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Abstract

The state-dependent point-to-point Gaussian channel with a helper is first studied,
in which a transmitter communicates with a receiver via a state-corrupted channel.
The state is not known to the transmitter nor to the receiver, but known to a helper
noncausally, which then wishes to assist the receiver to cancel the state. Differently
from previous work that characterized the capacity only in the infinite state power
regime, this paper explores the general case with arbitrary state power. A lower bound
on the capacity is derived based on an achievable scheme that integrates direct state
subtraction and single-bin dirty paper coding. By analyzing this lower bound and
further comparing it with the existing upper bounds, the capacity of the channel is
characterized for a wide range of channel parameters. Such an idea of characterizing
the capacity is further extended to study the two-user state-dependent multiple access
channel (MAC) with a helper. By comparing the derived inner and outer bounds, the
channel parameters are partitioned into appropriate cases, and for each case, either
segments on the capacity region boundary or the full capacity region are characterized.

1 Introduction

A type of helper-assisted state-dependent models have been an active research topic recently.
The basic point-to-point model (see Figure 2) was studied in [1], in which a transmitter
wishes to send the message W to a receiver over the state-corrupted channel, and a helper
that knows the state information noncausally wishes to assist the receiver to cancel state
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interference. The state information is not known at the transmitter nor at the receiver.
Here, the transmitter that needs to send the message does not know the state, whereas
the helper that knows the state does not know the message. Such a mismatched property
differentiates this channel from the traditional state-dependent channel studied in [2, 3],
where the transmitter knows both the message and the state. Such a model serves as a
building block for a number of more general channel models studied later on, including the
state-dependent multiple-access channel (MAC) [4, 5], its further generalization [6, 7], the
state-dependent Z-interference channel [8], and the state-dependent relay channel [9, 10].

In [1], lower and upper bounds on the capacity for the point-to-point model were derived
with the lower bound based on lattice coding. However, the capacity was established only
in the asymptotic regime as the state power goes to infinity. Moreover, further studies
of more general models did not provide further capacity results beyond the infinite state
power regime, when the models are specialized to the point-to-point model here. Thus, the
capacity in the regime with finite state power is left as an open problem for this type of
state-dependent channels with a helper 7.

The focus in this paper is on the finite state power regime. Our main contribution lies
in characterization of the capacity of the point-to-point model for a wide range of channel
parameters, and demonstration of applicability of our idea to characterize the capacity region
of the MAC model either partially or fully for all parameter regimes. There are two major
challenges here: (1) the achievable schemes proposed previously may not be sufficiently
good for finite state power regime although they are optimal for infinite state power regime;
and (2) the derived lower bounds on the capacity tend to have complicated form to capture
correlation of the helper’s input and the state, and hence are difficult to analyze and compare
with upper bounds which may also have complicated form as in [1, 7].

For the point-to-point model with a helper, our achievable scheme is based on integration
of single-bin dirty paper coding and direct state subtraction (i.e., the helper directly cancels
partial state in the received output) with optimal trade-off between the two schemes. Such a
scheme is equivalent to the generalized dirty paper coding used in [10] for the state-dependent
relay channel, which assumes that the relay input and state are correlated. A lower bound
on the capacity is derived based on such a scheme, which takes a complicated form and
involves various parameters (i.e., dirty paper parameter and parameter capturing trade-off
between two schemes) to be optimized. Our major novelty lies in identifying two special
cases to analytically optimize the lower bound so that the optimizing lower bound matches
either the upper bound in [1] or the capacity of the channel without state for various channel
parameters. We thus establish the capacity under these channel parameters.

Our capacity result can be summarized as follows. If the helper’s power is relatively small
(compared to the transmitter’s power and state power), then the capacity is characterized as
a function of the state power, the helper’s power and the transmitter’s power. In particular,
the capacity is strictly less than the capacity of the channel without state, which implies
that there exists no achievable scheme that fully cancels the state interference. Here, direct

7In fact, the interesting case in the finite power regime is when the helper’s power is less than the state
power. Otherwise, it is straightforward to cancel the state by setting the helper’s signal to reverse the state.
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state subtraction is necessary for the achievable scheme to be optimal. On the other hand,
if the helper’s power is larger than a threshold, then the channel achieves the capacity
of the channel without state, which implies that the state can be fully canceled. Here,
single-bin dirty paper coding is optimal and direct state subtraction is not necessary. Such
characterization of the capacity reduces to the capacity result for infinite state power regime
obtained in the previous studies [1, 5, 7, 8, 10].

We then generalize our analysis to the state-dependent Gaussian MAC model with a helper,
in which two transmitters send two independent messages to a common state-corrupted re-
ceiver. The state sequence is not known at the transmitters nor at the receiver, but is
noncausally known to a helper, which wishes to assist the receiver to cancel the state. We
first derive an outer bound on the capacity region, which not only consists of the natural
outer bound given by the capacity region of the channel without state, but also consists of
bounds that capture the impact of the helper’s power and the state power on the transmis-
sion rates, similarly to the upper bound in [1] for the point-to-point channel. We then derive
an inner bound based on a scheme that integrates direct state cancelation and single-bin
dirty paper coding. Since the inner and outer bounds are both characterized in complicated
forms, direct comparison of the two regions is challenging. We thus first compare the bounds
on the individual rates and sum rate separately, and characterize conditions on the channel
parameters such that each individual rate and the sum rate separately achieves its corre-
sponding outer bound. In this way, we characterize separate segments on the capacity region
boundary. Intersections of conditions for the individual and sum rates then collectively char-
acterize channel parameters under which multiple segments on the capacity boundary are
obtained. Based on such an idea, we partition the channel parameters into appropriate cases,
and characterize segments on the capacity region boundary for all these cases. Among these
cases, we characterize the full capacity region for one case, which achieves the capacity region
of the Gaussian MAC without state, i.e., the state is fully canceled. Such a case suggests
that if the helper’s power is large enough, then the state can always be canceled. However,
if the helper’s power is below a threshold, the helper can assist to fully cancel the state only
when the state power is small enough.

1.1 Related Work

As mentioned earlier, the model we study was initially studied in [1]. A number of more
general models were then further studied, which include the channel of interest here as a
special case. More specifically, in [4, 5], the state-dependent multiple-access channel (MAC)
was studied, which can be viewed as the model here with the helper also having its own
message to the receiver. Two more general state-dependent MACs were studied in [6] and [7],
which can be viewed as the MAC model in [4,5] respectively with the helper further knowing
the transmitter’s message and with one more state corruption known at the transmitter.
In [8], the state-dependent Z-interference channel was studied, which can be viewed as the
model here with the helper also having a message to its own receiver. In [9, 10], the state-
dependent relay channel was studied, which can be viewed as the model here with the helper
also receiving information from the transmitter and serving as a relay. When these models

3



reduce to the model here, the results in [5,7,8,10] characterize the capacity of the Gaussian
channel as the state power goes to infinity as in [1]. In particular, the achievable scheme
in [7] is based on lattice coding similar to [1], and the scheme in [5, 8, 10] can be viewed as
single-bin dirty paper coding (i.e., a special case of dirty paper coding [2, 3] with only one
bin). In this paper, our focus is to characterize the capacity for the finite state power regime.

Various state-dependent MAC models were studied previously, which are related but differ-
ent from the MAC model with a helper studied in this paper. State-dependent MAC models
with state causally or strictly causally known at the transmitter were studied in [11–15],
whereas our model assumes that the state is noncausally known at the helper. The two-
user MAC with state noncausally known at the transmitters has been previously studied in
various cases. [16, 17] studied the MAC model with state noncausally known at both trans-
mitters, while [4,5] assumed that the state is known only to one transmitter. [6] studied the
cognitive MAC model in which one transmitter also knows the other transmitter’s message
in addition to the noncausal state information. Furthermore, [7, 18] studied the model with
the receiver being corrupted by two independent states and each state is known noncausally
to one transmitter. In all these two-user MAC models with noncausal state information,
at least one transmitter knows the state information, and can hence encode messages by
incorporating the state information. Our MAC model is different in that only an additional
helper knows the state information and assists to cancel the state.

1.2 Practical Motivation

Figure 1: A practical example of the MAC model with a helper.

The type of state-dependent models with a helper can arise from a new perspective of
interference cancelation in wireless networks. The idea can be illustrated via a simple MAC
example (see Fig. 1). Consider multiple-access communications in a picocell located inside a
macrocell of a cellular network. It is typical that a macrocell user causes interference to the
picocell users. The macrocell user itself knows the interference that it causes to the picocell
users noncausally because such interference is in fact the signal that this user sends to its
own receiver (i.e., the base station in the macrocell). Thus, the interference is referred to as
dirty interference (i.e., the noncausal state sequence in our model) and is denoted as Sn in
Fig. 1. The macrocell user is then able to exploit such interference (i.e., state) information
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and send a help signal (denoted by X0 in Fig. 1) to assist the picocell receiver to cancel the
interference. In this way, a user can assist to cancel the interference that itself causes to
other users by exploiting its knowledge about the interference. Although the help signal X0

may also cause interference to the macrocell base station, as long as the power of X0 is much
less than the power of S, there is still significant gain in throughput. In fact, our results in
this paper demonstrate that the interfering user can use a relatively small amount of power
to completely cancel the interference that it causes to other users (e.g., the picocell users in
our previous example) even if the interference is as large as infinite.

1.3 Organization

The rest of the paper is organized as follows. In Section 2, we present the point-to-point
channel model and our characterization of the capacity for various channel parameters of this
channel. In Section 3, we present the MAC model and our characterization of the capacity
for various parameter regimes of this channel. In Section 4, we conclude the paper with
several remarks.

2 Point-to-Point Channel with a Helper

2.1 Channel Model

Figure 2: The state-dependent channel with a helper

We consider the state-dependent channel with a helper (see Figure 2), in which a transmit-
ter sends a message to a receiver over the state-dependent channel, and a helper that knows
the state sequence noncausally wishes to assist the transmission by canceling the state. More
specifically, the transmitter has an encoder f : W → X n, which maps a message w ∈ W to
a codeword xn ∈ X n. The input xn is transmitted over the channel, which is corrupted by
an independent and identically distributed (i.i.d.) state sequence Sn. The state sequence
is assumed to be known at neither the transmitter nor the receiver, but at a helper non-
causally. Thus, the encoder at the helper, f0 : Sn → X n

0 , maps a state sequence sn ∈ Sn
to a codeword xn0 ∈ X n

0 and sends it over the channel. The channel is characterized by the
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transition probability distribution PY |X0,X,S. The decoder at the receiver, g : Yn →W , maps
a received sequence yn into a message ŵ ∈ W .

We assume that the message is uniformly distributed over the setW , and define the average
probability of error for a length-n code as follows.

Pe =
1

|W|

|W|∑
w=1

Pr{ŵ 6= w}. (1)

A rate R is achievable if there exist a sequence of message sets W(n) with |W(n)| = 2nR and

encoder-decoder tuples (f
(n)
0 , f (n), g(n)) such that the average probability of error P

(n)
e → 0

as n→∞. We define the capacity of the channel to be supremum of all achievable rates R.

In this paper, we focus on the state-dependent Gaussian channel, with input-output rela-
tionship for one channel use given by

Y = X0 +X + S +N (2)

where the noise variable N and the state variable S are Gaussian distributed with distribu-
tions N ∼ N (0, 1) and S ∼ N (0, Q), and both variables are i.i.d. over channel uses. The
channel inputs X0 and X are subject to the average power constraints

1

n

n∑
i=1

X2
0i 6 P0 and

1

n

n∑
i=1

X2
i 6 P. (3)

2.2 Achievable Scheme and Lower Bound

We adopt an achievable scheme that integrates (1) precoding state into a help signal using
single-bin dirty paper coding and (2) directly subtracting state. The single-bin dirty paper
coding is a special case of dirty paper coding with only one bin, because the bin number
corresponds to the message index in dirty paper coding, and here the helper does not know
the message to be sent. It has been shown in previous studies that only single-bin dirty
paper coding is sufficient to achieve the capacity in the infinite state power regime. This
is reasonable because direct state subtraction is not useful when the state power is infinite.
However, for the finite state power regime, direct state subtraction can be more efficient and
hence should be included in the achievable scheme. In order to achieve the best performance,
the achievable scheme should include the two coding schemes with the best trade-off, which
results the following achievable rate.

Proposition 1. For the state-dependent Gaussian channel with a helper, the following rate
is achievable

R 6 max
(α,β) s.t.

−
√

P0
Q

6β6
√

P0
Q

min{R1(α, β), R2(α, β)}, (4)
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where

R1(α, β) =
1

2
log

P ′0(P
′
0 + (1 + β)2Q+ P + 1)

P ′0Q(α− 1− β)2 + P ′0 + α2Q
, (5a)

R2(α, β) =
1

2
log

(
1 +

P (P ′0 + α2Q)

P ′0Q(α− 1− β)2 + P ′0 + α2Q

)
, (5b)

and P ′0 = P0 − β2Q.

Proposition 1 is consistent with the achievable rate derived for the state-dependent relay
channel in [10] with the noise power on the source to relay link set to infinity. However, the
rate expression in [10] is much more complicated due to existence of the relay. It appears to
mask the crucial elements required in obtaining the capacity results in the present model. For
this reason, we provide a simple proof of achievability that emphasizes the interplay between
state subtraction and dirty-paper coding. We would also like to note that the optimality
results presented herein (in Section 2.3) are new, and were not known previously to the best
of our knowledge.

Proof. We first derive an achievable rate based on single-bin Gel’fand-Pinsker binning scheme
for the discrete memoryless state-dependent channel. For a given distribution PUS, a number
of un is generated using the marginal distribution PU , so that for any sn, there exists a un

that is jointly typical with sn. The helper’s input xn0 is then created based on PX0|SU . The
transmitter’s input xn is created based on PX . The receiver jointly decodes both un and xn.
The following lemma characterizes the achievable rate based on the above scheme.

Lemma 1. For the state-dependent point-to-point channel with a helper, the following rate
is achievable

R 6 min{I(UX;Y )− I(U ;S), I(X;Y |U)} (6)

for some distribution PX0USPXPY |X0XS.

The above rate can also be derived from [8, Proposition 2] by setting X ′0 = φ. Detailed
proof is relegated to Appendix A.

Proposition 1 then follows by evaluating the mutual information terms in (6) based on the
following joint Gaussian distribution for the random variables

X0 = X00 + βS

U = X00 + αS (7)

where X00 is independent of S and X00 ∼ N (0, P ′0) with P ′0 = P0 − β2Q and −
√

P0

Q
6 β 6√

P0

Q
.
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We note that in (7), the helper’s input X0 contains two parts with X00 designed using
single-bin dirty paper coding, and βS serving for state subtraction. The parameter β cap-
tures the trade-off between the two schemes. Furthermore, the achievable rate in (6) can be
intuitively understood as follows. The first term

I(U,X;Y )− I(U ;S) = I(U,X;Y )− I(U,X;S),

where (U,X) play the role of the auxiliary variable in Gel’fand-Pinsker scheme. The second
term

I(X;Y |U) = I(U,X;Y )− I(U ;Y )

can be interpreted as coding via (U,X) but paying the price needed to convey U to the
receiver.

The achievable rate in Proposition 1 is optimized over α and β. The optimization is a
max-min problem, i.e., maximization of minimum of R1(α, β) and R2(α, β). In general, such
optimization cannot be solved analytically with close-form expressions. In order to obtain
further insights of such a lower bound, we consider two special cases in which the optimization
is solved analytically and the corresponding achievable rate turns out to achieve the capacity
as we present in Section 2.3. The idea is to optimize R1(α, β) and R2(α, β) separately. For
example, when R1(α, β) is optimized, if R2(α, β) at the optimizing values of α and β is
greater than the optimal R1(α, β), then the corresponding optimal R1(α, β) is achievable.
The same argument is applicable to optimizing R2(α, β) instead. Such an idea yields the
following two corollaries on the achievable rate.

Corollary 1. For the state-dependent Gaussian channel with a helper, the following rate R
is achievable

R = max
−16ρ0S61

min{R1(ρ0S), R2(ρ0S)} (8)

where

R1(ρ0S) =
1

2
log

(
1 +

P

Q+ 2ρ0S
√
P0Q+ P0 + 1

)
+

1

2
log(1 + P0 − ρ20SP0) (9a)

R2(ρ0S) =
1

2
log

(
1 +

P ((1 + P0(1− ρ20S))2 + (1− ρ20S)P0(
√
Q+ ρ0S

√
P0)

2)

(Q+ 2ρ0S
√
P0Q+ P0 + 1)(1 + P0 − ρ20SP0)

)
. (9b)

Proof. It can be shown thatR1(α, β) is optimized by α =
(1+β)P ′

0

P ′
0+1

. We further set β = ρ0S
√

P0

Q

to better illustrate the result, where −1 6 ρ0S 6 1. Corollary 1 then follows by substituting
α and β into (5a) and (5b).

Corollary 2. For the state-dependent Gaussian channel with a helper, the following rate R
is achievable

R = min

{
1

2
log

P ′0(P
′
0 + α2Q+ P + 1)

P ′0 + α2Q
,
1

2
log(1 + P )

}
. (10)

for some α ∈ Ωα = {α : 1−
√

P0

Q
≤ α ≤ 1 +

√
P0

Q
}.

Proof. It can be shown that R2(α, β) is optimized by setting β = α − 1. Corollary 2 then
follows by substituting β into (5a) and (5b).
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2.3 Capacity Characterization

In order to characterize the capacity, we first present two useful upper bounds on the capacity.
In [1], the following upper bound on the capacity was derived.

Lemma 2. The capacity of the state-dependent Gaussian channel with a helper is upper
bounded as

C 6 max
−16ρ0S61

1

2
log

(
1 +

P

Q+ 2ρ0S
√
P0Q+ P0 + 1

)
+

1

2
log(1 + P0 − ρ20SP0). (11)

It is also clear that the capacity of the channel between the transmitter and receiver
without state serves as an upper bound on the capacity of the state-dependent channel.

Lemma 3. The capacity of the state-dependent Gaussian channel with a helper is upper
bounded as

C 6
1

2
log(1 + P ). (12)

By comparing the achievable rate in Corollary 1 with the upper bound in Lemma 2, we
characterize the capacity for various channel parameters in the following theorem.

Theorem 1. For the state-dependent Gaussian channel with a helper, suppose ρ∗0S maximizes
R1(ρ0S) in (9a). If the channel parameters satisfy the following condition:

R1(ρ
∗
0S) 6 R2(ρ

∗
0S), (13)

where R2(ρ0S) is given in (9b), then the channel capacity C = R1(ρ
∗
0S).

Proof. Due to Corollary 1 and the condition (13), R1(ρ
∗
0S) is achievable. Since such an

achievable rate matches the upper bound in Lemma 2, it is thus the capacity of the channel.

We note that for channels that satisfy the condition (13), the capacity R1(ρ
∗
0S) is less than

the capacity of the channel without the state. Thus, in such cases, the state interference
cannot be fully canceled by any scheme.

Furthermore, by comparing the achievable rate in Corollary 2 with the upper bound in
Lemma 3, we further characterize the capacity for an additional set of channel parameters.

Theorem 2. For the state-dependent Gaussian channel with a helper, if the channel param-
eters satisfy the following condition:

P ′20 ≥ α2Q(P + 1− P ′0) (14)

where P ′0 = P0 − (α − 1)2Q holds for some α ∈ Ωα = {α : 1 −
√

P0

Q
≤ α ≤ 1 +

√
P0

Q
}, then

the channel capacity C = 1
2

log(1 + P ).
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Proof. Due to Corollary 2 and the condition (14), the rate 1
2

log(1 + P ) is achievable. Since
such an achievable rate matches the upper bound in Lemma 3, it is thus the capacity of the
channel.

It is clear that under the condition (14), the state-dependent channel achieves the capacity
of the channel without state. Thus, the state can be fully cancelled even if the state-cognitive
node (i.e., the helper) does not know the message.

We further note that as the state power Q goes to infinity, Theorems 1 and 2 collectively
characterize the capacity established in the previous studies [1, 5, 7, 8, 10].

2.4 Numerical Result

In this section, we demonstrate our characterization of the capacity via numerical plots.
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Figure 3: Lower and upper bounds on the capacity for the state-dependent channel with a
helper

In Fig. 3, we fix P = 5, and Q = 12, and plot the lower bounds in Corollaries 1 and 2 and
the upper bounds in Lemmas 2 and 3 as functions of the helper’s power P0. It can be seen
that the lower bound 1 in Corollary 1 matches the upper bound 1 in Lemma 2 when P0 ≤ 2.5,
which corresponds to the capacity characterization in Theorem 1, and the lower bound 2
in Corollary 2 matches the upper bound 2 in Lemma 3 when P0 ≥ 4.5, which corresponds
to the capacity characterization in Theorem 2. The numerical result also suggests that
when P0 is small, the channel capacity is limited by the helper’s power and increases as the
helper’s power P0 increases. However, as P0 becomes large enough, the channel capacity is
determined only by the transmitter’s power P , in which case the state is perfectly canceled.
We further note that the channel capacity without state can even be achieved when P0 < Q
(e.g., 4.5 ≤ P0 ≤ 10). This implies that for these cases, the state is fully cancelled not only
by state subtraction, but also by precoding the state via single-bin dirty paper coding. We
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finally note that a better achievable rate can be achieved by the convex envelop of the two
lower bounds, which does not yield further capacity result and is not shown in Fig. 3.

0 100 200 300 400
0

1

2

3
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5

6

Q

P 0

C= 1/2log(1+P)

C(P
0
, P, Q)

Figure 4: Ranges of parameters for which the capacity is characterized

In Fig. 4, we fix P = 5, and plot the range of the channel parameters (Q,P0) for which
we characterize the capacity. Each point in the figure corresponds to one parameter pair
(Q,P0). The upper shaded area corresponds to channel parameters that satisfy (14), i.e., P0

is large enough compared to Q, and hence the capacity of the channel without state can be
achieved. The lower shaded area corresponds to channel parameters that satisfy (13), and
hence the capacity is characterized by a function of not only P , but also P0 and Q.

3 MAC with a Helper

3.1 Channel Model

Figure 5: The state-dependent MAC with a helper

We consider the state-dependent MAC with a helper (as shown in Fig. 5), in which trans-
mitter 1 sends a message W1, and transmitter 2 sends a message W2 to the receiver. The
encoder fk : W → X n

k at transmitter k maps a message wk ∈ Wk to a codeword xnk ∈ X n
k

for k = 1, 2. The two inputs xn1 and xn2 are transmitted over the MAC to a receiver, which
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is corrupted by an i.i.d. state sequence Sn. The state sequence is known to neither the
transmitters nor the receiver, but is known to a helper noncausally. Hence, the helper assists
the receiver to cancel the state interference. The encoder f0 : Sn → X n

0 at the helper maps
the state sequence sn ∈ Sn into a codeword xn0 ∈ X n

0 . The channel transition probability
is given by PY |X0X1X2S. The decoder g : Yn → (W1,W2) at the receiver maps the received
sequence yn into two messages ŵk ∈ Wk for k = 1, 2.

The average probability of error for a length-n code is defined as

P (n)
e =

1

|W1||W2|

|W1|∑
w1=1

|W2|∑
w2=1

Pr{(ŵ1, ŵ2) 6= (w1, w2)}. (15)

A rate pair (R1, R2) is achievable if there exist a sequence of message setsW(n)
k with |W(n)

k | =
2nRk for k = 1, 2, and encoder-decoder tuples (f

(n)
0 , f

(n)
1 , f

(n)
2 , g(n)) such that the average error

probability P
(n)
e → 0 as n → ∞. We define the capacity region to be the closure of the set

of all achievable rate pairs (R1, R2).

We focus on the state-dependent Gaussian channel with the output at the receiver for one
channel use given by

Y = X0 +X1 +X2 + S +N (16)

where the noise variables N ∼ N (0, 1), and S ∼ N (0, Q). Both the noise variables and the
state variable are i.i.d. over channel uses. The channel inputs X0, X1 and X2 are subject to
the average power constraints P0, P1 and P2.

Our goal is to characterize the capacity region of the Gaussian channel under various
channel parameters (P0, P1, P2, Q).

3.2 Outer and Inner Bounds

We first provide an outer bound on the capacity region as follows, in which the first terms
in the “min” improve the corresponding bounds give in [19].

Proposition 2. An outer bound on the capacity region of the state-dependent Gaussian
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MAC with a helper consists of rate pairs (R1, R2) satisfying:

R1 6 min
{1

2
log(1 +

P1

Q+ 2ρ0S
√
P0Q+ P0 + 1

) +
1

2
log(1 + P0 − ρ20SP0),

1

2
log(1 + P1)

}
(17a)

R2 6 min
{1

2
log(1 +

P2

Q+ 2ρ0S
√
P0Q+ P0 + 1

) +
1

2
log(1 + P0 − ρ20SP0),

1

2
log(1 + P2)

}
(17b)

R1 +R2 6 min
{1

2
log(1 +

P1 + P2

Q+ 2ρ0S
√
P0Q+ P0 + 1

) +
1

2
log(1 + P0 − ρ20SP0),

1

2
log(1 + P1 + P2)

}
(17c)

for some ρ0S that satisfies −1 6 ρ0S 6 1.

Proof. See Appendix B.

The second terms in the “min” in (17a)-(17c) capture the capacity region of the Gaussian
MAC without state. If these bounds dominate the outer bound, then it is possible to design
achievable schemes to fully cancel the state. Otherwise, if the first terms in the “min”
in (17a)-(17c) dominate the outer bound, then the state cannot be fully canceled by any
scheme, and the capacity region of the state-dependent MAC is smaller than that of the
MAC without state.

We next derive an achievable region for the channel based on an achievable scheme that
integrates direct state cancelation and single-bin dirty paper coding. In particular, since the
helper does not know the messages, dirty paper coding naturally involves only one bin. More
specifically, an auxiliary random variable (represented by U in Proposition 3) is generated to
incorporate the state information so that the receiver decodes such variable first to cancel the
state and then decode the transmitters’ information. Based on such an achievable scheme,
we derive the following inner bound on the capacity region.

Proposition 3. For the discrete memoryless state-dependent MAC with a helper, an inner
bound on the capacity region consists of rate pairs (R1, R2) satisfying:

R1 ≤min{I(X1;Y |X2, U), I(U,X1;Y |X2)− I(U ;S)} (18a)

R2 ≤min{I(X2;Y |X1, U), I(U,X2;Y |X1)− I(U ;S)} (18b)

R1 +R2 ≤min{I(X1, X2;Y |U), I(U,X1, X2;Y )− I(U ;S)} (18c)

for some distribution PSPU |SPX0|USPX1PX2PY |SX0X1X2.

Proof. See Appendix C.

Based on the above inner bound, we derive the following inner bound for the Gaussian
channel.
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Proposition 4. For the state-dependent Gaussian MAC with a helper, an inner bound on
the capacity region consists of rate pairs (R1, R2) satisfying:

R1 6min{f(α, β, P1), g(α, β, P1)} (19a)

R2 6min{f(α, β, P2), g(α, β, P2)} (19b)

R1 +R2 6min{f(α, β, P1 + P2), g(α, β, P1 + P2)} (19c)

for some real constants α and β satisfying −
√

P0

Q
6 β 6

√
P0

Q
. In the above bounds,

f(α, β, P ) =
1

2
log

P ′0(P
′
0 + (1 + β)2Q+ P + 1)

P ′0Q(α− 1− β)2 + P ′0 + α2Q
, (20)

g(α, β, P ) =
1

2
log

(
1 +

P (P ′0 + α2Q)

P ′0Q(α− 1− β)2 + P ′0 + α2Q

)
, (21)

where P ′0 = P0 − β2Q.

Proof. The region follows from Proposition 3 by choosing the joint Gaussian distribution for
random variables as follows:

U = X ′0 + αS, X0 = X ′0 + βS, X ′0 ∼ N (0, P ′0), X1 ∼ N (0, P1), X2 ∼ N (0, P2)

where X ′0, X1, X2, S are independent. The constraint on β follows due to the power constraint
on X0.

We note that the above construction of the input X0 of the helper reflects two state
cancelation schemes: the term βS represents direct cancelation of some state power in the
output of the receiver; and the variable X ′0 is used for dirty paper coding via generation of
the state-correlated auxiliary variable U . Hence, the parameter β controls the balance of two
schemes in the integrated scheme, and can be optimized to achieve the best performance.
This scheme is also equivalent to the one with U = X0 +αS, where X0 and S are correlated.
While such approaches have been considered in the literature (see e.g., [4]), we believe that
selecting U and X0 successively provides a more operational meaning to the correlation
structure.

3.3 Capacity Characterization

By comparing the inner and outer bounds provided in Section 3.2, we characterize the
capacity region or segments on the capacity boundary in various channel cases. Our idea is
to separately analyze the bounds (19a)-(19c) in the inner bound and characterize conditions
on the channel parameters (P0, P1, P2, Q) under which these bounds respectively meet the
bounds (17a)-(17c) in the outer bound. In such cases, the corresponding segment on the
capacity region is characterized.
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We first consider the bound on R1 in (19a). Let

α1 =
(1 + β1)P

′
0

P ′0 + 1
, β1 = ρ∗0S

√
P0

Q
. (22)

Then f(α, β, P1) takes the following form

f(α1, β1, P1) =
1

2
log

(
1 +

P1

Q+ 2ρ∗0S
√
P0Q+ P0 + 1

)
+

1

2
log(1 + P0 − ρ∗20SP0) (23)

where ρ∗0S ∈ [−1, 1] maximizes

1

2
log

(
1 +

P1

Q+ 2ρ0S
√
P0Q+ P0 + 1

)
+

1

2
log(1 + P0 − ρ20SP0).

In fact, α1 is set to maximize f(α, β, P1) for fixed β, and β1 is set to maximize the function
with α being replaced by α1. If f(α1, β1, P1) 6 g(α1, β1, P1), then R1 = f(α1, β1, P1) is
achievable, and this meets the outer bound (the first term in “min” in (17a)). Thus, one
segment of the capacity region is specified by R1 = f(α1, β1, P1).

Furthermore, we set β = α− 1 and then obtain:

g(α, α− 1, P1) =
1

2
log(1 + P1). (24)

If g(α, α− 1, P1) 6 f(α, α− 1, P1), i.e., P ′20 ≥ α2Q(P1 + 1− P ′0) where P ′0 = P0 − (α− 1)2Q

holds for some α ∈ Ωα = {α : 1 −
√

P0

Q
≤ α ≤ 1 +

√
P0

Q
}, then R1 = 1

2
log(1 + P1) is

achievable, and this meets the outer bound (the second term in “min” in (17a)). This also
equals the maximum rate for R1 when the channel is not corrupted by state. Thus, one
segment of the capacity region is specified by R1 = 1

2
log(1 + P1).

Similarly, following the above arguments, segments on the capacity region boundary cor-
responding to bounds on R2 and R1 +R2 can be characterized.

Summarizing the above analysis, we obtain the following characterization of segments of
the capacity region boundary.

Theorem 3. The channel parameters (P0, P1, P2, Q) can be partitioned into the sets A1,B1, C1,
where

A1 = {(P0, P1, P2, Q) : f(α1, β1, P1) 6 g(α1, β1, P1)}
C1 = {(P0, P1, P2, Q) : P ′20 ≥ α2Q(P1 + 1− P ′0)

where P ′0 = P0 − (α− 1)2Q, for some α ∈ Ωα}
B1 = (A1 ∪ C1)c.

If (P0, P1, P2, Q) ∈ A1, then R1 = f(α1, β1, P1) captures one segment of the capacity region
boundary, where the state cannot be fully canceled. If (P0, P1, P2, Q) ∈ C1, then R1 = 1

2
log(1+
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P1) captures one segment of the capacity region boundary, where the state is fully canceled.
If (P0, P1, P2, Q) ∈ B1, R1 segment of the capacity region boundary is not characterized.

The channel parameters (P0, P1, P2, Q) can alternatively be partitioned into the sets A2,B2, C2,
where

A2 = {(P0, P1, P2, Q) : f(α2, β2, P2) 6 g(α2, β2, P2)}
C2 = {(P0, P1, P2, Q) : P ′20 ≥ α2Q(P2 + 1− P ′0)

where P ′0 = P0 − (α− 1)2Q, for some α ∈ Ωα}
B2 = (A2 ∪ C2)c,

where α2, β2 are defined similarly to (22) with P1 being replaced by P2. If (P0, P1, P2, Q) ∈ A2,
then R2 = f(α2, β2, P2) captures one segment of the capacity region boundary, where the state
cannot be fully canceled. If (P0, P1, P2, Q) ∈ C2, then R2 = 1

2
log(1+P2) captures one segment

of the capacity region boundary, where the state is fully canceled.

Furthermore, the channel parameters (P0, P1, P2, Q) can also be partitioned into the sets
A3,B3, C3, where

A3 = {(P0, P1, P2, Q) :

f(α3, β3, P1 + P2) 6 g(α3, β3, P1 + P2)}
C3 = {(P0, P1, P2, Q) : P ′20 ≥ α2Q(P1 + P2 + 1− P ′0)

where P ′0 = P0 − (α− 1)2Q, for some α ∈ Ωα}
B3 = (A3 ∪ C3)c,

where α3, β3 are defined similarly to (22) with P1 being replaced by P1+P2. If (P0, P1, P2, Q) ∈
A3, then R1 + R2 = f(α3, β3, P1 + P2) captures one segment of the sum capacity, where the
state cannot be fully canceled. If (P0, P1, P2, Q) ∈ C3, then R1 + R2 = 1

2
log(1 + P1 + P2)

captures one segment of the sum capacity, where the state is fully canceled.

The above theorem describes three partitions of the channel parameters respectively char-
acterizing segments on the capacity region corresponding to R1, R2 and R1 + R2. Then
intersection of three sets (with each from one partition) collectively characterizes all seg-
ments on the capacity region boundary. For example, if a given channel parameter tuple
satisfies (P0, P1, P2, Q) ∈ (C1

⋂
C2
⋂
A3), then following Theorem 3, line segments character-

ized by R1 = 1
2

log(1 + P1), R2 = 1
2

log(1 + P2), and R1 +R2 = f(α3, β3, P1 + P2) are on the
capacity region boundary. Since parameters α and β that achieve these segments are not
the same, the intersection of these segments are not on the capacity region boundary.

Fig. 6 lists all possible intersections of sets that the channel parameters can belong to. In
principle, there should be 33 = 27 cases. We further note that if (P0, P1, P2, Q) ∈ C3, they
must belong to C1 and C2. Hence, the total number of cases becomes 32 × 2 + 1 = 19. For
each case in Fig. 6, we use the solid red lines to represent the segments on the capacity region
that are characterized in Theorem 3, and we also mark the value of the capacity that each
segment corresponds to as characterized in Theorem 3.
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Figure 6: Segments of the capacity region for all cases of channel parameters
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We note that for several cases, segments on the capacity region boundary are character-
ized to be strictly inside the capacity region of the MAC without the state, i.e., the state
cannot be fully canceled. For example, for cases with (P0, P1, P2, Q) ∈ (A1

⋂
A2

⋂
A3) and

(A1

⋂
C2
⋂
A3), sum capacity segments are characterized to be smaller than the sum capac-

ity of the MAC without state. These cases include mostly channel parameters with finite Q,
and thus contain much larger sets of channel parameters than [19] that characterizes such
sum capacity segment only for infinite Q.

We further note an interesting case (the last case in Fig. 6), for which the capacity region
is fully characterized. We state this result in the following theorem.

Theorem 4. If (P0, P1, P2, Q) ∈ (C1
⋂
C2
⋂
C3), i.e.,

P ′20 ≥ α2Q(P1 + P2 + 1− P ′0), (25)

where P ′0 = P0 − (α− 1)2Q for someα ∈ Ωα, then the capacity region of the state-dependent
Gaussian MAC contains (R1, R2) satisfying

R1 6
1

2
log(1 + P1)

R2 6
1

2
log(1 + P2)

R1 +R2 6
1

2
log(1 + P1 + P2)

which achieves the capacity region of the Gaussian MAC without state.

Theorem 4 implies that the state is fully canceled if the channel parameters satisfy the
condition (25). We further note two special sets of channel parameters in this case. First, if
P0 ≥ Q, then α = 0 ∈ Ωα and the condition clearly holds. This is not surprising because the
helper has enough power to directly cancel the state. Secondly, if P1+P2+1 ≤ P0 < Q, then
the condition holds for α = 1 ∈ Ωα for arbitrarily large Q. This implies that if the helper’s
power is above a certain threshold, then the state can always be canceled for arbitrary state
power Q (even for infinite Q).

4 Conclusion

In this paper, we studied the state-dependent channel with a helper. Our achievable scheme
is based on integration of state subtraction and single-bin dirty paper coding. By analyzing
the corresponding lower bound on the capacity, and comparing to the upper bounds, we
characterize the capacity for various channel parameters. We anticipate that our way of
analyzing the lower bound and characterizing the capacity can be applied to characterizing
the capacity for other state-dependent networks. We further point out closely related prob-
lems of state masking [20], state amplification [21], assisted interference suppression [22,23],
which have a similar goal of minimizing the impact of the state on the output. It will be
interesting to explore if the understanding here can shed any insight on these problems.
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Appendix

A Proof of Lemma 1

We use random codes and fix the following joint distribution:

PSUX0XY0 =PSPU |SPX0|US · PXPY |X0XS.

Let T nε (PSUX0XY ) denote the strongly joint ε-typical set (see, e.g., [24, Sec. 10.6] and
[25, Sec. 1.3] for definition) based on the above distribution. For a given sequence xn, let
T nε (PU |X |xn) denote the set of sequences un such that (un, xn) is jointly typical based on the
distribution PXU .

1. Codebook Generation

• Generate 2nR̃ i.i.d. codewords un(t) according to P (un) =
∏n

i=1 PU(ui) for the

fixed marginal probability PU as defined, in which t ∈ [1, 2nR̃].

• Generate 2nR i.i.d. codewords xn(w) according to P (xn) =
∏n

i=1 PX(xi) for the
fixed marginal probability PX as defined, in which w ∈ [1, 2nR].

2. Encoding

• Encoder at the helper: For given sn, select t̃ such that (un(t̃), sn) ∈ T nε (PSPU |S). If

un(t̃) cannot be found, set t̃ = 1. Then map (sn, un(t̃)) into xn0 = f
(n)
0 (sn, un(t̃)).

Based on the rate distortion type of argument [24, Sec. 10.5] or the Covering
Lemma [26, Sec. 3.7], it can be shown that such un(t̃) exists with high probability
for large n if

R̃ > I(U ;S). (26)

• Encoder at the transmitter: Given w, map w into xn(w).

3. Decoding

• Decoder: Given yn, find a pair (t̂, ŵ) such that (un(t̂), xn(ŵ), yn) ∈ T nε (PUXY ).
If no or more than one such pair can be found, then declare an error. It can be
shown that decoding is successful with small probability of error for sufficiently
large n if the following conditions are satisfied

R 6I(X;Y |U), (27)

R̃ 6I(U ;Y |X), (28)

R + R̃ 6I(UX;Y ). (29)

We note that (28) corresponds to the decoding error for the index t, which is not the
message of interest. Hence, the bound (28) can be removed. Hence, combining (26), (27),
and (29), and eliminating R̃, we obtain the desired achievable rate in Lemma 1.
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B Proof of Proposition 2

The second bounds in “min” in (17a)-(17c) follow from the capacity of the Gaussian MAC
without state. The remaining bounds arise due to capability of the helper for assisting state
cancelation and are derived as follows.

Consider a (2nR1 , 2nR2 , n) code with an average error probability P
(n)
e . The probability

distribution on W1 ×W2 × Sn ×Xn
0 ×Xn

1 ×Xn
2 × Y n is given by

PW1W2SnXn
1X

n
2X

n
0 Y

n = PW1PW2

[
n∏
i=1

PSi

]
PXn

1 |W1PXn
2 |W2PXn

0 |Sn

n∏
i=1

PYi|X1iX2iX0iSi
. (30)

By Fano’s inequality, we have

H(W1W2|Y n) 6 n(R1 +R2)P
(n)
e + 1 = nδn (31)

where δn → 0 as n→ +∞.

We first bound R1 based on Fano’s inequality as follows:

nR1 6 I(W1;Y
n) + nδn

6 I(Xn
1 ;Y n) + nδn

= H(Xn
1 )−H(Xn

1 |Y n) + nδn
(a)

6 H(Xn
1 |Xn

2 )−H(Xn
1 |Xn

2 Y
n) + nδn

= I(Xn
1 ;Y n|Xn

2 ) + nδn

= H(Y n|Xn
2 )−H(Y n|Xn

1X
n
2 )] + nδn

= H(Y n|Xn
2 )−H(SnY n|Xn

1X
n
2 ) +H(Sn|Xn

1X
n
2 Y

n) + nδn

= H(Y n|Xn
2 )−H(Y n|SnXn

1X
n
2 )−H(Sn|Xn

1X
n
2 ) +H(Sn|Xn

1X
n
2 Y

n) + nδn

6 H(Y n|Xn
2 )−H(Y n|SnXn

0X
n
1X

n
2 )−H(Sn) +H(Sn|Xn

1X
n
2 Y

n) + nδn

(b)

6
n∑
i=1

[H(Yi|X2i)−H(Yi|SiX0iX1iX2i)−H(Si) +H(Si|X1iX2iYi)] + nδn (32)

where (a) follows because Xn
1 and Xn

2 are independent, and (b) follows because Sn is an i.i.d.
sequence.
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We bound the first term in the above equation as

1

n

n∑
i=1

h(Yi|X2i)

6
1

2n

n∑
i=1

log 2πe(V ar(X1i +X0i + Si +Ni))

=
1

2n

n∑
i=1

log 2πe(V ar(X1i) + V ar(X0i + Si) + V ar(Ni))

6
1

2n

n∑
i=1

log 2πe
(
E[X2

1i] + E[X2
0i] + 2E(X0iSi) + E[S2

i ] + E[N2
i ])
)

6
1

2
log 2πe

(
1

n

n∑
i=1

E[X2
1i] +

1

n

n∑
i=1

E[X2
0i] +

2

n

n∑
i=1

E(X0iSi) +
1

n

n∑
i=1

E[S2
i ] (33)

+
1

n

n∑
i=1

E[N2
i ])

)

6
1

2
log 2πe

(
P1 + P0 +Q+ 1 +

2

n

n∑
i=1

E(X0iSi)

)
6

1

2
log 2πe

(
P1 + P0 +Q+ 1 + 2ρ0s

√
P0Q

)
(34)

where ρ0s = 1
n
√
P0Q

∑n
i=1E(X0iSi).

It is easy to obtain bounds on the second and third terms in (32) as follows.

1

n

n∑
i=1

H(Yi|SiX0iX1iX2i) =
1

2
log 2πe (35)

1

n

n∑
i=1

H(Si) =
1

2
log 2πeQ (36)

We next bound the last term in (32) as follows.

1

n

n∑
i=1

h(Si|X1iX2iYi) =
1

n

n∑
i=1

h(Si|X0i + Si +Ni)

≤ 1

n

n∑
i=1

h(Si − α(X0i + Si +Ni)|X0i + Si +Ni)

6
1

n

n∑
i=1

h(Si − α(X0i + Si +Ni))

=
1

2
log 2πe(α2P0 + (1− α)2Q− 2α(1− α)ρ0s

√
P0Q+ α2)

=
1

2
log 2πe

(
Q+ (P0 − ρ20SP0)Q)

Q+ 2ρ0S
√
P0Q+ P0 + 1

)
(37)
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where the last equation follows by setting α = ρ0s
√
P0Q+Q

1+P0+Q+2ρ0s
√
P0Q

so that Si−α(X0i +Si +Ni)
and X0i + Si +Ni are uncorrelated.

Combining the above four bounds, we obtain the following upper bound on R1.

R1 6
1

2
log 2πe(1 + P0 + P1 +Q+ 2ρ0s

√
P0Q)− 1

2
log 2πe− 1

2
log 2πeQ

+
1

2
log 2πe

(
Q+ (P0 − ρ20SP0)Q)

Q+ 2ρ0S
√
P0Q+ P0 + 1

)
6

1

2
log(1 +

P1

Q+ 2ρ0S
√
P0Q+ P0 + 1

) +
1

2
log(1 + P0 − ρ20SP0) (38)

Similarly, we can derive an upper bound for R2 as

R2 6
1

2
log(1 +

P2

Q+ 2ρ0S
√
P0Q+ P0 + 1

) +
1

2
log(1 + P0 − ρ20SP0). (39)

We further bound R1+R2 following similar arguments. We highlight some important steps
below.

n(R1 +R2) 6 I(W1W2;Y
n) + nδn

6 I(Xn
1X

n
2 ;Y n) + nδn

= H(Y n)−H(Y n|Xn
1X

n
2 ) + nδn

= H(Y n)−H(SnY n|Xn
1X

n
2 ) +H(Sn|Xn

1X
n
2 Y

n) + nδn

= H(Y n)−H(Y n|SnXn
1X

n
2 )−H(Sn|Xn

1X
n
2 ) +H(Sn|Xn

1X
n
2 Y

n) + nδn

6 H(Y n)−H(Y n|SnXn
0X

n
1X

n
2 )−H(Sn) +H(Sn|Xn

1X
n
2 Y

n) + nδn

6
n∑
i=1

[H(Yi)−H(Yi|SiX0iX1iX2i)−H(Si) +H(Si|X1iX2iYi)] + nδn (40)

The first term in (40) can be bounded as follows.

1

n

n∑
i=1

h(Yi) 6
1

2n

n∑
i=1

log 2πe(V ar(X1i +X2i +X0i + Si +Ni))

=
1

2n

n∑
i=1

log 2πe(V ar(X1i) + V ar(X2i) + V ar(X0i + Si) + V ar(Ni))

6
1

2n

n∑
i=1

log 2πe
(
E[X2

1i] + E[X2
2i] + E[X2

0i] + 2E(X0iSi) + E[S2
i ] + E[N2

i ])
)

6
1

2
log 2πe

(
1

n

n∑
i=1

E[X2
1i] +

1

n

n∑
i=1

E[X2
2i] +

1

n

n∑
i=1

E[X2
0i] +

2

n

n∑
i=1

E(X0iSi)

+
1

n

n∑
i=1

E[S2
i ] +

1

n

n∑
i=1

E[N2
i ])

)
6

1

2
log 2πe

(
P1 + P2 +Q+ 1 + 2ρ0s

√
P0Q

)
(41)
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Other bounds in (40) can be bounded in the way as in (35), (36), and (37). Combining
these bounds with (41), we obtain the following desired upper bound on R1 +R2.

R1 +R2 6
1

2
log

(
1 +

P1 + P2

Q+ 2ρ0S
√
P0Q+ P0 + 1

)
+

1

2
log(1 + P0 − ρ20SP0) (42)

C Proof of Proposition 3

We use random codes and fix the following joint distribution:

PSUX0X1X2Y = PSUPX0|SUPX1PX2PY |SX0X1X2 .

Let T nε (PSUX0X1X2Y ) denote the strongly joint ε-typical set based on the above distribution.
For a given sequence xn, let T nε (PU |X |xn) denote the set of sequences un such that (un, xn)
is jointly typical based on the distribution PXU .

1. Codebook Generation:

• Generate 2nR̃ codewords un(v) with i.i.d. components based on PU . Index these

codewords by v = 1, . . . , 2nR̃.

• Generate 2nR1 codewords xn1 (w1) with i.i.d. components based on PX1 . Index
these codewords by w1 = 1, . . . , 2nR1 .

• Generate 2nR2 codewords xn2 (w2) with i.i.d. components based on PX2 . Index
these codewords by w2 = 1, . . . , 2nR2 .

2. Encoding:

• Helper: Given sn, find ṽ, such that (un(ṽ), sn) ∈ T nε (PSU). It can be shown that
for large n, such ṽ exists with high probability if

R̃ > I(S;U). (43)

Then given (un(ṽ), sn), generate xn0 with i.i.d. components based on PX0|SU for
transmission.

• Transmitter 1: Given w1, map w1 into xn1 (w1) for transmission.

• Transmitter 2: Given w2, map w2 into xn2 (w2) for transmission.

3. Decoding:

• Given yn, find (v̂, ŵ1, ŵ2) such that (un(v̂), xn1 (ŵ1), x
n
2 (ŵ2), y

n) ∈ T nε (PUX1X2Y ). If
no or more than one (ŵ1, ŵ2) can be found, declare an error.
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It can be shown that for sufficiently large n, decoding is correct with high probability if

R1 6I(X1;Y |X2, U)

R̃ +R1 6I(U,X1;Y |X2)

R2 6I(X2;Y |X1, U)

R̃ +R2 6I(U,X2;Y |X1)

R1 +R2 6I(X1, X2;Y |U)

R̃ +R1 +R2 6I(U,X1, X2;Y )

We note that the event that multiple v̂ with only single pair (ŵ1, ŵ2) satisfy the above
decoding requirement is not counted as an error event, because the index v is not the decoding
requirement. Finally, combining the above bounds with (43) yields the desired achievable
region.
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