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Abstract—We study delay constrained sequential streaming
over block fading channels. The transmitter observes a stream of
messages, one message in each coherence block, and the receiver
needs to output a sequence of messages, each with a fixed delay
of T coherence blocks. We characterize the associated diversity-
multiplexing tradeoff (DMT) for this model. The proposed coding
scheme involves a semi-infinite random Gaussian tree-code and
a sequential decision directed decoder. The converse applies an
outage amplification argument that exploits the delay constraint
to amplify the error event associated with a single message to an
entire sequence of messages.

I. INTRODUCTION

Multimedia streaming over wireless links is a challeng-
ing problem, both because of the stringent requirements of
streaming data and the rapid fluctuations of wireless links.
Understanding fundamental limits and characterizing good
engineering architectures of such systems is highly relevant to
several emerging applications. The present paper studies delay-
constrained streaming over multi-antenna wireless channels.
We assume a block fading channel model and assume that the
transmitter observes a sequence of independent and identically
distributed source messages, one in each coherence block. The
transmitted signal produced by our streaming encoder can only
be a causal function of the observed source packets. The delay
constrained decoder is required to output each source packet
with a maximum delay of T coherence blocks. We characterize
the diversity-multiplexing tradeoff [1] of this delay-constrained
streaming model.
In related literature, a framework for delay-universal stream-

ing has been introduced by Sahai and his co-authors [2]–[5].
These works investigate error exponents in the limit of large
decoding delays. There are however some important differ-
ences with our work. First, these papers consider a maximum
likelihood decoder, whereas for the outage analysis we propose
a decision directed decoder based on joint-typicality. Secondly,
except in some special cases [6], the characterization of error
exponents remains an open problem. In contrast, the present
paper develops a converse based on an outage amplification
argument and thus provides a complete characterization of
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the DMT in the streaming setup. Finally [2]–[4] also develop
connections to control with noisy-feedback. We do not pursue
such connections in the present paper.

II. MODEL

In the proposed model the transmitter hasNt transmit anten-
nas, the receiver has Nr receive antennas, and the underlying
channel model is an independent identically distributed (i.i.d.)
block fading channel model with a coherence period of M .
The channel output is

Yk = Hk ·Xk + Zk, (1)

where k = 0, 1, . . ., denotes the index of the coherence
block of the fading channel. Each coherence block con-
sists of M time-slots. The matrix Hk ∈ CNr×Nt de-
notes the channel transfer matrix in coherence period k,
Xk = [Xk(1) | . . . | Xk(M)] ∈ CNt×M is a matrix whose j-
th column, Xk(j), denotes the vector transmitted in time-slot j
in block k and similarly Yk ∈ CNr×M is a matrix whose j-th
column, Yk(j) denotes the vectors received in time-slot j in
block k. The additive noise matrix is Zk ∈ CNr×M . Thus (1)
can also be expressed as,

Yk(j) = Hk ·Xk(j) + Zk(j), j = 1, . . . ,M. (2)

We assume that all entries of Hk are sampled independently
from the complex Gaussian distribution1 with zero-mean and
unit-variance i.e., CN (0, 1). The channel remains constant
during each coherence block and is sampled independently
across blocks. All entries of the additive noise matrix Zk are
also sampled i.i.d. CN (0, 1). Finally all the channel matrices
Hk are revealed to the decoder, but not to the encoder.
We assume an average power constraint E[||Xk||2F ] ≤ Mρ,

where || · ||F denotes the Frobenius norm of the matrix Xk.
Note that ρ denotes the average signal-to-noise-ratio (SNR)
at each receiving antenna. We will limit our analysis to the
case where M is sufficiently large so that random coding
arguments can be invoked within each coherence block. A
delay-constrained streaming code is defined as follows:

1While we only focus on this particular flat-fading Rayleigh channel
model, our result in Theorem 2 easily extends to other channel models. The
assumption of Rayleigh fading is primarily for convenience.
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Definition 1 (Streaming Code): A rate R streaming code
with delay T , C(R, T ), consists of
1. A sequence of messages {wk}k≥0 each distributed uni-
formly over the set I = {1, 2, . . . , 2MR}.

2. A sequence of encoding functions Fk : Ik+1 → CNt×M ,

Xk = Fk(w0, . . . ,wk), k = 0, 1, . . . (3)

that maps the input message sequence to a codeword of
length M .

3. A sequence of decoding functions Gk : CM(k+T ) → I
that outputs message ŵk based on the first k + T ob-
servations, i.e.,

ŵk = Gk(Y0, . . . ,Yk+T−1), k = 0, 1, . . . (4)

We now define the diversity-multiplexing tradeoff
(DMT) [1] associated with the streaming code C(R, T ).
Let the error probability for the k-th message be
pk = Pr(wk $= ŵk) where ŵk is the delay-T decoder
output (4). Let Pr(e) = maxk pk denote the maximum error
probability in the streaming setup. The DMT tradeoff [1] of
(r, d) is achievable with delay T if there exists a sequence of
codebooks C(R = r log ρ, T ) such that

d = lim
ρ→∞

− logPr(e)

log ρ
, r = lim

ρ→∞

R(ρ)

log ρ
.

Of interest, is the optimal diversity-multiplexing tradeoff,
denoted by dT (r).

III. MAIN RESULT
The optimal tradeoff between diversity and multiplexing

(DMT) for the quasi-static fading channel was characterized
in [1]. We reproduce the result below for the convenience of
the reader.
Theorem 1: ( [1]) For the quasi-static fading channel, the

optimal DMT tradeoff curve d1(r) is given by the piecewise
linear function connecting the points (k, d1(k)) for k =
0, 1, . . . ,min(Nr, Nt), where d1(k) = (Nr − k)(Nt − k).
As our main result, we establish that the optimal DMT for

a block fading channel model with a delay constraint of T
coherence blocks.
Theorem 2: The optimal DMT tradeoff for a streaming

code in Definition 1 with a delay of T coherence blocks is
given by dT (r) = T · d1(r), where d1(r) is the optimal DMT
of the underlying quasi-static fading channel.
Remark 1: The DMT of a streaming source under a delay

constraint of T coherence blocks is identical to the DMT of
a system with T independent and parallel MIMO channels
if the rate of the latter system is normalized by the number
of channels. This equivalence is surprising, as neither the
achievability nor the converse follows from the result involving
parallel channels. In a parallel-channel code, the information is
coded jointly over available channels whereas in the streaming
setup, the output only depends causally on the message stream.
The decoder for parallel channels outputs all messages simul-
taneously, whereas the decoder in the streaming setup is only
required to output each message by its individual deadline.

In the remainder of this paper we provide a sketch of the
coding theorem and the converse. Complete details will be
provided in the journal version of this paper.

IV. CODING THEOREM
We first provide details of the code construction and then

provide the analysis of the DMT for our proposed scheme.

A. Coding Scheme
Our proposed streaming code, C(R, T ), consists of a semi-

infinite sequence of codebooks {C0, C1, . . . , Ck, . . .}, where
Ck is the codebook to be used in coherence block k when
messages (w0, . . . ,wk) are revealed. Codebook Ck consists of
a total of 2MR(k+1) codewords and each codeword is assigned
to one element in the set

Ik+1 = { (w0, . . . ,wk) : w0 ∈ I, . . . ,wk ∈ I} . (5)

All codewords are length M sequences whose symbols are
sampled i.i.d. from CN

(

0, ρ
Nt

)

. In coherence block k, the en-
coder observes w0, . . . ,wk, maps it to the codeword Xk(wk

0 ) ∈
CNt×M in Ck, and transmits each of the M columns of Xk

over M channel uses. The entire transmitted sequence up to
and including block k is denoted by

X
k
0(w

k
0 ) !

{

X0(w0),X1(w
1
0 ), . . . ,Xk(w

k
0 )
}

,

X
k
0(w

k
0 ) ∈ C

Nt×(k+1)M (6)

For decoding message wk, our proposed decoder does
not rely on previously decoded messages, but instead com-
putes a new estimate of the all the messages w̄

k
0 at time

Tk = k + T − 1 using the entire received sequence Y
Tk

0 =
(Y0, . . . ,YTk

). First it searches for a message w̄0 by searching
over all message sequences ŵTk

0 such that {XTk

0 (ŵTk

0 ),YTk

0 )}
are jointly typical. If each such sequence has a unique prefix
w̄0 then w̄0 is selected as the message in block 0. Otherwise
an error is declared
The decoder then proceeds sequentially, producing estimates

w̄1, . . . , w̄k. In determining wl, l ≤ k, the decoder uses the
already-determined vector of estimates w̄

l−1
0 . The decoder

searches for a sequence of messages ŵTk

l such that the corre-
sponding transmit sequence XTk

0 (w̄ l−1
0 , ŵTk

l ) has the property
that the sub-sequence between l to Tk (the suffix) satisfies

(XTk

l (w̄ l−1
0 , ŵTk

l ),YTk

l ) ∈ Tl,Tk
, (7)

where the set Tl,l′ is the set of all jointly typical sequences [7],

Tl,l′ =

{

(Xl′

l ,Y
l′

l ) : X
l′

l ∈ T (p
Xl′

l
),Yl′

l ∈ T (p
Yl′

l
),

∣

∣

∣

∣

−
∑l′

k=l[log pXk,Yk
(Xk,Yk)− h(pXk,Yk

)]

M(l′ − l + 1)

∣

∣

∣

∣

≤ ε

}

, (8)

where T (p
Xl′

l
) and T (p

Yl′

l
) denotes the set of typical Xl′

l

and Yl′

l sequences respectively and where h(pXk,Yk
) denotes

the differential entropy of jointly Gaussian random variables.
These sets are determined by the input distribution, the noise
statistics, and the known channel matrices {Hk}.
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If the list of all message sequences ŵ
Tk

l that satisfy (7)
have a unique prefix w̄l then we concatenate w̄l with w̄

l−1
0

to get w̄ l
0, otherwise an error is declared. When the process

continues to step k + 1 without declaring an error, message
w̄k is declared to be the output message.
Remark 2: We note that our decoder produces a fresh

estimate of all the messages in each step. By using a longer
decoding window we improve the reliability of the previous
messages to an extent that the error event is dominated by the
failure of the most recent message.
Remark 3: Our decoder is a decision directed decoder. In

estimating w̄
k
0 , it first estimates w̄0 based on Y

Tk

0 . It next
makes a conditional estimate of w̄1 based on Y

Tk

1 with w̄0

fixed, and continues along in k + 1 steps. One may be tempted
to try a simpler decoding scheme that avoids the k + 1 steps
and directly search for a unique prefix ŵ

k
0 such that the

resulting transmit sequence X
Tk

0 is jointly typical with the
received sequence Y

Tk

0 . Such an approach generally fails,
since if Tk & T then if ŵk $= wk, but ŵ0, . . . , ŵk−1 are all
correct, only the subsequence XTk

k (ŵTk

0 ) is different from the
transmitted sequence. This is a negligible portion of the overall
sequence when Tk & T and the resulting (XTk

0 (ŵTk

0 ),YTk

0 )
will likely appear typical, leading to an error.
B. Analysis of error probability
We show that for any δ > 0 and 0 ≤ r ≤ Nr · Nt, the

error probability averaged over the ensemble of codebooks
C(R = (r−δ) log2 ρ, T ), satisfies Pr(E)

·
≤ ρ−d(r). This shows

that there exists at least one codebook in the ensemble that
meets the diversity order. By symmetry we can assume without
loss of generality that a particular fixed message sequence is
transmitted i.e., wk

0 = wk
0 .

For the analysis of error probability we define the events

El =

{

w
l
0 : (w̄0, . . . , w̄l−1) = (w0, . . . , wl−1), w̄l $= wl

}

,

0 ≤ l ≤ k (9)
and note that

Pr {w̄k $= wk} ≤
k
∑

l=0

Pr(El), (10)

where El corresponds to the event that our proposed decoder
fails in step l of the decoding process. We develop an upper
bond on El for each 0 ≤ l ≤ k and substitute these bounds
in (10).
We further express El = Al ∪ Bl, where

Al =
{

(XTk

l (wTk

0 ),YTk

l ) /∈ Tl,Tk

}

(11)

denotes the event that a decoding failure happens because the
transmitted sub-sequence starting from position l fails to be
typical with the received sequence whereas

Bl =

{

∃w̄Tk

0 : w̄ l−1
0 = wl−1

0 , w̄l $= wl,

(

X
Tk

l (w̄Tk

0 ),YTk

l

)

∈ Tl,Tk

}

(12)

denotes the event that the decoding failure happens because a
transmit sequence corresponding to a message sequence with
w̄l $= wl appears typical with the received sequence.
As shown in the Appendix A, using an appropriate Chernoff

bound we can express,

Pr(Al) ≤ 2−M(Tk−l+1)f(ε) (13)

where f(ε) is a function that satisfies f(ε) > 0 for each ε >
0. To bound Pr(Bl) we begin by noting that by our code
construction, we are guaranteed that whenever w̄l $= wl, the
associated transmit subsequence XTk

l (w̄Tk

0 ) is independent of
Y

Tk

l . Hence from the joint typicality theorem [7], we have that
for any sequence w̄Tk

0 with w̄l $= wl

Pr
(

(XTk

l (w̄Tk

0 ),YTk

l ) ∈ Tl,Tk
| HTk

l

)

≤ 2
−M

(

∑Tk
j=l

I(Xj(1);Yj(1))−3ε
)

= 2
−M

(

∑Tk
j=l

Cj(ρ)−3ε
)

where we have introduced,

Cj(ρ) = log det

(

I+
ρ

Nt
HjH

†
j

)

(14)

as the associated mutual information between the input and
output in the j-th coherence block when the channel matrix
equals Hj = Hj . Applying the union bound we have that

Pr(Bl | H
Tk

l ) ≤ 2
−M

(

∑Tk
j=l

Cj(ρ)−(Tk−l+1)R−3ε
)

. (15)

To bound Pr(Bl) we define

Ol =

{

(Hl, . . . ,HTk
) :

Tk
∑

i=l

Ci(ρ) ≤

(k + T − l)r log ρ+ (k − l)∆(r) log ρ+ 4ε log ρ

}

(16)

where

∆(r) =
(Nt − r)(Nr − r)

2(Nt +Nr − 2r)
, 0 ≤ r < min(Nt, Nr). (17)

The following lemma, which can also be interpreted as the
diversity-multiplexing tradeoff of symmetric parallel MIMO
channels is useful in our analysis.
Lemma 1: For any β = 1, 2, . . . and s ≥ 0 we have that

Pr

(

l+β−1
∑

i=l

Ci(ρ) ≤ s · log ρ

)

.
= ρ−βd1(s/β) (18)

where d1(·) denotes the DMT of the single MIMO link in
Theorem 1. "

Taking expectation of the conditional probability in (15),
and upper bounding the associated events,

Pr(Bl) ≤ Pr(Bl | H
Tk

l ∈ Oc
l ) + Pr(HTk

l ∈ Ol) (19)
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From (16) and (15) we have

Pr(Bl | H
Tk

l ∈ Oc
l ) ≤ 2−M(k−l)∆(r) log ρ−Mε log ρ (20)

.
= ρ−Mε−M(k−l)∆(r). (21)

Thus it remains to bound Pr(Ol) in (19). Substituting β =
Tk − l + 1 and s = βr + (k − l)∆(r) + 4ε, in (18),

β · d1

(

s

β

)

= β

(

Nt −
s

β

)(

Nr −
s

β

)

(22)

≥ β(Nt − r)(Nr − r)−

(k − l)(Nt +Nr − 2r)∆(r) − oε(1) (23)
= T (Nt − r)(Nr − r)

+
(k − l)

2
(Nt − r)(Nr − r)− oε(1) (24)

= Td1(r) +
k − l

2
d1(r) − oε(1) (25)

where we substituted (17) for ∆(r) in (24) and let oε(1) be a
function of ε that vanishes as ε → 0.
Thus we have

Pr(Ol)
·
≤ ρ−(Td1(r)+

(k−l)
2 d1(r))+oε(1). (26)

From (19) and substituting (21) and (26) and using El = Al ∪
Bl we have

Pr(El) ≤ Pr(Al) + Pr(Bl) (27)
·
≤ 2−M(Tk−l+1)f(ε) + ρ−Mε−M(k−l)∆(r)

+ ρ−Td1(r)−
(k−l)

2 d1(r)+oε(1). (28)

From the union bound,

Pr(E) ≤
k
∑

l=0

Pr(El) (29)

≤
k

∑

l=0

2−M(Tk−l+1)f(ε) +
k

∑

l=0

ρ−Mε−M(k−l)∆(r)

+
k
∑

l=0

ρ−Td1(r)−
(k−l)

2 d1(r)+oε(1) (30)

Substituting for Tk = k + T − 1, we can express the first term
in (30) as

k
∑

l=0

2−M(k+T−l)f(ε) =
k
∑

l=0

2−M(l+T )f(ε) (31)

≤
∞
∑

l=0

2−M(l+T )f(ε) = 2−MTf(ε)+1, (32)

which vanishes as M → ∞. By a similar argument we can
simplify the second and third terms in (30) to get

Pr(E)
·
≤ oM (1) + ρ−Td1(r)+oε(1). (33)

where oM (1) → 0 as M → ∞. Since ε > 0 is arbitrary we
have established that the DMT of Td1(r) is achievable.

V. CONVERSE

We establish that a lower bound on the error probability for
any C(R = r log ρ, T ) code in Definition 1 is

Pr(e)
.
≥ ρ−Td1(r)

where d1(r) is the DMT tradeoff associated with a single-link
MIMO channel. It is convenient to define El = {wl $= wl},
the error event associated with block l and note that Pr(e) =
maxk≥0 Pr(Ek).
We begin by lower bounded the probability of the error

event Ek associated with message wk. Recall that this message
needs to be decoded after T coherence blocks indexed as
t ∈ {k, . . . , k + T − 1}. Let Hk+T−1

k = H
k+T−1
k be the

realization of the transfer channel matrices in this interval.
Applying Fano’s Inequality for message wk and using the fact
that wk−1

0 is independent of wk and of the channel matrices
we have

Pr(Ek;H
k+T−1
k = H

k+T−1
k ) ≥ 1−

1

Mr log ρ

−
I(wk;Y

k+T−1
k |wk−1

0 ,Hk+T−1
k = H

k+T−1
k )

Mr log ρ
.

Since the second term vanishes as the coherence period
M → ∞, we ignore it in our analysis. To bound the remaining
terms we let

Hδ =
{

H : log det
(

I+
ρ

M
HH

†
)

≤ (r − δ) log ρ
}

(34)

and use HT
δ to denote the T−fold Cartesian product of the set

Hδ. Furthermore since the channel gains are sampled i.i.d.

Pr(Hk+T−1
k ∈ HT

δ ) = PT
δ (35)

where Pδ = Pr(H ∈ Hδ). And, from single link DMT
in Theorem 1,

Pδ = Pr(H ∈ Hδ)
.
= ρ−d1(r−δ). (36)

Further as we establish in the full paper, we can show that

Pr(Ek) ≥ PT
δ ·

(

1−
I(wk;Y

N−1
0 |wk−1

0 ,HN−1
0 ∈ HN

δ )

Mr log ρ

)

(37)
Now we combine the error events. Since the maximum is
always larger than the average,

max
0≤k≤N−T−1

Pr(Ek) ≥
1

N − T

N−T−1
∑

k=0

Pr(Ek)

≥ PT
δ

(

1−

∑N−T−1
k=0 I(wk;Y

N−1
0 |wk−1

0 ,HN−1
0 ∈ HN

δ )

(N − T )Mr log ρ

)

= P T
δ

(

1−
I(wN−T−1

0 ;YN−1
0 |HN−1

0 ∈ HN
δ )

(N − T )Mr log ρ

)

≥ P T
δ

(

1−
I(XN−1

0 ;YN−1
0 |HN−1

0 ∈ HN
δ )

(N − T )Mr log ρ

)

(38)
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where (38) follows from the data processing inequality since
w

N−T−1
0 → X

N−1
0 → Y

N−1
0 holds. And, since the channel

is memoryless,

max
0≤k≤N−T−1

Pr(Ek)

≥ PT
δ

(

1−

∑N−1
i=0 I(Xi;Yi|Hi ∈ Hδ)

(N − T )Mr log ρ

)

(39)

≥ P T
δ

(

1−
NM(r − δ) log ρ

(N − T )Mr log ρ

)

(40)

.
=

(

1−
N(r − δ)

(N − T )r

)

ρ−Td1(r−δ) (41)

where (40) follows by substituting in (34).
Now we arrive at the bound. For any δ > 0, by selecting

N > T r
δ the term inside the brackets is strictly positive. Since

δ > 0 is arbitrary, it follows that the diversity order greater
than Td1(r) cannot be achieved.

VI. CONCLUSIONS

We studied the problem of delay constrained streaming over
a block fading channel and established that the associated
diversity multiplexing tradeoff. The proposed code construc-
tion involves a semi-infinite tree construction. The associated
decoder involves a decision-directed joint-typicality based
decision rule. It exploits the exponentially increasing reliability
in decoding of the past messages to prevent error propaga-
tion. We also provide a new converse based on an outage-
amplification argument that amplifies the error associated with
a single message to an entire sequence. We believe that the
fundamental limits of delay-constrained streaming over fading
channels are not well understood and the techniques developed
in this work can be a useful starting point for many other
scenarios in wireless communications.

APPENDIX A
PROOF OF (13)

Recall that Al,l′ the event that the true codeword is not
jointly typical with the received sequence. If we ignore the
marginal typicality constraints we can upper bound this event
as

Pr(Al,l′ ) ≤

Pr

(

∣

∣

∣

∣

∑l′

k=l[log pXk,Yk
(Xk,Yk)− h(pXk,Yk

)]

M(l′ − l + 1)

∣

∣

∣

∣

> ε

)

, (42)

which follows since the codewords are sampled i.i.d. Note that
as Yk = HkXk + Zk, the Hk are known to the decoder, and
the noise sequence {Zk} is independent,

pXk,Yk
(Xk,Yk) = pX(Xk)pYk|Xk

(Yk|Xk) (43)
= pX(Xk)pZ(Yk −Hk ·Xk) (44)
= pX(Xk)pZ(Zk), (45)

where the last equality holds since the codewords are sampled
i.i.d. and the noise is also i.i.d. Thus, similarly h(pXk,Yk

) =
h(pX) + h(pZ). And so
∣

∣

∣

∣

l′
∑

k=l

[log pXk,Yk
(Xk,Yk)− h(pXk,Yk

)]

∣

∣

∣

∣

(46)

=

∣

∣

∣

∣

l′
∑

k=l

[log pX(Xk) + log pZ(Zk)− h(pX)− h(pZ)]

∣

∣

∣

∣

≤

∣

∣

∣

∣

l′
∑

k=l

[log pX(Xk)− h(pX)

∣

∣

∣

∣

+

∣

∣

∣

∣

l′
∑

k=l

[log pZ(Zk)− h(pZ)]

∣

∣

∣

∣

(47)

where the last step follows from the triangular inequality.
Substituting (47) into (42) and using using the union bound
we have

Pr(Al,l′ ) ≤ Pr(AX
l,l′ ) + Pr(AZ

l,l′ ) (48)

where we define

AX
l,l′ =

{

X
l′

l :

∣

∣

∣

∣

∑l′

k=l[log pX(Xk)− h(pX)]

M(l′ − l + 1)

∣

∣

∣

∣

≥ ε)

}

, (49)

AZ
l,l′ =

{

Z
l
l′ :

∣

∣

∣

∣

∑l′

k=l[log pZ(Zk)− h(pZ)

M(l′ − l + 1)

∣

∣

∣

∣

≥ ε

}

. (50)

Since Xk is a sequence of M i.i.d. random vectors each sam-
pled from CN (0, ρ

Nt
I) and E[log pX(Xk)] = h(pX). Similarly,

E[log pZ(Zk)] = h(pZ). Then, from the Chernoff theorem,
there exist rate functions fX(ε) > 0 and fZ(ε) > 0 such that
for sufficiently large value of M(l′ − l + 1)

Pr(AX
l,l′ ) ≤ exp{−M(l′ − l + 1)fX(ε)},

Pr(AZ
l,l′ ) ≤ exp{−M(l′ − l+ 1)fZ(ε)}.

Setting f(ε) = max(fX(ε), fZ(ε)) establishes (13).
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