) ,
{ψB(t, 1), . . . , ψB(t, L)} only increases the mutual information expression. The special case when t = 0 is separately stated
below.

I(mA, h
N
BA;mB , h

N
AB |gN ,ψA(0),ψB(0)) ≤ I(mA, h

N
BA;mB , h

N
AB |gN ) (32)

�
Proof : See Appendix A

Lemma 2: For each t ∈ {1, 2, . . . , N}, we have that:

I(mA, y
t
A, h

N
BA;mB , y

t
B , h

N
AB |zt, gN ,ψt−1

A ,ψt−1
B ) ≤ I(mA, y

t−1
A , hNBA;mB , y

t−1
B , hNAB |zt−1, gN ,ψt−1

A ,ψt−1
B )

+ I(xA(t); yB(t)|zAE(t), gAE(t), hAB(t)) + I(xB(t); yA(t)|zBE(t), gBE(t), hBA(t)). (33)

�
Proof : See Appendix B

We show how to reduce (30) by successively applying Lemma 1 and Lemma 2. Substituting (31) with t = N into (30) we
have:

NR ≤ I(mA, y
N
A , h

N
BA;mB , y

N
B , h

N
AB |zN , gN ,ψN

A ,ψ
N
B ) +Nγ(ε) (34)

≤ I(mA, y
N
A , h

N
BA;mB , y

N
B , h

N
AB |zN , gN ,ψN−1

A ,ψN−1
B ) +Nγ(ε) (35)

Next substituting (33) in Lemma 2 with t = N , into (35)

NR ≤ I(mA, y
N−1
A , hNBA;mB , y

N−1
B , hNAB |zN−1, gN ,ψN−1

A ,ψN−1
B ) +Nγ(ε)

+ I(xA(N); yB(N)|zAE(N), gAE(N), hAB(N)) + I(xB(N); yA(N)|zBE(N), gBE(N), hBA(N)) (36)

By recursively applying (31) and (33) for t ∈ {N − 1, N − 2, . . . , 1} and finally applying (32) we have that

NR ≤ I(mA, h
N
BA;mB , h

N
AB |gN )+

N∑
t=1

I(xA(t); yB(t)|zAE(t), gAE(t), hAB(t)) +

N∑
t=1

I(xB(t); yA(t)|zBE(t), gBE(t), hBA(t)) +Nγ(ε). (37)

Recall that the random variables mA and mB are mutually independent, and independent of (hNAB , h
N
BA, g

N ). Furthermore
since the channel is block fading channel model, each sequence of channel gains, e.g., hNAB is piecewise constant for a duration
of T symbols and contains only K = N/T independent channel gains. Thus we have

I(mA, h
N
BA;mB , h

N
AB |gN ) = I(hNBA; hNAB |gN ) (38)

= KI(hBA; hAB |g) (39)
= KI(hBA; hAB) (40)

where (40) uses the fact that the channel gains (hAB , hBA) are sampled independently of (gAE , gBE) (see (6)).
Next we show that there exists a power allocation function P (·) satisfying E[P (hAB)] ≤ P, such that:

1

N

N∑
t=1

I(xA(t); yB(t)|zAE(t), gAE(t), hAB(t)) ≤ E
[
log

(
1 +

P (hAB)|hAB |2

1 + P (hAB)|gAE |2

)]
(41)

Let Pt(hAB) denote the average power of symbol xAB(t) when the gain on forward-channel equals hAB i.e., we have
E[|xAB(t)|2|hAB = hAB ] = Pt(hAB). Using the fact that a Gaussian input distribution maximizes the conditional mutual
information (see e.g., [35]) it follows that:

I(xA(t); yB(t)|zAE(t), gAE(t), hAB(t)) ≤ E
[
log

(
1 +

Pt(hAB)|hAB |2

1 + Pt(hAB)|gAE |2

)]
. (42)

Thus we have that
N∑
t=1

I(xA(t); yB(t)|zAE(t), gAE(t), hAB(t)) ≤
N∑
t=1

E

[
log

(
1 +

Pt(hAB)|hAB |2

1 + Pt(hAB)|gAE |2

)]
(43)

= E

[
N∑
t=1

log

(
1 +

Pt(hAB)|hAB |2

1 + Pt(hAB)|gAE |2

)]
(44)
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≤ NE

[
log

(
1 +

1
N

∑N
t=1 Pt(hAB)|hAB |2

1 + 1
N

∑N
t=1 Pt(hAB)|gAE |2

)]
(45)

= NE

[
log

(
1 +

P (hAB)|hAB |2

1 + P (hAB)|gAE |2

)]
, (46)

where P (hAB) , 1
N

∑N
t=1 Pt(hAB) is the average power allocated when the fading state equals hAB and (45) uses the fact

that the function f(x) = log
(

1 + ax
1+bx

)
is a concave function in x and hence Jensen’s inequality [34] applies. Also note that

E[P (hAB)] = E

[
1

N

N∑
t=1

Pt(hAB)

]
(47)

=
1

N

N∑
t=1

E[Pt(hAB)] (48)

≤ 1

N

N∑
t=1

Pt ≤ P. (49)

This establishes (41). In a similar fashion we can show that there exists a power allocation function P (·) satisfying E[P (hBA)] ≤
P such that

1

N

N∑
t=1

I(xB(t); yA(t)|zBE(t), gBE(t), hBA(t)) ≤ E
[
log

(
1 +

P (hBA)|hBA|2

1 + P (hBA)|gBE |2

)]
. (50)

(51)

Substituting (40), (46) and (50) into (37) and using N = KT , we have that for a certain power allocation functions the
secret-key rate satisfies:

R ≤ 1

T
I(hAB ; hBA) + E

[
log

(
1 +

P (hAB)|hAB |2

1 + P (hAB)|gAE |2

)]
+ E

[
log

(
1 +

P (hBA)|hBA|2

1 + P (hBA)|gBE |2

)]
+ γ(ε). (52)

Since (52) must hold for every ε > 0, and γ(ε)→ 0 as ε→ 0, this completes the proof of Theorem 1.

IV. LOWER BOUND

Our coding scheme in Theorem 2 is a two-phase scheme consisting of training followed by source-emulation. In each
coherence block, the first symbol transmitted on each of the forward and reverse channels is a training symbol i.e., xA(iT+1) =
xB(iT + 1) =

√
P1 for i ∈ {0, 2, . . . ,K − 1}.

For each j ∈ {2, . . . , T} we sample xA(iT +j) ∼ pxA(·) and xB(iT +j) ∼ pxB (·) independently of all other symbols where
pxA(·) and pxB (·) are fixed distributions such that both E[|xA|2] ≤ P2 and E[|xB |2] ≤ P2. Note that P1 and P2 denote the
power in the training phase and the transmission phase. For convenience we denote x̄A(i) ∈ CT−1 to be the vector of T − 1
symbols transmitted in the i-th coherence block on the forward channel and similarly let x̄B(i) ∈ CT−1 denote the vector
of T − 1 transmitted symbols on the reverse channel. Using (1)-(4), the corresponding output in the i-th coherence block is
expressed as1:

(Forward Channel): ȳB(i) = hAB(i) · x̄A(i) + n̄B(i), z̄AE(i) = gAE(i) · x̄A(i) + n̄AE(i), (53)
(Reverse Channel): ȳA(i) = hBA(i) · x̄B(i) + n̄A(i), z̄BE(i) = gBE(i) · x̄B(i) + n̄BE(i), (54)

where ȳA(i), ȳB(i) ∈ CT−1 denote the output symbols in coherence block i over the forward and reverse channels respectively
and z̄AE(i) and z̄BE(i) denote the associated outputs at the eavesdropper. All the additive noise vectors have i.i.d. entries
sampled from CN (0, 1).

Let ĥAB(i) and ĥBA(i) denote the channel estimates obtained by terminals B and A over the forward and reverse channels
respectively in coherence block i as defined in (17) and (18). Thereafter terminal A observes ȳA(i) whereas terminal B
observes ȳB(i). At the end of K such coherence blocks, as indicated in Table I, terminal A has access to (ĥKBA, x̄

K
A , ȳ

K
A )

whereas terminal B has access to (ĥKAB , x̄
K
B , ȳ

K
B ). The eavesdropper observes (gK

AE , g
K
BE , z̄

K
AE , z̄

K
BE). The sequences generated

in this fashion are then used to extract a common secret-key as discussed below.

1In this section, in the analysis of our proposed coding scheme, it is convenient to let hAB(i) and hBA(i) denote the fading gains in coherence block i.
Thus in Table I, the sequence ĥKAB denotes a length K sequence of channel gains corresponding to the K coherence blocks. The other channel sequences
have a similar interpretation. The reader is alerted that notation is different from the channel model (e.g. (1)) where the channel sequences must be of length
N .
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TABLE I
SIDE INFORMATION GENERATED AT THE TERMINALS IN THE TWO-PHASE SCHEME

Sequence/Terminal A B E
Channel Sequence ĥKBA ĥKAB (gK

AE , gK
BE)

Source Sequence - Forward Channel x̄KA ȳKB z̄KAE
Source Sequence - Reverse Channel ȳKA x̄KB z̄KBE

A. Discretization of Continuous Valued Random Variables

In the analysis of the coding theorem, we need to consider discrete valued random variables at the legitimate receivers. We
adapt following the technique outlined in [36, pp. 50-51].
• The channel estimates ĥBA and ĥAB are discretized as follows. Let us define:

I1 = {−j∆1,−(j − 1)∆1, . . . , (j − 1)∆1, j∆1}, (55)

where j is an integer and we select ∆1 = 1√
j
. We find elements in I1 closest to the real and imaginary parts of ĥAB and

denote
[
ĥAB

]
j

as the resulting quantization. We define
[
ĥBA

]
j

in a similar fashion.

• We discretize xA(t) and xB(t) to [xA(t)]k and [xB(t)]k respectively, whose real and imaginary parts take values in the set

I2 = {−k∆2,−(k − 1)∆2, . . . , (k − 1)∆2, k∆2}, (56)

where k is an integer and ∆2 = 1√
k

. We select [xA(t)]k to be the closest such point to xA(t) with |[xA(t)]k| ≤ |xA(t)|.
Thus we have that E

[
|[xA(t)]k|

2
]
≤ E[|xA(t)|2] ≤ P2. We define [xB(t)]k in an analogous manner.

• We also discretize the channel output at each legitimate receiver. Note that from (1), we have yB,k(t) = hAB(t)[xA(t)]k +
nAB(t). Note that yB,k(t) is continuous valued even through [xA(t)]k is discrete. We discretize yB,k(t) to [yB,k(t)]l whose
real and imaginary parts take values over the interval

I3 = {−l∆3,−(l − 1)∆3, . . . , (l − 1)∆3, l∆3} (57)

where l is an integer and ∆3 = 1√
l
.

Note that since we use scalar quantization and the sequences ĥKAB and ĥKBA are sampled i.i.d. the sequences
[
ĥKAB

]
j

and[
ĥKBA

]
j

are also sampled i.i.d. In a similar way the sequences
[
x̄KA
]
k

and
[
x̄KB
]
k

are also sampled i.i.d. Further defining

zAE,k(t) = gAE(t)[xA(t)]k + nAE(t) and zBE,k(t) = gBE(t)[xB(t)]k + nBE(t) and using z̄Kk , (z̄KAE,k, z̄
K
BE,k) and gK ,

(gK
AE , g

K
BE), we have that: [

ȳKA,k

]
l
↔
(
hKBA,

[
x̄KB
]
k

)
↔ (z̄Kk , g

K) (58)[
ȳKB,k

]
l
↔
(
hKAB ,

[
x̄KA
]
k

)
↔ (z̄Kk , g

K) (59)

are satisfied. Note that for each ĥAB we have that
∣∣∣∣ĥAB −

[
ĥAB

]
j

∣∣∣∣→ 0, as j →∞, and similarly
∣∣∣∣ĥBA −

[
ĥBA

]
j

∣∣∣∣→ 0, as

j →∞ in a point wise fashion. In a similar manner, as k →∞, we have that |xA(t)− [xA(t)]k| → 0, |xB(t)− [xB(t)]k| → 0.
Furthermore for each fixed k, as l→∞, we have that

∣∣yA,k(t)− [yA,k(t)]l
∣∣→ 0 and |yB,k(t)− [yB,k(t)]l| → 0.

In the subsequent sections, we present our proposed coding scheme and the corresponding achievable rate for the discretized
variables above. Thereafter we argue that in the limit of vanishingly small quantization errors, the rate converges as expected.

B. Achievable Rate using Discretized Variables

For the discretized set of random variables we have the following achievable rate.
Proposition 1: An achievable secret-key rate using public discussion is given by:

R−∆ =
1

T
I

([
ĥAB

]
j

;
[
ĥBA

]
j

)
+
T − 1

T

(
R−AB,∆ +R−BA,∆

)
(60)

where ĥAB and ĥBA are the MMSE estimates of channel gains hAB and hBA respectively (c.f. (17), (18)) and

R−AB,∆ = I
(

[yB,k]l ; [xA]k, [u]j

)
− I

(
[yB,k]l ; zAE,k, gAE , hAB

)
(61)

R−BA,∆ = I
(

[yA,k]l ; [xB ]k, [u]j

)
− I

(
[yA,k]l ; zBE,k, gBE , hBA

)
(62)
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where we have introduced [u]j ,

([
ĥAB

]
j
,
[
ĥBA

]
j

)
. The variables [xA]k and [xB ]k are obtained by discretizing xA and xB

respectively as in section IV-A. Furthermore xA ∼ pxA(·) and xB ∼ pxB (·) are sampled independently and satisfy E[|xA|2] ≤ P2

and E[|xB |2] ≤ P2. The powers P1 (c.f. (17), (18)) and P2 must satisfy P1 + (T − 1)P2 ≤ TP .
�

The coding theorem associated with Prop. 1 is presented in Appendix C.

C. Achievable Rate: Extension to Continuous Valued Inputs

In this section, we further analyze the achievable rate in the limit that the quantization error due to discretization in
section IV-A approaches zero. In this limit, the rate required over the public discussion channel will also increase to infinity.
However we note that there is no rate constraint imposed over the discussion channel and thus the proposed rate can be
approached arbitrarily closely. In our analysis we make use of the following fact:

Fact 1: [36, pg. 23] Let u and v be two arbitrary random variables (discrete or continuous) with a joint probability measure
µ(u, v) and marginal measures µ(u) and µ(v). The mutual information between u and v , defined as,

I(u; v) =

∫
log

dµ(u, v)

d(µ(u)× µ(v))
dµ(u, v) (63)

where dµ(u, v)/d(µ(u)× µ(v)) denotes the Radon-Nikodym derivative of the joint probability measure with respect to the
product measure, can be equivalently expressed as:

I(u; v) = lim
j,k→∞

I
(

[u]j ; [v ]k

)
(64)

where [u]j and [v ]k are any sequence of fine quantizations of u and v respectively such that
∣∣∣u − [u]j

∣∣∣ and |v − [v ]k| tend to
zero as pointwise as j →∞, and k →∞, respectively

Upon examining (61),(62) and taking j, l→∞, with k fixed, we have that with u = (ĥAB , ĥBA):

lim
l,j→∞

I
(

[yB,k]l ; [xA]k, [u]j

)
= I(yB,k; [xA]k, u) (65)

lim
l→∞

I
(
[yB,k]l ; zAE,k, gAE , hAB

)
= I(yB,k; zAE,k, gAE , hAB) (66)

lim
l,j→∞

I
(

[yA,k]l ; [xB ]k, [u]j

)
= I(yA,k; [xB ]k, u) (67)

lim
l→∞

I
(
[yA,k]l ; zBE,k, gBE , hBA

)
= I(yA,k; zBE,k, gBE , hBA) (68)

Similarly the first term in (60) converges as follows

lim
j→∞

I

([
ĥAB

]
j

;
[
ĥBA

]
j

)
= I(ĥAB ; ĥBA). (69)

We now consider the term

I(yB,k; [xA]k, u)− I(yB,k; zAE,k, gAE , hAB) = ~(yB,k|zAE,k, gAE , hAB)− ~(yB,k|[xA]k, u) (70)

We will show that when xA ∼ CN (0, P2) we have that

lim inf
k→∞

~(yB,k|zAE,k, gAE , hAB) ≥ E
[
log 2πe

(
1 +

P2|hAB |2

1 + P2|gAE |2

)]
(71)

lim sup
k→∞

~(yB,k|[xA]k, u) ≤ log 2πe

(
1 +

P2

1 + P1

)
(72)

Together (71) and (72) imply that:

lim inf
k→∞

{I(yB,k; [xA]k, u)− I(yB,k; zAE,k, gAE , hAB)} ≥ E
[
log

(
1 +

P2|hAB |2

1 + P2|gAE |2

)]
− log

(
1 +

P2

1 + P1

)
(73)

We first establish (71). Note that

~(yB,k|zAE,k, gAE , hAB) = ~(yB,k, zAE,k|gAE , hAB)− ~(zAE,k|gAE , hAB) (74)
= ~(yB,k, zAE,k|gAE , hAB)− ~(zAE,k|gAE) (75)

Furthermore since E
[
|[xA]k|

2
]
≤ P2, and [xA]k is independent of gAE , we have, using (2),

E[|zAE,k|2|gAE = gAE ] ≤ |gAE |2P2 + 1. (76)
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Thus using the fact that the differential entropy under a variance constraint is maximized by a Gaussian distribution we have
that

~(zAE,k|gAE) ≤ E[log (2πe( |gAE |2P2 + 1))]. (77)

Next we show

lim inf
k→∞

~(yB,k, zAE,k|hAB , gAE) ≥ E
[
(log 2πe)2

(
1 + P2|hAB |2 + P2|gAE |2

)]
, (78)

using an argument analogous to [36, pp. 77]. Eq. (77) and (78) together complete the proof of (71). Note that for each
(hAB = hAB , gAE = gAE) we have that

fyB,k,zAE,k
(y, z|hAB = hAB , zAE = gAE) =

∫
fnB (y − hAB [xA]k) · fnAE

(z − gAE [xA]k) dF[xA]k
(x) (79)

= E[xA]k

[
fnB (y − hAB [xA]k) · fnAE

(z − gAE [xA]k)

]
(80)

where nB and nAE are the additive noise variables in (1) and (2). Since fnB (·) and fnAE
(·) are bounded and continuous functions

fyB,k,zAE,k
(y, z|hAB = hAB , gAE = gAE) converges to fyB ,zAE

(y, z|hAB = hAB , gAE = gAE) as k → ∞. Furthermore we
have that

fyB,k,zAE,k
(y, z|hAB = hAB , zAE = gAE) ≤ max

nB ,nAE

fnB (nB)fnAE
(nAE) =

1

2π
. (81)

Therefore, for each a > 0 we can express:

~(yB,k, zAE,k|hAB , gAE)

=

∮
hAB

∮
gAE

∮
y

∮
z

fhAB
(hAB)fgAE

(gAE)fyB,k,zAE,k
(y, z|hAB , gAE) log

1

fyB,k,zAE,k
(y, z|hAB , gAE)

dydzdgAEdhAB (82)

≥
∮
|hAB |≤a

∮
|gAE |≤a

∮
|y|≤a

∮
|z|≤a

f(hAB)f(gAE)fyB,k,zAE,k
(y, z|hAB , gAE) log

1

fyB,k,zAE,k
(y, z|hAB , gAE)

dydzdgAEdhAB

(83)

where (83) follows from the fact that from (81) the integrand in (82) is always positive and therefore (83) is integrating over
a smaller set. By the dominated convergence theorem [36, Appendix B], upon taking k →∞ for each fixed a, the right hand
side converges to∮

|hAB |≤a

∮
|gAE |≤a

∮
|y|≤a

∮
|z|≤a

f(hAB)f(gAE)fyB ,zAE
(y, z|hAB , gAE) log

1

fyB ,zAE
(y, z|hAB , gAE)

dydzdgAEdhAB . (84)

Upon taking a→∞, the above expression in turn converges to ~(yB , zAE |hAB , gAE). Since xA ∼ CN (0, P2) the relation (78)
now follows.

To establish (72) we let h̃AB be the MMSE estimation error of hAB given the observation
√
P1hAB + nB . We can express

hAB = h̃AB + eAB , where the estimation error eAB satisfies E[|eAB |2] ≤ 1
1+P1

. Using (1), we can express

~ (yB,k|[xA]k, u) ≤ ~
(
yB,k | [xA]k, h̃AB

)
(85)

= ~
(
hAB [xA]k + nB | [xA]k, h̃AB

)
(86)

≤ ~ (eAB [xA]k + nB | [xA]k) (87)
≤ ~ (eAB [xA]k + nB) (88)

≤ log 2πe

(
1 +

P2

1 + P1

)
(89)

where (89) uses the fact that since the input [xA]k is generated independently of hAB and satisfies E[|[xA]k|2] ≤ P2 we have

E
[
|eAB [xA]k|

2
]

= E[|eAB |2]E[|[xA]k|
2] (90)

≤ 1

1 + P1
P2, (91)

and we use the fact that differential entropy is maximized by a Gaussian distribution under a variance constraint. Since (89)
holds for every k, the inequality in (72) now follows. The proof of (73) is now complete.

In a similar fashion we can show that

lim inf
k→∞

{I(yA,k; [xB ]k, u)− I(yA,k; zB,k, gBE , hBA)} ≥ E
[
log

(
1 +

P2|hBA|2

1 + P2|gBE |2

)]
− log

(
1 +

P2

1 + P1

)
(92)

The proof of (16) follows by substituting (69), (73) and (92) into (60).
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V. PROOF OF COROLLARY 1
In this section we analyze the high SNR behaviour of the upper and lower bounds. In particular we will show that in the

limit P →∞, the upper and lower bounds in (13) and (16) reduce to the following:

lim
P→∞

R+ ≤ − 1

T
log(1− ρ2) + γ (93)

lim
P→∞

R− = − 1

T
log(1− ρ2) +

T − 1

T
γ. (94)

where γ is defined in (23). The claim in Corollary 1 immediately follows from (93) and (94). Note that the first term in (13) is
independent of P and furthermore since hAB and hBA are jointly Gaussian, zero mean, unit variance and with a cross-correlation
of ρ it can be readily shown that

I(hAB ; hBA) = − log(1− ρ2). (95)

The remaining two terms are upper bounded as follows. For any power allocation P (hAB) note that

E

[
log

(
1 +

P (hAB)|hAB |2

1 + P (hAB)|gAE |2

)]
≤ E

[
log

(
1 +
|hAB |2

|gAE |2

)]
(96)

which follows since the function f(x) = ax
1+bx is increasing in x for any a, b > 0. Similarly we have

E

[
log

(
1 +

P (hBA)|hBA|2

1 + P (hBA)|gBE |2

)]
≤ E

[(
1 +
|hBA|2

|gBE |2

)]
. (97)

The upper bound (93) follows by substituting (95), (96) and (97) into (13).
For establishing (94), we consider the secret-key rate expression (16) in Thm 2. We select P2 =

√
P

T−1 and P1 = P −
√
P .

Note that as P →∞ we have that P1, P2 →∞ and P2

P1
→ 0. Since the function f(x) = ax

1+bx is bounded for all a, b > 0 we
can apply the Dominated Convergence Theorem to interchange the limit and expectation,

lim
P2→∞

E

[
log

(
1 +

P2|hAB |2

1 + P2|gAE |2

)]
=E

[
log

(
1 +
|hAB |2

|gAE |2

)]
(98)

lim
P2→∞

E

[
log

(
1 +

P2|hBA|2

1 + P2|gBE |2

)]
=E

[
log

(
1 +
|hBA|2

|gBE |2

)]
(99)

Furthermore since limP→∞ log
(

1 + P2

1+P1

)
= 0

clearly holds, using (19) and (20) it follows that

lim
P→∞

R−AB(P ) +R−BA(P ) = γ (100)

We next consider the first term in (16). When hAB and hBA are zero mean, unit variance, jointly Gaussian random variables
with a cross-correlation coefficient of ρ, using (17) and (18) it can be easily shown that

I(ĥAB ; ĥBA) = log(1− α2ρ2) (101)

where α = P1

P1+1 . It immediately follows that

lim
P1→∞

− log(1− α2ρ2) = − log(1− ρ2), (102)

Eq. (94) follows by using (100) and (102) in (16).
The proof of Corollary 1 is now completed.

VI. CONCLUSIONS

In this paper we study the secret-key generation capacity over a two-way reciprocal block fading channel model with public
discussion. There are two principle factors that contribute to the secret-key: (i) the reciprocity between channel gain of the
main channel and (ii) interactive communication. We propose a two-phase separation scheme consisting of channel training
and source emulation in each coherence block. Through a suitable allocation of power between the two phases, we show that
the proposed scheme is near optimal in the high SNR regime for Rayleigh fading channels. More generally our results show
that, even for moderately long coherence periods, the contribution of channel reciprocity towards the secret-key generation
capacity is generally far less significant than source emulation. Thus in designing practical secret-key generation schemes over
fading channels, one should aim to exploit the interactive nature of the system as opposed to passive training.

In future work it will be interesting to study the problem setup when an external public discussion channel is not available.
The overhead for transmitting public messages needs to be explicitly considered in such systems and corresponding upper
bounds may also have to be developed. In the low SNR regime it appears that the associated scheme may be very different
than the proposed two-phase scheme [37]. Similarly extending the secret-key capacity results to the case of multiple antennas
also remains an interesting topic for future research.
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APPENDIX A
PROOF OF LEMMA 1

Recall that we can express

ψt
A =

(
ψt−1

A , ψA(t, 1), . . . , ψA(t, L)
)

(103)

ψt
B =

(
ψt−1

B , ψB(t, 1), . . . , ψB(t, L)
)

(104)

where ψA(t, j) denotes the j-th public message transmitted by node A after xA(t). It can be expressed as

ψA(t, j) = ΨA(y t
A,ψ

t−1
B , ψB(t, 1), . . . , ψB(t, j − 1),mA) (105)

The message ψB(t, j) is defined in a similar fashion. Now we use the following inequalities:

I(mA, y
t
A, h

N
BA;mB , y

t
B , h

N
AB |zt, gN ,ψt

A,ψ
t
B) (106)

= I(mA, y
t
A, h

N
BA;mB , y

t
B , h

N
AB |zt, gN ,ψt−1

A ,ψt−1
B , {ψA(t, j)}1≤j≤L, {ψB(t, j)}1≤j≤L) (107)

≤ I(mA, y
t
A, h

N
BA, ψA(t, L);mB , y

t
B , h

N
AB |zt, gN ,ψt−1

A ,ψt−1
B , {ψA(t, j)}1≤j≤L−1, {ψB(t, j)}1≤j≤L) (108)

= I(mA, y
t
A, h

N
BA;mB , y

t
B , h

N
AB |zt, gN ,ψt−1

A ,ψt−1
B , {ψA(t, j)}1≤j≤L−1, {ψB(t, j)}1≤j≤L) (109)

≤ I(mA, y
t
A, h

N
BA;mB , y

t
B , h

N
AB , ψB(t, L)|zt, gN ,ψt−1

A ,ψt−1
B , {ψA(t, j)}1≤j≤L−1, {ψB(t, j)}1≤j≤L−1) (110)

= I(mA, y
t
A, h

N
BA;mB , y

t
B , h

N
AB |zt, gN ,ψt−1

A ,ψt−1
B , {ψA(t, j)}1≤j≤L−1, {ψB(t, j)}1≤j≤L−1) (111)

where the equality in (109) follows from the fact that ψA(t, L) is a deterministic function of

{mA, y
t
A,ψ

t−1
B , ψB(t, 1), . . . , ψB(t, L− 1)}

as indicated in (105). In a similar manner (111) follows from the fact that ψB(t, L) is a deterministic function of

{mB , y
t
B ,ψ

t−1
A , ψA(t, 1), . . . , ψA(t, L− 1)}.

Note that in following (106)-(111) we have eliminated the messages (ψA(t, L), ψB(t, L)). By recursively applying the same
sequence of steps we successively eliminate the entire sequence of messages {ψA(t, j), ψB(t, j)} and the claim in (31) follows.

The proof of (32) uses the sequence of steps analogous to (106)-(111) along with the fact that ψA(0, j) is a deterministic
function of (mA, {ψB(0, k)}1≤k≤j−1) and likewise ψB(0, j) is a function of (mB , {ψA(0, k)}1≤k≤j−1). The details are
completely analogous and will be omitted.

APPENDIX B
PROOF OF LEMMA 2

Using the chain rule of mutual information we have

I(mA, y
t
A, h

N
BA;mB , y

t
B , h

N
AB |zt, gN ,ψt−1

A ,ψt−1
B )

= I(mA, y
t
A, h

N
BA;mB , y

t−1
B , hNAB |zt, gN ,ψt−1

A ,ψt−1
B )

+ I(mA, y
t
A, h

N
BA; yB(t)|zt, gN , y t−1

B , hNAB ,mB ,ψ
t−1
A ,ψt−1

B ) (112)

= I(mA, y
t
A, h

N
BA;mB , y

t−1
B , hNAB |zt, gN ,ψt−1

A ,ψt−1
B )

+ I(mA, y
t−1
A , hNBA; yB(t)|zt, gN , y t−1

B , hNAB ,mB ,ψ
t−1
A ,ψt−1

B )

+ I(yA(t); yB(t)|zt, gN , y t−1
B , hNAB ,mB , y

t−1
A , hNBA,mA,ψ

t−1
A ,ψt−1

B ) (113)

= I(mA, y
t−1
A , hNBA;mB , y

t−1
B , hNAB |zt, gN ,ψt−1

A ,ψt−1
B )

+ I(yA(t);mB , y
t−1
B , hNAB |mA, y

t−1
A , hNBA, z

t, gN ,ψt−1
A ,ψt−1

B )

+ I(mA, y
t−1
A , hNBA; yB(t)|zt, gN , y t−1

B , hNAB ,mB ,ψ
t−1
A ,ψt−1

B )

+ I(yA(t); yB(t)|zt, gN , y t−1
B , hNAB ,mB , y

t−1
A , hNBA,mA,ψ

t−1
A ,ψt−1

B ) (114)

where we use the chain rule of mutual information in (112), (113) and (114). Further note that in the proposed coding scheme
xA(t) = fA,t(mA, y

t−1
A ,ψt−1

B ) and xB(t) = fB,t(mB , y
t−1
B ,ψt−1

A ). Therefore we can express:

I(yA(t); yB(t)|zt, gN , y t−1
B , hNAB ,mB , y

t−1
A , hNBA,mA,ψ

t−1
A ,ψt−1

B )

= I(yA(t); yB(t)|zt, gN , y t−1
B , hNAB ,mB , y

t−1
A , hNBA,mA, xA(t), xB(t),ψt−1

A ,ψt−1
B ) = 0 (115)

where we use the fact that the forward and reverse channels are memoryless and the additive noise variables nA(t) and nB(t)
are independent (c.f. (1), (3)) and therefore:

yB(t)↔ (xA(t), hAB(t),Ω, xB(t), hBA(t))↔ yA(t) (116)
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where

Ω ,
{
zt, gN , y t−1

A , y t−1
B , ht−1

AB , h
N
AB,t+1, h

t−1
BA , h

N
BA,t+1,mA,mB ,ψ

t−1
A ,ψt−1

B

}
(117)

denotes the remainder of the terms in (115) which are all independent of {nA(t), nB(t)}.
We next consider the second and third term in (114) and show that:

I(yA(t);mB , y
t−1
B , hNAB |mA, y

t−1
A , hNBA, z

t, gN ,ψt−1
A ,ψt−1

B ) ≤ I(yA(t); xB(t)|zBE(t), gBE(t), hBA(t)) (118)

I(mA, y
t−1
A , hNBA; yB(t)|zt, gN , y t−1

B , hNAB ,mB ,ψ
t−1
A ,ψt−1

B ) ≤ I(xA(t); yB(t)|zAE(t), gAE(t), hAB(t)) (119)

We establish (118) below. Eq. (119) can be established in an analogous fashion and its proof will be omitted.

I(yA(t);mB , y
t−1
B , hNAB |mA, y

t−1
A , hNBA, z

t, gN ,ψt−1
A ,ψt−1

B )

= I(yA(t);mB , y
t−1
B , hNAB , xB(t)|mA, y

t−1
A , hNBA, z

t, gN ,ψt−1
A ,ψt−1

B , xA(t)) (120)

= ~(yA(t)|mA, y
t−1
A , hNBA, z

t, gN ,ψt−1
A ,ψt−1

B , xA(t))

− ~(yA(t)|mB , y
t−1
B , hNAB , xB(t),mA, y

t−1
A , hNBA, z

t, gN ,ψt−1
A ,ψt−1

B , xA(t)) (121)

= ~(yA(t)|mA, y
t−1
A , hNBA, z

t, gN ,ψt−1
A ,ψt−1

B , xA(t))− ~(yA(t)|xB(t), hBA(t)) (122)
≤ ~(yA(t)|hBA(t), zBE(t), gBE(t))− ~(yA(t)|xB(t), hBA(t)) (123)
= I(yA(t); xB(t)|hBA(t), zBE(t), gBE(t)) (124)

where (120) uses the fact that xA(t) is a function of (mA, y
t−1
A ,ψt−1

B ) and similarly xB(t) is a function of (mB , y
t−1
B ,ψt−1

A ).
Eq. (122) uses the fact that with Ω defined in (117), the Markov relation

yA(t)↔ (hBA(t), xB(t))↔ (Ω, xA(t), hAB(t)) (125)

holds. Eq. (123) follows from the fact that conditioning reduces entropy. This completes the proof of (118).
We finally show that the first term in (114) can be upper bounded as

I(mA, y
t−1
A , hNBA;mB , y

t−1
B , hNAB |zt, gN ,ψt−1

A ,ψt−1
B ) ≤ I(mA, y

t−1
A , hNBA;mB , y

t−1
B , hNAB |zt−1, gN ,ψt−1

A ,ψt−1
B ). (126)

This is also established using the chain rule of mutual information as follows.

I(mA, y
t−1
A , hNBA;mB , y

t−1
B , hNAB |zt, gN ,ψt−1

A ,ψt−1
B )

= I(mA, y
t−1
A , hNBA;mB , y

t−1
B , hNAB |zt−1, gN , zAE(t), zBE(t),ψt−1

A ,ψt−1
B ) (127)

≤ I(mA, y
t−1
A , hNBA, zAE(t);mB , y

t−1
B , hNAB |zt−1, gN , zBE(t),ψt−1

A ,ψt−1
B ) (128)

= I(mA, y
t−1
A , hNBA;mB , y

t−1
B , hNAB |zt−1, gN , zBE(t),ψt−1

A ,ψt−1
B )

+ I(zAE(t);mB , y
t−1
B , hNAB |zt−1, gN , zBE(t),mA, y

t−1
A , hNBA,ψ

t−1
A ,ψt−1

B ) (129)

Next recall that since xA(t) = fA,t(mA, y
t−1
A ,ψt−1

B ) we have:

I(zAE(t);mB , y
t−1
B , hNAB |zt−1, gN , zBE(t),mA, y

t−1
A , hNBA,ψ

t−1
A ,ψt−1

B )

= I(zAE(t);mB , y
t−1
B , hNAB |zt−1, gN , zBE(t),mA, y

t−1
A , hNBA, xA(t),ψt−1

A ,ψt−1
B )

= ~(zAE(t)|zt−1, gN , zBE(t),mA, y
t−1
A , hNBA, xA(t),ψt−1

A ,ψt−1
B )

− ~(zAE(t)|zt−1, gN , zBE(t),mA, y
t−1
A , hNBA, xA(t),mB , y

t−1
B , hNAB ,ψ

t−1
A ,ψt−1

B )

= ~(zAE(t)|xA(t), gAE(t))− ~(zAE(t)|xA(t), gAE(t)) = 0 (130)

where (130) uses the fact that the forward channel (c.f. (2)) satisfies

zAE(t)↔ (xA(t), gAE(t))↔ (zt−1, gt−1, gN
t+1, gBE(t), zBE(t),mA, y

t−1
A , hNBA,mB , y

t−1
B , hNAB ,ψ

t−1
A ,ψt−1

B ). (131)

Thus substituting (130) into (129) we have that:

I(mA, y
t−1
A , hNBA;mB , y

t−1
B , hNAB |zt, gN ,ψt−1

A ,ψt−1
B )

≤ I(mA, y
t−1
A , hNBA;mB , y

t−1
B , hNAB |zt−1, gN , zBE(t),ψt−1

A ,ψt−1
B ) (132)

≤ I(mA, y
t−1
A , hNBA;mB , y

t−1
B , hNAB , zBE(t)|zt−1, gN ,ψt−1

A ,ψt−1
B ) (133)

≤ I(mA, y
t−1
A , hNBA;mB , y

t−1
B , hNAB |zt−1, gN ,ψt−1

A ,ψt−1
B )

+ I(mA, y
t−1
A , hNBA; zBE(t)|mB , y

t−1
B , hNAB , z

t−1, gN ,ψt−1
A ,ψt−1

B ) (134)

≤ I(mA, y
t−1
A , hNBA;mB , y

t−1
B , hNAB |zt−1, gN ,ψt−1

A ,ψt−1
B ) (135)
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Phase I: Reconciliation of channel-estimates.
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Phase II: Reconciliation of source sequences.
Fig. 4. Reconciliation of source and channel sequences in the proposed coding scheme with public discussion. The public messages are denoted by Θ =
(ΦA,ΦB ,ΨA,ΨB). In the analysis of the coding scheme, we use discretized version of the source and channel sequences.

The justification that the second term in (134) equals zero can be established in an identical fashion as (130), and will be
omitted. This completes the proof of (126).

The claim in Lemma 2 follows upon substituting (115), (118), (119) and (126) into (114).

APPENDIX C
PROOF OF PROP. 1

We provide the coding theorem associated with Prop. 1 below. As stated in section IV, the two-phase transmission scheme
generates correlated sequences in Table I, which are then discretized at the legitimate terminals, as explained in section IV-A.
For convenience table II shows the sequences available at each terminal after discretization below.

TABLE II
CORRELATED SOURCE AND CHANNEL SEQUENCES AFTER DISCRETIZATION

Sequence/Terminal A B E

Channel Sequence
[
ĥKBA

]
j

[
ĥKAB

]
j

(
gK
AE , gK

BE

)
Source Sequence - Forward Channel

[
x̄KA
]
k

[
ȳKB,k

]
l

z̄KAE,k

Source Sequence - Reverse Channel
[
ȳKA,k

]
l

[
x̄KB
]
k

z̄KBE,k

We establish the existence of a codebook C̃⊗ that satisfies the following for sufficiently large K:

1) Both the legitimate terminals can decode sequences
([

ĥKAB

]
j
,
[
ĥKBA

]
j
,
[
ȳKA,k

]
l
,
[
ȳKB,k

]
l

)
with an error probability no

greater than δK(ε).
2) The equivocation at the eavesdropper satisfies:

1

N
H

([
ĥKAB

]
j
,
[
ĥKBA

]
j
,
[
ȳKA,k

]
l
,
[
ȳKB,k

]
l

∣∣ Θ, z̄KAE,k, z̄
K
BE,k, g

K
AE , g

K
BE

)
≥ R−∆ − δ

1
K(ε) (136)

where the quantity R−∆ is defined in (60), Θ denotes the collection of messages that need to be exchanged over the
discussion channel, and δK(ε), δ1

K(ε) are function that can be made sufficiently small by selecting K sufficiently large.
An overview of the coding scheme is illustrated in Fig. 4. Note that the proposed code construction C̃⊗ will only generate

a common tuple of sequences at the legitimate receivers satisfying (136). The secret-key generation step will be discussed
subsequently.

A. Codebook Construction and Error Analysis

We define:

R−B,c = H

([
ĥAB

]
j

∣∣[ĥBA

]
j

)
+ 2ε (137)

R−A,c = H

([
ĥBA

]
j

∣∣[ĥAB

]
j

)
+ 2ε (138)
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R−B,s = H
(

[ȳB,k]l
∣∣ [x̄A]k, [u]j

)
+ 4ε (139)

R−A,s = H
(

[ȳA,k]l
∣∣ [x̄B ]k, [u]j

)
+ 4ε (140)

where [u]j ,

([
ĥAB

]
j
,
[
ĥBA

]
j

)
and ε is a sufficiently small positive constant that will be specified in the sequel.

We next randomly sample four codebooks CA, CB , SA and SB as discussed below.

• The codebook CB is sampled by randomly and uniformly partitioning the set of all typical sequences
[
ĥKAB

]
j
∈

TK
ε

([
ĥAB

]
j

)
into 2KR−

B,c bins, such that there are 2
K

(
I
(
[ĥAB]

j
; [ĥBA]

j

)
−ε

)
sequences per bin.

• The codebook CA is sampled by randomly and uniformly partitioning the set of all typical sequences
[
ĥKBA

]
j
∈

TK
ε

([
ĥBA

]
j

)
into 2KR−

A,c bins, such that there are 2
K

(
I
(
[ĥAB]

j
; [ĥBA]

j

)
−ε

)
sequences per bin.

• The codebook SB is sampled by randomly and uniformly partitioning the set of all typical sequences
[
ȳKB,k

]
l
∈

TK
ε

(
[ȳB,k]l

)
into 2KR−

B,s bins such that there are 2K(I([yB,k]
l
;[x̄A]k,[u]j)−3ε) sequences per bin.

• The codebook SA is sampled by randomly and uniformly partitioning the set of all typical sequences
[
ȳKA,k

]
l
∈

TK
ε

(
[ȳA,k]l

)
into 2KR−

A,s bins such that there are 2K(I([ȳA,k]
l

; [x̄B ]k,[u]j)−3ε) sequences in each bin.
The encoding steps are as follows.

• Given the sequence
[
ĥKAB

]
j
, terminal B finds bin in CB to which it belongs and transmits the bin-index φB over the

discussion channel.
• Given the sequence

[
ĥKBA

]
j
, terminal A finds the bin in CA to which it belongs and transmits the bin index φA over the

discussion channel.
• Given the sequence

[
ȳKA,k

]
l
, terminal A finds the bin in SA to which it belongs and transmits the bin index ψA over the

discussion channel.
• Given the sequence

[
ȳKB,k

]
l
, terminal B finds the bin in SB to which it belongs and transmits the bin index ψB over the

discussion channel.
We next sketch the decoding at legitimate terminals. The decoding proceeds in two phases. In the first phase the terminals

attempt to reconstruct channel sequences and in the second phase they attempt to reconstruct the source sequences.
Upon receiving φB , terminal A searches for all sequences in the bin associated with φB that are jointly typical with

[
ĥKBA

]
j
.

If there is a unique sequence
[
h̃KAB

]
j

that satisfies this, then it is selected as the reconstruction sequence. Terminal A declares[
ûKA
]
j

=

([
h̃KAB

]
j
,
[
ĥKBA

]
j

)
to be the estimate of the joint sequence pair. In a similar fashion, upon receiving φA, terminal

B generates
[
ûKB
]
j

=

([
ĥKAB

]
j
,
[
h̃KBA

]
j

)
to be the joint sequence pair. We declare an error if either

{[
ûKA
]
j
6=
[
uK
]
j

}
or{[

ûKB
]
j
6=
[
uK
]
j

}
. Through standard arguments [36, Chapter 10], it can be shown that the error probability approaches zero

as K →∞ given (137) and (138).
In the second phase of decoding, the terminals attempt to decode the source sequences. Upon receiving ψB , and given([
x̄KA
]
k
,
[
ûKA
]
j

)
, terminal A searches for all sequences in the bin associated ψB that satisfy

([
yKB,k

]
l
,
[
x̄KA
]
k
,
[
ûKA
]
j

)
∈

TK
2ε

(
[ȳB,k]l, [x̄A]k, u

)
. If there is a unique sequence

[
ŷKB,k

]
l

that satisfies this, then it is selected as the reconstruction

sequence. We declare ΓA =
([

ûKA
]
j
,
[
yKA,k

]
l
,
[
ŷKB,k

]
l

)
to be the common reconstruction sequences at terminal A. Like-

wise terminal B reconstructs
[
ŷKA,k

]
l

upon receiving ψA by searching for all sequences in the associated bin of ψA that

satisfy
([

yKA,k

]
l
,
[
x̄KB
]
k
,
[
ûKB
]
j

)
∈ TK

2ε

(
[yA,k]l, [x̄B ]k, [u]j

)
. We declare ΓB =

([
ûKB
]
j
,
[
ŷKA,k

]
l
,
[
yKB,k

]
l

)
to be the common

reconstruction sequences at terminal B. We declare an error if {ΓA 6= ΓB}. Through standard analysis, it can be shown that

E[Pr(ΓA 6= Γ
⋃

ΓB 6= Γ)| C⊗] ≤ δK(ε), (141)

where δK(ε) → 0 as ε → 0 and K → ∞ where Γ ,
([

uK
]
j
,
[
yKA,k

]
l
,
[
yKB,k

]
l

)
and C⊗ , (CA, CB ,SA,SB) denotes the

collection of all the four codebooks.
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B. Equivocation Analysis

We show that our proposed random code ensemble also satisfies:

1

N
H

([
ĥKAB

]
j
,
[
ĥKBA

]
j
,
[
ȳKA,k

]
l
,
[
ȳKB,k

]
l

∣∣ Θ, z̄KAE , z̄
K
BE , g

K
AE , g

K
BE , C⊗

)
≥ R−∆ − δ

1
K(ε) (142)

with Θ = (ψA, ψB , φA, φB) and C⊗ , (CA, CB ,SA,SB). In the following analysis we introduce z̄Kk =
(
z̄KAE,k, z̄

K
BE,k

)
and

gK =
(
gK
AE , g

K
BE

)
. First consider the following:

H

([
ĥKAB

]
j
,
[
ĥKBA

]
j
,
[
ȳKA,k

]
l
,
[
ȳKB,k

]
l

∣∣ ψA, ψB , φA, φB , z̄
K
k , g

K , C⊗
)

≥ H
([

ĥKAB

]
j
,
[
ĥKBA

]
j
,
[
ȳKA,k

]
l
,
[
ȳKB,k

]
l

∣∣ z̄Kk , gK , C⊗
)
−H(φA|C⊗)−H(φB |C⊗)−H(ψA|C⊗)−H(ψB |C⊗) (143)

= H

([
ĥKAB

]
j
,
[
ĥKBA

]
j
,
[
ȳKA,k

]
l
,
[
ȳKB,k

]
l

∣∣ z̄Kk , gK

)
−H(φA|C⊗)−H(φB |C⊗)−H(ψA|C⊗)−H(ψB |C⊗) (144)

where the last step follows from the fact that all the source and channel sequences in Table II are sampled independently of
the codebooks (CA, CB ,SA,SB) in our code construction. The first term in (144) can be lower bounded as follows:

H

([
ĥKAB

]
j
,
[
ĥKBA

]
j
,
[
ȳKA,k

]
l
,
[
ȳKB,k

]
l

∣∣ z̄Kk , gK

)
≥ H

([
ĥKAB

]
j
,
[
ĥKBA

]
j

)
+H

([
ȳKA,k

]
l
,
[
ȳKB,k

]
l

∣∣z̄Kk , gK ,
[
ĥKAB

]
j
,
[
ĥKBA

]
j

)
(145)

≥ H
([

ĥKAB

]
j
,
[
ĥKBA

]
j

)
+H(

[
ȳKA,k

]
l
,
[
ȳKB,k

]
l
|z̄Kk , gK , hKAB , h

K
BA) (146)

= H

([
ĥKAB

]
j
,
[
ĥKBA

]
j

)
+H(

[
ȳKA,k

]
l
|z̄KBE,k, g

K
BE , h

K
BA) +H(

[
ȳKB,k

]
l
|z̄KAE,k, g

K
AE , h

K
AB) (147)

= KH

([
ĥAB

]
j
,
[
ĥBA

]
j

)
+KH

(
[ȳA,k]l|z̄BE,k, gBE , hBA

)
+KH([ȳB,k]l|z̄AE,k, gAE , hAB) (148)

where we use the chain rule of entropy and the fact that (ĥKAB , ĥ
K
BA) is independent of (z̄K , gK) in (145); in (146) we use the

fact that conditioning reduces entropy as well as ĥKAB and ĥKBA are independent of the remaining variables given hKAB and hKBA

respectively; in (147) we use the fact that x̄KA and x̄KB are sampled independently and hence the following Markov conditions
hold:

ȳKA ↔ (z̄KBE , g
K
BE , h

K
BA)↔ (ȳKB , g

K
AE , h

K
AB), (149)

ȳKB ↔ (z̄KAE , g
K
AE , h

K
AB)↔ (ȳKA , g

K
BE , h

K
BA). (150)

which are established in Appendix D. The discretized random variables are also inherit the same properties. Eq. (148) follows
from the fact that the sequence pair (hKAB , h

K
BA) is sampled i.i.d. and furthermore x̄KA and x̄KB are also sampled i.i.d.

The remaining terms in (144) can be upper bounded using (137)-(140).

H(φA | C⊗) ≤ K
{
H

([
ĥBA

]
j

∣∣[ĥAB

]
j

)
+ 2ε

}
, (151)

H(φB | C⊗) ≤ K
{
H

([
ĥAB

]
j

∣∣[ĥBA

]
j

)
+ 2ε

}
, (152)

H(ψA | C⊗) ≤ K
{
H
(

[ȳA,k]l
∣∣ [x̄B ]k, [u]j

)
+ 4ε

}
, (153)

H(ψB | C⊗) ≤ K
{
H
(

[ȳB,k]l
∣∣ [x̄A]k, [u]j

)
+ 4ε

}
. (154)

Using (151) and (152), we have the following:

KH

([
ĥAB

]
j
,
[
ĥBA

]
j

)
−H(φA|C⊗)−H(φB |C⊗)

≥ KH
([

ĥAB

]
j
,
[
ĥBA

]
j

)
−KH

([
ĥAB

]
j

∣∣[ĥBA

]
j

)
−KH

([
ĥBA

]
j

∣∣[ĥAB

]
j

)
− 4Kε (155)

= K · I
([

ĥAB

]
j
;
[
ĥBA

]
j

)
− 4Kε. (156)
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Using the fact that each element in [x̄B ]k = ([xB(1)]k, . . . , [xB(T − 1)]k) is sampled i.i.d. and using (153) and letting ε′ = ε
T−1

we have

KH([ȳA,k]l|z̄BE,k, gBE , hBA)−H(ψA|C⊗)

≥ KH([ȳA,k]l|z̄BE , gBE , hBA)−KH([ȳA,k]l|[x̄B ]k, [u]j)− 4Kε (157)

≥ K(T − 1)
{
H([yA,k]l|zBE , gBE , hBA)−H([yA,k]l|[xB ]k, [u]j)− 4ε′

}
(158)

= K(T − 1)
{
I([yA,k]l; [xB ]k, [u]j)− I([yA,k]l; zBE,k, gBE , hBA)− 4ε′

}
. (159)

The justification of (158) is as follows. From the channel model (2) and (4) the sequence [ȳA,k]l =
([yA,k(1)]l, . . . , [yA,k(T − 1)]l) of T − 1 random variables, when conditioned on hBA is an i.i.d. sequence and similarly the
sequence z̄BE,k = (zBE,k(1), . . . , zBE,k(T − 1)) when conditioned on gBE is an i.i.d. sequence. Therefore the first term
in (157) can be expressed as

H([ȳA,k]l|z̄BE,k, gBE , hBA) = (T − 1)H([yA,k]l|zBE,k, gBE , hBA). (160)

Furthermore using the fact that conditioning reduces entropy, the second term in (157) can be upper bounded as

H
(

[ȳA,k]l|[x̄B ]k, [u]j

)
≤ (T − 1)H

(
[yA,k]l|[xB ]k, [u]j

)
. (161)

Note that (158) follows by substituting (160) and (161) into (157). In a similar fashion we can show that

KH([ȳB,k]l|z̄AE,k, gAE , hAB)−H(ψB |C⊗)

≥ K(T − 1)
{
I([yB,k]l; [xA]k, [u]j)− I([yB,k]l; zAE,k, gAE , hAB)− 4ε′

}
(162)

Combining (156), (159) and (162) we obtain that

H(
[
ȳKA,k

]
l
,
[
ȳKB,k

]
l
,
[
uK
]
j

∣∣z̄Kk , gK , φA, φB , ψA, ψB , C⊗)

≥ KI
([

ĥAB

]
j
;
[
ĥBA

]
j

)
− 4Kε− 8Kε′

+K(T − 1)
{
I([yA,k]l; [xB ]k, [u]j)− I([yA,k]l; zBE,k, gBE , hBA)− 2ε′

}
+K(T − 1)

{
I([yB,k]l; [xA]k, [u]j)− I([yB,k]l; zAE,k, gAE , hAB)−2ε′

}
(163)

Dividing both sides by N = K · T the relation (142) now follows. By examining (141) and (142) it follows that there exists
a deterministic codebook C̃⊗ in the ensemble, that simultaneously satisfies the equivocation constraint (136) and

Pr(ΓA 6= Γ
⋃

ΓB 6= Γ) ≤ δ(ε). (164)

C. Secret-Key Generation

Our analysis thus far has established the existence of a codebook C̃⊗ that generates a common tuple of sequences([
uK
]
,
[
ȳKA,k

]
l
,
[
ȳKB,k

]
l

)
, satisfies the equivocation constraint (136) and the reliability constraint (164). We next discuss how

one can use the codebook C̃⊗ to generate a common secret-key at the two terminals.
We consider transmission over a total of M macro-blocks. Each macro-block i spans K coherence blocks the terminals

sample sequences x̄KA (i) and x̄KB (i) in an i.i.d. fashion, independently from the previous blocks. Thereafter we execute the steps
discussed in the previous sections, which results in the following observations at the legitimate receivers and the eavesdropper:

ΓA(i) =
([

ûKA (i)
]
j
,
[
yKA,k(i)

]
l
,
[
ŷKB,k(i)

]
l

)
(165)

ΓB(i) =
([

ûKB (i)
]
j
,
[
ŷKA,k(i)

]
l
,
[
yKB,k(i)

]
l

)
(166)

Ω(i) =
(
z̄Kk (i), gK(i), ψA(i), ψB(i), φA(i), φB(i)

)
. (167)

Note that {ΓA(i),ΓB(i),Ω(i)} are sampled i.i.d. across the macro-blocks. Furthermore for each i ∈ {1, 2, . . . ,M}, they
satisfy (164) and (136). Thus an achievable one-way secret-key generation rate for the sequence {ΓA(i),ΓB(i),Ω(i)} is (see
e.g., [15]):

R− =
1

N
[I(ΓA; ΓB)− I(ΓA; Ω)] (168)

=
1

N
[H(ΓA|Ω)−H(ΓA|ΓB)] (169)
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≥ 1

N
[H(Γ|Ω)−NγK(ε)] (170)

≥ R−∆ − δK(ε)− γK(ε) (171)

where (170) follows Fano’s inequality and (171) follows from (136). Since we can make ε arbitrarily small and K sufficiently
large, the achievability of the proposed rate follows.

APPENDIX D
PROOF OF (149)

To establish (149) consider

p(ȳKA | z̄KBE , g
K
BE , h

K
BA, ȳ

K
B , g

K
AE , h

K
AB) =

∑
x̄KB

p(ȳKA , x̄
K
B | z̄KBE , g

K
BE , h

K
BA, ȳ

K
B , g

K
AE , h

K
AB) (172)

=
∑
x̄KB

p(ȳKA | z̄KBE , g
K
BE , h

K
BA, ȳ

K
B , g

K
AE , h

K
AB , x̄

K
B )p(x̄KB | z̄KBE , g

K
BE , h

K
BA, ȳ

K
B , g

K
AE , h

K
AB) (173)

=
∑
x̄KB

p(ȳKA |hKBA, x̄
K
B )p(x̄KB | z̄KBE , g

K
BE) (174)

=
∑
x̄KB

p(ȳKA |hKBA, x̄
K
B , z̄KBE , g

K
BE)p(x̄KB | z̄KBE , g

K
BE , h

K
BA) (175)

=
∑
x̄KB

p(ȳKA , x̄
K
B |hKBA, z̄KBE , g

K
BE) = p(ȳKA |hKBA, z̄KBE , g

K
BE). (176)

where (174) follows from the fact that x̄KA is sampled independently of x̄KB and the channel estimates, and using the structure
of the channel (3) we also have that

ȳKA ↔ (x̄KB , h
K
BA)↔ ( z̄KBE , g

K
BE , ȳ

K
B , g

K
AE , h

K
AB) (177)

This establishes (149). Eq (150) can be established in an analogous fashion and its proof will be omitted.
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