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Abstract—We consider streaming data transmission over a
discrete memoryless channel. A new message is given to the
encoder at the beginning of each block and the decoder decodes
each message sequentially, after a delay of T blocks. In this
streaming setup, we study the fundamental interplay between
the rate and error probability in the central limit and moderate
deviations regimes and show that i) in the moderate deviations
regime, the moderate deviations constant improves over the block
coding or non-streaming setup by a factor of T and ii) in the
central limit regime, the second-order coding rate improves by
a factor of approximately

√
T for a wide range of channel

parameters. For both regimes, we propose coding techniques that
incorporate a joint encoding of fresh and previous messages. In
particular, for the central limit regime, we propose a coding
technique with truncated memory to ensure that a summation of
constants, which arises as a result of applications of the central
limit theorem, does not diverge in the error analysis.

Furthermore, we explore interesting variants of the basic
streaming setup in the moderate deviations regime. We first
consider a scenario with an erasure option at the decoder, i.e.,
the decoder can output an erasure symbol instead of a message
estimate, and show that both the exponents of the total error and
the undetected error probabilities improve by factors of T . Next,
by utilizing the erasure option, we show that the exponent of the
total error probability can be improved to that of the undetected
error probability (in the order sense) at the expense of a variable
decoding delay.

Index Terms—Streaming communication, moderate deviations,
central limit regime, second-order coding rates, channel disper-
sion

I. INTRODUCTION

In many multimedia applications, a stream of data packets
is required to be sequentially encoded and decoded under
strict latency constraints. For such a streaming setup, both
the fundamental limits and optimal schemes can differ from
classical communication systems. In recent years, there has
been a growing interest in the characterization of fundamental
limits for streaming data transmission [2]–[10]. In [2]–[4],
coding techniques based on tree codes were proposed for
streaming setup with applications to control systems. The
works [5]–[7] consider a streaming setup over packet erasure
channels motivated by applications to interactive audio and
video streaming. These papers focus on adversarial channel
models involving burst erasures. In [8], Khisti and Draper
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established the optimal diversity-multiplexing tradeoff (DMT)
for streaming over a block-fading multiple-input multiple-
output channel. In [9], the same authors proposed a coding
technique using finite memory for streaming over discrete
memoryless channels (DMCs) that attains the same reliability
as previously known semi-infinite coding techniques with
growing memory. In [10], the error exponent was studied in
a streaming setup of distributed source coding. We note that
many of the prior works assumed that the code operates in
the large deviations regime in which the rate is bounded away
from capacity (or the rate pair is strictly inside the optimal rate
region for compression problems) and the error probability
decays exponentially as the blocklength increases.

Other interesting asymptotic regimes include the central
limit and moderate deviations regimes. Let n denote the
blocklength of a single message henceforth. In the central
limit regime, the rate approaches to the capacity at a speed
proportional to 1√

n
and the error probability does not vanish as

the blocklength increases. In the moderate deviations regime,
the rate approaches to the capacity strictly slower than 1√

n
and the error probability decays sub-exponentially fast as
the blocklength increases. For block coding problems, both
regimes have received a fair amount of attention recently.
These works aim to characterize the fundamental interplay
between the coding rate and error probability. The most
notable early work on channel coding in the central limit
regime (also known as second-order asymptotics or the normal
approximation regime) is that of Strassen [11], who considered
DMCs and showed that the backoff from capacity scales as√
n when the error probability is fixed. Strassen also deduced

the constant of proportionality, which is related to the so-
called dispersion [12]. Hayashi [13] considered DMCs with
cost constraints. Polyanskiy et al. [12] refined the asymptotic
expansions and also compared the normal approximation to the
finite blocklength (non-asymptotic) fundamental limits. For a
review and extensions to multi-terminal models, the reader
is referred to [14]. For the moderate deviations regime, He et
al. [15] considered fixed-to-variable length source coding with
decoder side information. Altuğ and Wagner [16] initiated the
study of moderate deviations for channel coding, specifically
DMCs. Polyanskiy and Verdú [17] relaxed some assumptions
in the conference version of Altuğ and Wagner’s work [18]
and they also considered moderate deviations for additive
white Gaussian noise (AWGN) channels. However, this line
of research has not been extensively studied for the streaming
setup. To the best of our knowledge, there has been no prior
work on the streaming setup in the moderate deviations and
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Figure 1. Our streaming setup is illustrated for the case with T = 2. In
each block, a new message is given to the encoder in the beginning and
the encoder generates a codeword as a function of all the past and current
messages and transmits it over the channel. Since T = 2, the decoder decodes
each message after two blocks, as a function of all the past received channel
output sequences.

central limit regimes with the exception [19] where the focus
is on source coding.

In this paper, we study streaming data transmission over a
DMC in the moderate deviations and central limit regimes.
Our streaming setup is illustrated in Fig. 1. In each block
of length n, a new message is given to the encoder at the
beginning, and the encoder generates a codeword as a function
of all the past and current messages and transmits it over
the channel. The decoder, given all the past received channel
output sequences, decodes each message after a delay of T
blocks. This streaming setup introduces a new dimension not
present in the block coding problems studied previously. In
the special case of T = 1, the setup reduces to the block
channel coding problem. If T ≥ 2, however, there exists an
inherent tension in whether we utilize a block only for the fresh
message or use it also for the previous messages with earlier
deadlines. It is not difficult to see that due to the memoryless
nature of the model, a time sharing scheme1 will not provide
any gain compared to the case of T = 1. A natural question
is whether a joint encoding of fresh and previous messages
would improve the performance when T ≥ 2.

Our results indicate that the fundamental interplay between
the rate and error probability can be greatly improved when
delay is allowed in the streaming setup. In the moderate
deviations regime, the moderate deviations constant is shown
to improve over the block coding or non-streaming setup by
a factor of T . In the central limit regime, the second-order
coding rate is shown to improve by a factor of approximately√
T for a wide range of channel parameters. For both asymp-

totic regimes, we propose coding techniques that incorporate
a joint encoding of fresh and previous messages. For the
moderate deviations regime, we propose a coding technique
in which, for every block, the encoder jointly encodes all
the previous and fresh messages and the decoder re-decodes
all the previous messages in addition to the current target
message. For the error analysis of this coding technique, we
develop a refined and non-asymptotic version of the moderate
deviations upper bound in [20, Theorem 3.7.1] that allows
us to uniformly bound the error probabilities associated with
the previous messages. On the other hand, for the central
limit regime, we cannot apply such a coding technique whose

1In a time sharing scheme, some fraction of a block is used for a fresh
message and some other fraction of the block is used for previous messages.

memory is linear in the block index. In the error analysis in the
central limit regime, we encounter a summation of constants
as a result of applications of the central limit theorem. If the
memory is linear in the block index, this summation causes the
upper bound on the error probability to diverge as the block
index tends to infinity. Hence, for the central limit regime,
we propose a coding technique with truncated memory where
the memory at the encoder varies in a periodic fashion. Our
proposed construction judiciously balances the rate penalty
imposed due to the truncation and the growth in the error
probability due to the contribution from previous messages.
By analyzing the second-order coding rate of our proposed
setup, we conclude that the channel dispersion parameter also
decreases approximately by a factor of T for a wide range of
channel parameters.

Furthermore, we explore interesting variants of the basic
streaming setup in the moderate deviations regime. First, we
consider a scenario where there is an erasure option at the
decoder, i.e., the decoder can output an erasure symbol instead
of a message estimate, and analyze the undetected error and
the total error probabilities, extending a result by Hayashi and
Tan [21]. Next, by utilizing the erasure option, we analyze
the rate of decay of the error probability when a variable
decoding delay is allowed. We show that such a flexibility
in the decoding delay can dramatically improve the error
probability in the streaming setup. This result is the analog
of the classical results on variable-length decoding (see e.g.,
[22], [23]) to the streaming setup.

The rest of this paper is organized as follows. In Section II,
we formally state our streaming setup. The main theorems are
presented in Section III and proved in Section IV. In Section
V, the moderate deviations result for the basic streaming setup
is extended in various directions. We conclude this paper in
Section VI.

A. Notation

The following notation is used throughout the paper. We
reserve bold-font for vectors whose lengths are the same as
blocklength n. For two integers i and j, [i : j] denotes the set
{i, i+1, · · · , j}. For constants x1, · · · , xk and S ⊆ [1 : k], xS
denotes the vector (xj : j ∈ S) and xji denotes x[i:j] where
the subscript is omitted when i = 1, i.e., xj = x[1:j]. This
notation is naturally extended for vectors x1, · · · ,xk, random
variables X1, · · · , Xk, and random vectors X1, · · · ,Xk. 1{E}
for an event E denotes the indicator function, i.e., it is 1 if E is
true and 0 otherwise. d·e and b·c denote the ceiling and floor
functions, respectively.

For a DMC (X ,Y, {W (y|x) : x ∈ X , y ∈ Y}) and an
input distribution P , we use the following standard notation
and terminology in information theory:
• Information density:

i(x; y) := log
W (y|x)

PW (y)
, (1)

where PW (y) :=
∑
x∈X P (x)W (y|x) denotes the out-

put distribution. We note that i(x; y) depends on P and
W but this dependence is suppressed. The definition (1)
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can be generalized for two vectors xl and yl of length l
as follows:

i(xl; yl) :=

l∑
j=1

i(xj ; yj). (2)

• Mutual information:

I(P,W ) := E[i(X;Y )] (3)

=
∑
x∈X

∑
y∈Y

P (x)W (y|x) log
W (y|x)

PW (y)
. (4)

• Unconditional information variance:

U(P,W ) := Var[i(X;Y )]. (5)

• Conditional information variance:

V (P,W ) := E[Var[i(X;Y )|X]]. (6)

• Capacity:

C = C(W ) := max
P∈P

I(P,W ), (7)

where P denotes the probability simplex on R|X |.
• Set of capacity-achieving input distributions:

Π = Π(W ) := {P ∈ P : I(P,W ) = C(W )}. (8)

• Channel dispersion

V = V (W ) := min
P∈Π

V (P,W ) (9)

(a)
= min

P∈Π
U(P,W ), (10)

where (a) is from [12, Lemma 62], where it is shown
that V (P,W ) = U(P,W ) for all P ∈ Π.

II. MODEL

Consider a DMC (X ,Y, {W (y|x) : x ∈ X , y ∈ Y}). A
streaming code is defined as follows:

Definition 1 (Streaming code). An (n,M, ε, T )-streaming
code consists of
• a sequence of messages {Gk}k≥1 each distributed uni-

formly over G := [1 : M ],
• a sequence of encoding functions φk : Gk → Xn that

maps the message sequence Gk ∈ Gk to the channel
input codeword Xk ∈ Xn, and

• a sequence of decoding functions ψk : Y(k+T−1)n →
G that maps the channel output sequences Yk+T−1 ∈
Y(k+T−1)n to a message estimate Ĝk ∈ G,

that satisfies

lim sup
N→∞

N∑
k=1

Pr(Ĝk 6= Gk)

N
≤ ε, (11)

i.e., the probability of error averaged over all block messages
does not exceed ε.

We note that a streaming code with a fixed blocklength
n consists of a sequence of encoding and decoding func-
tions since a stream of messages is sequentially encoded
and decoded. Fig. 1 illustrates our streaming setup for the

case with T = 2. In the beginning of block k ∈ N, new
message Gk is given to the encoder. The encoder generates
a codeword Xk as a function of all the past and current
messages Gk and transmits it over the channel in block k.
Since T = 2, the decoder decodes message Gk at the end of
block k+1, as a function of all the past received channel output
sequences Yk+1. Note that the encoder and the decoder are
implicitly assumed to have memories that possibly increase as
the streaming communication proceeds.2

III. MAIN RESULTS

In this section, we state our main results. The following
two theorems present achievability bounds for the moderate
deviations and the central limit regimes, respectively, which
are proved in Section IV.

Theorem 1 (Moderate deviations regime). Consider a DMC
(X ,Y, {W (y|x) : x ∈ X , y ∈ Y}) with V > 0 and any
sequence of integers Mn such that logMn = nC−nρn, where
ρn > 0, ρn → 0 and nρ2

n →∞.3 Then, there exists a sequence
of (n,Mn, εn, T )-streaming codes such that4

lim sup
n→∞

1

nρ2
n

log εn ≤ −
T

2V
. (12)

Theorem 2 (Central limit regime). Consider a DMC
(X ,Y, {W (y|x) : x ∈ X , y ∈ Y}) with V > 0. For any L > 0
and 0 < δ < 1/2, there exists a sequence of (n,Mn, εn, T )-
streaming codes such that5

logMn = nC − L√n+O(nδ log n) (13)

and

εn ≤
∞∑
j=T

Q

( √
j√
V
L

)
+O

(
n−δ/2

)
. (14)

The following corollary, whose proof is in Appendix A,
elucidates a closed-form and interpretable expression for the
upper bound on the error probability in (14).

Corollary 3. Consider a DMC (X ,Y, {W (y|x) : x ∈ X , y ∈
Y}) with V > 0. For any L > 0, there exists a sequence of
(n,Mn, εn, T )-streaming codes such that

lim
n→∞

nC − logMn√
n

= L (15)

and

lim sup
n→∞

εn < cL,V,TQ

(√
T

V
L

)
, (16)

2If the encoder has to encode only the fresh message in each block or
the decoder is allowed to utilize the channel outputs in the recent block for
decoding, the problem would reduce to the block coding or non-streaming
setup.

3Throughput the paper, we ignore integer constraints on the number of
codewords Mn.

4If lim supn→∞
1
nρ2n

log εn ≤ − 1
2ν

for some ν > 0, ν corresponds to
an upper bound on the moderate deviations constant. In the special case of
T = 1, the moderate deviations constant is shown to be the channel dispersion
V in [16], [17].

5L is termed second-order coding rate in this paper. This is slightly different
from what is common in the literature where instead −L is known as the
second-order coding rate [13].
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otherwise bL,V,T does. The threshold points where aL,V,2 = bL,V,2 and
aL,V,4 = bL,V,4 are indicated by a circle and a triangle, respectively.

where cL,V,T is defined in the following:

cL,V,T := min(aL,V,T , bL,V,T ) (17)

aL,V,T :=
1 + (L/

√
V )2T

(L/
√
V )2T

· 1

1− exp{−(L/
√
V )2/2}

(18)

bL,V,T := 1 +
2V

L2
. (19)

Remark 1. Note that cL,V,T defined in (17) has the property
that for every T ∈ N, cL,V,T tends to 1 as L√

V
tends to infinity.

The term L√
V

becomes large when the second-order coding
rate L is large and/or the channel dispersion V is small.
The channel dispersion is small when, roughly speaking, there
is less randomness in the channel, e.g., for binary erasure
channel with erasure probability p, the channel dispersion
V = p(1 − p) is small when p is either close to 0 or 1.
Note that the moderate deviations or large deviations regimes
can roughly be interpreted as the limiting cases in which L
tends to infinity.

Fig. 2 plots the constant cL,V,T in Corollary 3 in terms of
L√
V

. Note that cL,V,T is the minimum of aL,V,T and bL,V,T

where aL,V,T dominates the minimum when L√
V

is above
some threshold value and otherwise bL,V,T does. In Fig. 2, we
indicate by a circle and by a triangle the threshold points where
aL,V,2 = bL,V,2 and aL,V,4 = bL,V,4, respectively. We can see
that the effect of cL,V,T is not significant for a wide range of
L, V, and T , e.g., cL,V,2 is less than 1.1 when L√

V
= 3.

Theorems 1 and 2 illustrate that the fundamental interplay
between the rate and probability of error can be greatly
improved when delay is allowed in the streaming setup. In the
moderate deviations regime, the moderate deviations constant
improves by a factor of T . Assuming that cL,V,T can be
approximated sufficiently well by 1, for the central limit
regime, the second-order coding rate L is improved (reduced)
by a factor of

√
T . Another way to view this via the lens

of the channel dispersion V ; this parameter is approximately
reduced by a factor of T .

IV. PROOFS OF THE MAIN THEOREMS

A. Proof of Theorem 1 for the moderate deviations regime

Consider a DMC (X ,Y, {W (y|x) : x ∈ X , y ∈ Y}) with
V > 0 and any sequence of integers Mn such that logMn =
nC − nρn, where ρn > 0, ρn → 0 and nρ2

n →∞. We denote
by PX an input distribution that achieves the dispersion (9).

1) Encoding: For each k ∈ N and gk ∈ Gk, generate
xk(gk) in an i.i.d. manner according to PX . The generated
codewords constitute the codebook Cn. In block k, after
observing the true message sequence Gk, the encoder sends
xk(Gk). This encoding procedure appeared in the literature in
context of tree codes [2]–[4], [8], [10].

2) Decoding: Consider the decoding of Gk at the end of
block Tk := k + T − 1. In our scheme, the decoder not only
decodes Gk, but also re-decodes G1, · · · , Gk−1 at the end of
block Tk.6 Let ĜTk,j denote the estimate of Gj at the end of
block Tk. The decoder decodes Gj sequentially from j = 1
to j = k as follows:
• Given ĜTk,[1:j−1], the decoder chooses ĜTk,j according

to the following rule.7 If there is a unique index gj ∈ G
that satisfies8

i(x[j:Tk](ĜTk,[1:j−1], gj , g[j+1:Tk]),y[j:Tk])

> (Tk − j + 1) · logMn (20)

for some g[j+1:Tk], let ĜTk,j = gj .9 If there is none or
more than one such gj , let ĜTk,j = 1.

• If j < k, repeat the above procedure by increasing j to
j+1. If j = k, the decoding procedure terminates and the
decoder declares that the k-th message is Ĝk := ĜTk,k.

3) Error analysis: We first consider the probability of error
averaged over random codebook Cn. The error event {Ĝk 6=
Gk} for k ∈ N happens only if at least one of the following
2k events occurs:

Ek,j := {i(X[j:Tk](G
Tk),Y[j:Tk])

≤ (Tk − j + 1) · logMn}, (21)

Ẽk,j := {i(X[j:Tk](G
j−1, g[j:Tk]),Y[j:Tk])

> (Tk − j + 1) · logMn

for some g[j:Tk] such that gj 6= Gj} (22)

for j ∈ [1 : k].
Now, we have

ECn [Pr(Ĝk 6= Gk|Cn)] ≤
k∑
j=1

(
Pr(Ek,j) + Pr(Ẽk,j)

)
. (23)

6We note that Gj for j ∈ [1 : k− 1] has been already decoded at the end
of block Tj . Nevertheless, the decoder re-decodes Gk−1 at the end of Tk ,
because the decoder needs to decode Gk−1 to decode Gk and the probability
of error associated with Gk−1 becomes lower (in general) by utilizing recent
channel output sequences.

7When j = 1, Ĝj−1
Tk

is null.
8We use the following notation for the set of codewords. Let Kj for j ∈ N

denote the set of message indices mapped to the j-th codeword according
to the encoding procedure. For J ⊆ N and K ⊇ ⋃

j∈J Kj , we denote by
xJ (gK) the set of codewords {xj(gKj

) : j ∈ J}.
9We note that i(·, ·) in (20) is defined in terms of PX and W . This

dependence is suppressed henceforth.
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For each j ∈ [1 : k], we have

Pr(Ek,j) + Pr(Ẽk,j)

≤ Pr

n(Tk−j+1)∑
l=1

i(Xl;Yl) ≤ (Tk − j + 1) · logMn


+MTk−j+1

n Pr

(
n(Tk−j+1)∑

l=1

i(Xl; Ȳl)

> (Tk − j + 1) logMn

)
(24)

(a)
= E

[
exp

{
−
[
n(Tk−j+1)∑

l=1

i(Xl;Yl)

− (Tk − j + 1) logMn

]+}]
(25)

= E

[
exp

{
−
[
n(Tk−j+1)∑

l=1

i(Xl;Yl)

− (Tk − j + 1)n(C − ρn)

]+}]
, (26)

where (Xl, Yl, Ȳl)’s are i.i.d. random variables each generated
according to PX(xl)W (yl|xl)PXW (ȳl) and (a) is from the
identity [12, Eq. (69)] used to derive the DT bound.

Now, fix an arbitrary 0 < λ < 1. By applying the chain of
inequalities [17, Eq. (53)-(56)], we have

exp

−
n(Tk−j+1)∑

l=1

i(Xl;Yl)− (Tk − j + 1)n(C − ρn)

+
≤ 1


n(Tk−j+1)∑

l=1

i(Xl;Yl) ≤ (Tk − j + 1)n(C − λρn)


+ exp {−(Tk − j + 1)n(1− λ)ρn} . (27)

Combining the bounds in (26) and (27), we obtain

Pr(Ek,j) + Pr(Ẽk,j)

≤ Pr

n(Tk−j+1)∑
l=1

i(Xl;Yl)≤(Tk−j + 1)n(C−λρn)


+ exp {−(Tk − j + 1)n(1− λ)ρn} (28)

(a)

≤ exp

{
−(Tk − j + 1)n

(
λ2ρ2

n

2V
− λ3ρ3

nτ

)}
+ exp {−(Tk − j + 1)n(1− λ)ρn} (29)

for sufficiently large n, where τ is some non-negative constant
dependent only on the input distribution PX(x) and channel
statistics W (y|x) and (a) is from the moderate deviations
upper bound in Lemma 4, which is relegated to the end of
this subsection. Also see Remark 4.

Now, we have

ECn [Pr(Ĝk 6= Gk|Cn)]

≤
k∑
j=1

(
exp

{
−(Tk − j + 1)nρ2

nλ
2

(
1

2V
− λρnτ

)}
+ exp {−(Tk − j + 1)n(1− λ)ρn}

)
(30)

≤
Tk∑
j=T

(
exp

{
−jnρ2

nλ
2

(
1

2V
− λρnτ

)}
+ exp {−jn(1− λ)ρn}

)
(31)

≤ exp
{
−Tnρ2

nλ
2
(

1
2V − λρnτ

)}
1− exp{−nρ2

nλ
2
(

1
2V − λρnτ

)
}

+
exp {−Tn(1− λ)ρn}

1− exp {−n(1− λ)ρn}
(32)

for sufficiently large n, which leads to

lim sup
n→∞

1

nρ2
n

log ECn

[
lim sup
N→∞

∑N
k=1Pr(Ĝk 6= Gk|Cn)

N

]

≤ −Tλ
2

2V
. (33)

Finally, by taking λ→ 1, we have

lim sup
n→∞

1

nρ2
n

log ECn

[
lim sup
N→∞

∑N
k=1Pr(Ĝk 6= Gk|Cn)

N

]
≤ − T

2V
. (34)

Hence, there must exist a sequence of codes Cn that satisfies
(12), which completes the proof.

Our decoding procedure (20) is different from the best
possible decoding technique, which is finding the maximum
likelihood (ML) estimate of G[1:k], in two aspects; (i) eval-
uating and maximizing the likelihoods (over the messages)
vs. threshold testing of the information density and (ii) joint
decoding of G[1:k] vs. sequential decoding from G1 to Gk. In
the following, we make remarks on these two aspects.

Remark 2. We note that there are many possible decoding
rules that attain some form of optimality. In the moderate
deviations regime (also in the central limit regime), the
threshold tests (of the information density) we propose are
asymptotically optimal for the block coding or non-streaming
setup [12], [17] and they are also easy to analyze. Hence, we
choose to use these tests instead of ML which is optimal but
harder to analyze for the two regimes of interest in this paper.

Remark 3. In our decoding procedure (20), we sequentially
decode messages from G1 to Gk (at the end of block Tk),
instead of jointly decoding them. For both types of decoding,
the dominant error is the error of the last message, i.e.,
message Gk, and hence the achievable moderate deviations
constant would not be affected. We have employed the se-
quential decoding as we believe that the error events can be
defined in a simpler manner and their probabilities can also
be estimated easily.
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The following lemma used in the proof of Theorem 1
corresponds to a non-asymptotic upper bound of the moderate
deviations theorem [20, Theorem 3.7.1], whose proof is in
Appendix B.

Lemma 4. Let {Zl}l≥1 be a sequence of i.i.d. random
variables such that E[Z1] = 0, Var[Z1] = σ2 > 0, and
its cumulant generating function h(s) := log E[exp{sZ1}]
for s ≥ 0 is analytic around the origin and satisfies that
K := maxs∈[0,1] |h′′′(s)| is finite. For a sequence εn > 0
satisfying the moderate deviations constraints, i.e., εn → 0
and nε2

n →∞, the following bound holds:

Pr

(
1

n

n∑
l=1

Zl ≥ εn
)
≤ exp

{
−n
(
ε2
n

2σ2
− ε3

n

6σ6
K

)}
(35)

for sufficiently large n.

Remark 4. Let us comment on the assumption in Lemma 4
that K is finite. In our application,

Zl ≡ i(Xl;Yl)− I(Xl;Yl). (36)

Then, we have

h(s) =log E

[
exp

{
s
(

log
W (Y1|X1)

PXW (Y1)
−I(X1;Y1)

)}]
(37)

= −sI(X1;Y1) + log E

[(W (Y1|X1)

PXW (Y1)

)s]
. (38)

By differentiating thrice, we can show that h′′′(s) is continuous
in s.10 Restricting s to [0, 1] means that h′′′(s) is a continuous
function over a compact set. Hence its maximum is attained
and is necessarily finite.

B. Proof of Theorem 2 for the central limit regime

Consider a DMC (X ,Y, {W (y|x) : x ∈ X , y ∈ Y}) with
V > 0. We remark that in the moderate deviations regime, for
every block, the encoder maps all the previous messages to a
codeword. For the central limit regime, we propose a coding
strategy where the encoder maps only some recent messages
to the codeword in each block. Similar idea of incorporating
truncated memory was used in [9] with the focus on reducing
the complexity. Here, we use a different memory structure
from [9]. Let A ∈ N and B ∈ N denote the maximum and the
minimum numbers of messages that can possibly be mapped
to a codeword in each block, respectively. We choose the size
Mn of message alphabet as follows:

logMn =
A− 2B + T + 2

A
(nC − L√n) (39)

for some L > 0. To make the above choice of Mn valid, we
assume A ≥ 2B − T − 2 ≥ 0. Furthermore, we assume that
the minimum encoding memory is at least T , i.e., B ≥ T . We
denote by PX an input distribution that achieves the dispersion
(9).

10A detailed calculation follows similarly as in the proof of [16, Lemma
1].
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Figure 3. The proposed message-codeword mapping rule for the central limit
regime is illustrated for the case of A = 9 (maximum encoding memory) and
B = 4 (minimum encoding memory). For each block, the messages indicated
by black dots are jointly encoded. After an initialization step of the first nine
blocks, in which all the previous messages are mapped to a codeword, our
encoder has a periodically time-varying memory from four to nine with a
period of six blocks.

1) Encoding: Our encoder has a periodically time-varying
memory m ∈ [B : A] with a period of A−B+1 blocks, after
an initialization step of the first A blocks. For each k ∈ [1 : A]
and gk ∈ Gk, generate xk(gk) in an i.i.d. manner according to
PX . In block k ∈ [1 : A], the encoder sends xk(Gk). Since the
maximum encoding memory is A, we truncate the messages
that are mapped to a codeword on and after the A-th block, so
that the encoding memory is periodically time-varying from
B to A with a period of A−B+1 blocks. Let S(q) for q ≥ 1
denote the set of (A−B+ 1) block indices in the q-th period
on and after the (A+1)-st block, i.e., S(q) = {(A−B+1)q+
B, · · · , (A−B+ 1)(q+ 1) +B− 1}. For each k ∈ S(q) and
gk−q(A−B+1) ∈ Gk−q(A−B+1),11 generate xk(gk−q(A−B+1))
in an i.i.d. manner according to PX . In block k ∈ S(q), the
encoder sends xk(G[q(A−B+1)+1:k]).

On the other hand, we can group the messages accord-
ing to the maximum block index to which a message is
mapped. Let P(q) for q ∈ N denote the q-th group
{G(A−B+1)(q−1)+1, · · · , G(A−B+1)q} of messages that are
mapped to a codeword up to block (A − B + 1)q + B − 1.
This grouping rule is useful for describing the decoding rule.
Fig. 3 illustrates our message-codeword mapping rule for the
case of A = 9 and B = 4.

2) Decoding: The decoding rule of Gk ∈ P(1) at the end of
block Tk is exactly the same as that for the moderate deviations
regime. Hence, from now on, let us focus on the decoding of
Gk ∈ P(q) for q ≥ 2 at the end of block Tk. At the end of
block Tk, the decoder decodes not only Gk, but also all the

11In block k ∈ S(q), a total of k − q(A − B + 1) messages, i.e.,
Gq(A−B+1)+1, · · · , Gk , are mapped to a codeword.
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messages in the previous group and the previous messages
in the current group,12 i.e., G(A−B+1)(q−2)+1, · · · , Gk−1, ac-
cording to the following three steps: (i) simultaneous non-
unique decoding of the first B messages in the previous group,
(ii) sequential decoding of the remaining A−2B+1 messages
in the previous group, and (iii) sequential decoding of the
messages in the current group up to the current block. Let
ĜTk,j denote the estimate of Gj at the end of block Tk.

Let us describe the decoding rule when q = 2 in the
following:

(i) If there is a unique index vector gB that satisfies

i(x[B:min(A,Tk)](g
B , g[B+1:min(A,Tk)]),y[B:min(A,Tk)])

> min(A, Tk) · logMn (40)

for some g[B+1:min(A,Tk)], let ĜTk,[1:B] = gB . If there
is none or more than one such gB , let ĜTk,[1:B] =
(1, · · · , 1).

(ii) The decoder sequentially decodes gj from j = B + 1 to
j = A−B + 1 as follows:
• Given ĜTk,[1:j−1], the decoder chooses ĜTk,j ac-

cording to the following rule. If there is a unique
index gj ∈ G that satisfies

i(x[j:min(A,Tk)](ĜTk,[1:j−1], gj , g[j+1:min(A,Tk)]),

y[j:min(A,Tk)])

> (min(A, Tk)− j + 1) · logMn (41)

for some g[j+1:min(A,Tk)], let ĜTk,j = gj . If there is
none or more than one such gj , let ĜTk,j = 1.

• If j < A − B + 1, repeat the above procedure by
increasing j to j + 1. If j = A−B + 1, proceed to
the next decoding procedure.

(iii) The decoder sequentially decodes gj from j = A−B+2
to j = k as follows:
• Given ĜTk,[1:j−1], the decoder chooses ĜTk,j ac-

cording to the following rule. If there is a unique
index gj ∈ G that satisfies

i(x[j:Tk](ĜTk,[1:j−1], gj , g[j+1:Tk]),y[j:Tk])

> (Tk − j + 1) · logMn (42)

for some g[j+1:Tk], let ĜTk,j = gj . If there is none
or more than one such gj , let ĜTk,j = 1.

• If j < k, repeat the above procedure by increasing j
to j + 1. If j = k, the whole decoding procedure
terminates and the decoder declares that the k-th
message is Ĝk := ĜTk,k.

Note that the decoder does not utilize the channel output
sequences in blocks 1, · · · , B − 1 for decoding of messages
G1, · · · , GB . To understand this, let us introduce a group
P(0) of (virtual) messages for symmetry, e.g., in Fig. 3,
expand the pattern of black dots in the upper left direction.
Then, the messages in group P(0), which we do not want
to decode at this point, are also mapped to a codeword in

12Similarly as in the moderate deviations regime, Gj for j ∈ [1 : k − 1]
has been already decoded at the end of block Tj . Nevertheless, the decoder
re-decodes some of the previous messages at the end of Tk .

blocks 1, · · · , B − 1. Hence, those blocks are not considered
for the decoding of messages G1, · · · , GB . We also note that
for decoding of messages GB and GB+1 to GA−B+1, the
decoder considers the channel output sequences up to block
min(A, Tk), because it is the last available block to which
those messages are mapped.

By exploiting the symmetry of the message-codeword map-
ping rule, the decoding rule for q ≥ 3 proceeds similarly.

3) Error analysis: We first consider the probability of
error averaged over random codebook Cn. Let us consider the
decoding of Gk ∈ P(2). Let α := min(A, Tk). The error
event {Ĝk 6= Gk} occurs only if at least one of the following
2(k −B + 1) events occurs:

E(i)
k := {i(X[B:α](G

α),Y[B:α]) ≤ α · logMn} (43)

Ẽ(i)
k := {i(X[B:α](g

α),Y[B:α]) > α · logMn

for some gα such that gB 6= GB} (44)

E(ii)
k,j := {i(X[j:α](G

α),Y[j:α]) ≤ (α− j + 1) · logMn}
for j ∈ [B + 1 : A−B + 1] (45)

Ẽ(ii)
k,j := {i(X[j:α](G

j−1, g[j:α]),Y[j:α]) > (α− j + 1)

· logMn for some g[j:α] such that gj 6= Gj}
for j ∈ [B + 1 : A−B + 1] (46)

E(iii)
k,j := {i(X[j:Tk](G

Tk),Y[j:Tk]) ≤ (Tk − j + 1)

· logMn} for j ∈ [A−B + 2 : k] (47)

Ẽ(iii)
k,j := {i(X[j:Tk](G

j−1, g[j:Tk]),Y[j:Tk])

> (Tk − j + 1) · logMn

for some g[j:Tk] such that gj 6= Gj}
for j ∈ [A−B + 2 : k]. (48)

We note that the superscript in each error event represents
the decoding step in which the error event is involved. Now,
we have

ECn [Pr(Ĝk 6= Gk|Cn)]

≤ Pr(E(i)
k ) + Pr(Ẽ(i)

k )

+

A−B+1∑
j=B+1

Pr(E(ii)
k,j ) +

A−B+1∑
j=B+1

Pr(Ẽ(ii)
k,j )

+

k∑
j=A−B+2

Pr(E(iii)
k,j ) +

k∑
j=A−B+2

Pr(Ẽ(iii)
k,j ). (49)

Let us bound each term in the RHS of (49). First, Pr(E(i)
k ) is

upper-bounded as follows:

Pr(E(i)
k )

= Pr
(
i(X[B:α](G

α),Y[B:α]) ≤ α · logMn

)
(50)

≤ Pr

n(α−B+1)∑
l=1

i(Xl;Yl) ≤ α · logMn

 (51)

(a)

≤ Pr

n(α−B+1)∑
l=1

i(Xl;Yl) ≤ (α−B + 1)(nC − L√n)

 (52)
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(b)

≤ Q

(√
α−B + 1√

V
L

)
+

τ1√
(α−B + 1)n

(53)

for some non-negative constant τ1 that is dependent only on
the input distribution PX and the channel statistics W (y|x),
where (Xl, Yl)’s are i.i.d. random variables each generated
according to PX(xl)W (yl|xl), (a) is from the choice of Mn

in (39), and (b) is from the Berry-Esseen Theorem (e.g., [24]).
Similarly, we can show

A−B+1∑
j=B+1

Pr(E(ii)
k,j )

≤
A−B+1∑
j=B+1

Q

(√
α− j + 1√

V
L

)
+

τ1√
(α− j + 1)n

(54)

and

k∑
j=A−B+2

Pr(E(iii)
k,j )

≤
k∑

j=A−B+2

Q

(√
Tk − j + 1√

V
L

)
+

τ1√
(Tk − j + 1)n

. (55)

Next, Pr(Ẽ(i)
k ) is upper-bounded as follows:

Pr(Ẽ(i)
k )

= Pr(i(X[B:α](g
α),Y[B:α]) > α · logMn

for some gα such that gB 6= GB) (56)

≤Mα
n · Pr

n(α−B+1)∑
l=1

i(Xl; Ȳl) > α · logMn

 (57)

(a)
= Mα

n · E

exp

−
n(α−B+1)∑

l=1

i(Xl;Yl)


· 1
{ n(α−B+1)∑

l=1

i(Xl;Yl) > α logMn

} (58)

(b)

≤ τ2√
(α−B + 1)n

(59)

for some non-negative constant τ2 that is dependent only
on the input distribution PX and channel statistics W (y|x),
where (Xl, Yl, Ȳl)’s are i.i.d. random variables each generated
according to PX(xl)W (yl|xl) PXW (ȳl), (a) is due to an
elementary chain of equalities given in Appendix C, and (b)
is from [12, Lemma 47].

Similarly, we can show

A−B+1∑
j=B+1

Pr(Ẽ(ii)
k,j ) ≤

A−B+1∑
j=B+1

τ2√
(α− j + 1)n

(60)

and

k∑
j=A−B+2

Pr(Ẽ(iii)
k,j ) ≤

k∑
j=A−B+2

τ2√
(Tk − j + 1)n

. (61)

By substituting the above bounds into the RHS of (49), we
obtain

ECn [Pr(Ĝk 6= Gk|Cn)]

≤
A−B+1∑
j=B

(
Q

(√
α− j + 1√

V
L

)
+

τ1 + τ2√
(α− j + 1)n

)

+

k∑
j=A−B+2

(
Q

(√
Tk − j + 1√

V
L

)
+

τ1 + τ2√
(Tk − j + 1)n

)
(62)

≤
α−B+1∑

j=α−A+B

(
Q

( √
j√
V
L

)
+
τ1 + τ2√

jn

)

+

Tk−A+B−1∑
j=T

(
Q

( √
j√
V
L

)
+
τ1 + τ2√

jn

)
(63)

(a)

≤
A−B+1∑
j=B

(
Q

( √
j√
V
L

)
+
τ1 + τ2√

jn

)

+

A−B+T∑
j=T

(
Q

( √
j√
V
L

)
+
τ1 + τ2√

jn

)
, (64)

where (a) is because if α = Tk, which implies Tk ≤ A, the
RHS of (63) is upper-bounded as follows:

RHS of (63) =

Tk−B+1∑
j=T

(
Q

( √
j√
V
L

)
+
τ1 + τ2√

jn

)
(65)

≤
A−B+1∑
j=T

(
Q

( √
j√
V
L

)
+
τ1 + τ2√

jn

)
, (66)

and if α = A, which implies A ≤ Tk, the RHS of (63) is
upper-bounded as follows:

RHS of (63) =

A−B+1∑
j=B

(
Q

( √
j√
V
L

)
+
τ1 + τ2√

jn

)

+

Tk−A+B−1∑
j=T

(
Q

( √
j√
V
L

)
+
τ1 + τ2√

jn

)
(67)

≤
A−B+1∑
j=B

(
Q

( √
j√
V
L

)
+
τ1 + τ2√

jn

)

+

A−B+T∑
j=T

(
Q

( √
j√
V
L

)
+
τ1 + τ2√

jn

)
. (68)

Now, the RHS of (64) is bounded as follows:

RHS of (64)

=

A−B+1∑
j=B

(
Q

( √
j√
V
L

)
+
τ1 + τ2√

jn

)

+

A−B+T∑
j=T

(
Q

( √
j√
V
L

)
+
τ1 + τ2√

jn

)
(69)

(a)

≤
A−B+1∑
j=B

Q

( √
j√
V
L

)
+

A−B+T∑
j=T

Q

( √
j√
V
L

)

+ 4(τ1 + τ2)

√
A−B + T

n
(70)
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(b)

≤
√
V√

2πBL
·

exp
{
−L2B

2V

}
1− exp

{
− L2

2V

} +

A−B+T∑
j=T

Q

( √
j√
V
L

)

+ 4(τ1 + τ2)

√
A−B + T

n
(71)

where (a) is from Lemma 5 (with the identification of f(j) ≡
1/
√
j), which is relegated to the end of this subsection, and

(b) is obtained by applying similar steps as in the proof of
Corollary 3.13

Now we can see a tension in choosing the maximum
memory A and minimum memory B. First, the rate penalty
due to truncation is proportional to B

A as we can see from
(39) and it has to be small enough not to affect the second-
order coding rate, i.e., B

A = o(n−1/2). On the other hand, in
the bound on the error probability in the RHS of (71), the
first term results from the decoding of the previous group, the
second term comes from the decoding of the current group,
and the third term corresponds to the summation of remainders
as a result of applications of Berry-Esseen theorem. Thus, we
want to make the first and the third terms negligible compared
to the second term. To do so, it is required that B = ω(1) and
A = o(n). In summary, the scalings of A and B in n have to
be chosen appropriately to satisfy B

A = o(n−1/2), B = ω(1),
and A = o(n) to obtain the desired result. Let us choose
A = n1−δ and B = V

L2 δ log n for 0 < δ < 1
2 . By substituting

this choice of A and B into the RHS of (39) and the RHS of
(71), we obtain

logMn = nC − L√n+O(nδ log n) (72)

and

ECn [Pr(Ĝk 6= Gk|Cn)]

≤
∞∑
j=T

Q

( √
j√
V
L

)
+O(n−δ/2), (73)

respectively. Due to the symmetry of the decoding procedure,
the bound (73) holds for Gk ∈ P(q) for q ≥ 3. For
Gk ∈ P(1), by defining the error events in the same way as
for the moderate deviations regime and then applying similar
bounding techniques used in the above, it can be verified that

ECn [Pr(Ĝk 6= Gk|Cn)]

≤
Tk∑
j=T

Q

( √
j√
V
L

)
+
τ1 + τ2√

jn
(74)

≤
A−B+T∑
j=T

Q

( √
j√
V
L

)
+
τ1 + τ2√

jn
(75)

≤
∞∑
j=T

Q

( √
j√
V
L

)
+O(n−δ/2). (76)

Hence, there must exist a sequence of codes Cn that satisfies
(13) and (14), which completes the proof.

The following basic lemma, whose proof is omitted, is used
in the proof of Theorem 2.

13Step (b) can be obtained by replacing T by B in the RHS of (92).

Lemma 5. Assume two integers a and b such that a ≤ b. If
f(x) is monotonically decreasing and integrable on [a, b], we
have

b∑
j=a

f(j) ≤
∫ b+1

a

f(x− 1)dx (77)

= F (b)− F (a− 1), (78)

where F (x) denotes the antiderivative of f(x).

V. EXTENSIONS IN THE MODERATE DEVIATIONS REGIME

In this section, we explore interesting variations of the basic
streaming setup in Section II. For the brevity of the results,
we focus on the moderate deviations regime.

A. Decoding with an erasure option

Consider the scenario where there is an erasure option at the
decoder, i.e., the decoder can output an erasure symbol instead
of a message estimate. In the presence of an erasure option,
there are two types of error events: (i) the decoder declares
an erasure and (ii) the decoder outputs an incorrect message,
not an erasure. In many applications, the undetected error (the
latter event) is more undesirable than an erasure (the former
event). In the following, we define a streaming code with an
erasure option by taking into account the undetected error and
the total error probabilities separately.

Definition 2 (Streaming code with an erasure option). An
(n,M, ε, ε′, T )-streaming code with an erasure option consists
of
• a sequence of messages {Gk}k≥1 each distributed uni-

formly over G := [1 : M ],
• a sequence of encoding functions φk : Gk → Xn that

maps the message sequence Gk ∈ Gk to the channel
input codeword Xk ∈ Xn, and

• a sequence of decoding functions ψk : Y(k+T−1)n → G∪
{0} that maps the channel output sequences Yk+T−1 ∈
Y(k+T−1)n to a message estimate Ĝk ∈ G or an erasure
symbol Ĝk = 0,

that satisfies

lim sup
N→∞

N∑
k=1

Pr(Ĝk 6= Gk)

N
≤ ε, (79)

i.e., the total error probability does not exceed ε, and

lim sup
N→∞

N∑
k=1

Pr(Ĝk 6= Gk, Ĝk 6= 0)

N
≤ ε′, (80)

i.e., the undetected error probability does not exceed ε′.

The following theorem presents upper bounds on the unde-
tected error and the total error probabilities. The proof of this
theorem is provided in Appendix D.

Theorem 6. Consider a DMC (X ,Y, {W (y|x) : x ∈ X , y ∈
Y}) with V > 0 and any sequence of integers Mn such
that logMn = nC − nρn, where ρn > 0, ρn → 0 and
nρ2

n → ∞. For any 0 < γ < 1, there exists a sequence
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of (n,Mn, εn, ε
′
n, T )-streaming codes with an erasure option

such that

lim sup
n→∞

1

nρ2
n

log εn ≤ −
T (1− γ)2

2V
. (81)

lim sup
n→∞

1

nρn
log ε′n ≤ −Tγ. (82)

Theorem 6 indicates that for our proposed scheme, the
undetected error probability decays much faster than the total
error probability, i.e., the exponent of the undetected error
probability is the order of nρn, whereas that of the total error
probability is the order of nρ2

n. We note that when T = 1 and
ρn = an−t for a > 0 and 0 < t < 1/2, Theorem 6 reduces to
[21, Theorem 1]. In the streaming setup, both the exponents of
the total error and the undetected error probabilities improve
over the block coding or non-streaming setup in [21, Theorem
1] by factors of T .

B. Decoding with average delay constraint

We note that the decoding delay is assumed to be fixed to
T up to this point. In this subsection, we relax this constraint
by requiring the average decoding delay not to exceed T . A
streaming code with average delay constraint is defined as
follows:

Definition 3 (Streaming code with average delay constraint).
An (n,M, ε, T )-streaming code with average delay constraint
consists of
• a sequence of messages {Gk}k≥1 each distributed uni-

formly over G := [1 : M ],
• a sequence of encoding functions φk : Gk → Xn that

maps the message sequence Gk ∈ Gk to the channel
input codeword Xk ∈ Xn, and

• a sequence of decoding functions ψk : Ykn → (G∪{0})k
that maps the channel output sequences Yk ∈ Ykn to a
message estimate Ĝk,j ∈ G or an erasure symbol Ĝk,j =
0 for every j ∈ [1 : k]

that satisfies

lim sup
N→∞

N∑
k=1

Pr(Ĝk+Dk−1,k 6= Gk)

N
≤ ε (83)

and

lim sup
N→∞

N∑
k=1

E[Dk]

N
≤ T, (84)

where Dk := min{d : Ĝk+d−1,k 6= 0} for k ∈ N denotes the
(random) decoding delay of the k-th message.14

For block channel coding with feedback, it is known that
the error exponent can be significantly improved by allowing
variable decoding delay, e.g., [22], [23]. For streaming setup,
the following theorem, which is proved in Appendix E, shows

14Note that message Gk is required to be decoded at the end of every
block on and after the k-th block in this definition. One may wonder why the
decoder does not stop decoding Gk after it outputs an estimate of Gk , not
an erasure. We note that our definition includes such a operation as a special
case by letting the decoder simply fix the estimate of Gk once it outputs a
message estimate.

that such an improvement can be obtained in the absence of
feedback.

Theorem 7. Consider a DMC (X ,Y, {W (y|x) : x ∈ X , y ∈
Y}) with V > 0 and any sequence of integers Mn such that
logMn = nC − nρn, where ρn > 0, ρn → 0 and nρ2

n →∞.
For any T ∈ N, there exists a sequence of (n,Mn, εn, Tn)-
streaming codes with average delay constraint such that

lim
n→∞

Tn = T (85)

lim sup
n→∞

1

nρn
log εn ≤ −T. (86)

We note that the exponent of the error probability εn is of
the order nρn (instead of nρ2

n as in (81)), and hence it is
improved tremendously by allowing variable decoding delay.
Our strategy here is to utilize upper bounds on the error
probability in Theorem 6 to estimate the average decoding
delay T and the overall error probability. The use of an errors-
and-erasures code for the purpose of channel coding with
variable-length feedback was done in Nakiboğlu and Gallager
in [23] among others. Our strategy here is partly inspired by
theirs.

VI. CONCLUSION

In this paper, we studied the fundamental interplay between
the rate and error probability for a streaming setup with a
decoding delay of T blocks. In the moderate deviations regime,
the moderate deviations constant was shown to improve by
at least a factor of T . We proposed a coding technique
with infinite memory such that all the previous and fresh
messages are jointly encoded in each block. On the other
hand, in the central limit regime, the second-order coding
rate was shown to improve by approximately a factor of

√
T

for a wide range of channel parameters. To ensure that the
summation of Berry-Esseen constants (e.g., the last terms in
the RHS of (53)-(55)) does not diverge in the error analysis,
we proposed a coding technique with truncated memory such
that the encoding and decoding memories do not grow with
the block index. Furthermore, we generalized the moderate
deviations result in various directions. We first considered a
scenario with an erasure option at the decoder and showed that
both the exponents of the total error and the undetected error
probabilities improve by factors of T . Then, by utilizing the
erasure option, we showed that the exponent of the total error
probability can be improved to that of the undetected error
probability (in the order sense) at the expense of a variable
decoding delay. We note that all of our encoding strategies do
not depend on T . Hence, our coding techniques are directly
applicable for multicast scenario where a sender transmits a
common stream of data packets to multiple receivers with
possibly different decoding constraints. While the model in
this paper assumes that the rate of each message is fixed, our
encoding and decoding schemes as well as the error analysis
can be easily extended to the case when the message rates are
not fixed.

Let us conclude with a final remark on proving a converse
in our streaming setup. Our problem appears to be closely
related to the bit-wise unequal protection (UEP) problem in
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the sense that we need to capture the tension that arises when
a common channel is used for more than one messages with
individual error criteria.15 For the seemingly simpler bit-wise
UEP problem [26] for the block channel coding with the
same decoding deadline, however, tight characterizations of
various asymptotic fundamental limits (e.g., error exponents)
remain challenging open problems in general. This indicates
that a highly-nontrivial converse technique would be needed
for our streaming setup where the messages have different
decoding deadlines. Very recently, in [27], a converse bound
on the moderate deviations constant was obtained for a slightly
different streaming setup, which turns out to be tight for output
symmetric channels for a certain range of moderate deviations
scalings.
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APPENDIX A
PROOF OF COROLLARY 3

Let µ := L/
√
V . Note that Corollary 3 is proved if we

show
∞∑
j=T

Q
(
µ
√
j
)
<

1 + µ2T

µ2T (1− exp{−µ2/2})Q(µ
√
T ) (87)

and
∞∑
j=T

Q
(
µ
√
j
)
<

(
1 +

2

µ2

)
Q(µ
√
T ). (88)

To that end, we use the following bounds on the Q-function:

xφ(x)

1 + x2
< Q(x) <

φ(x)

x
∀x > 0, (89)

where φ(x) := 1√
2π

exp{−x2

2 }. First, (87) is derived as
follows:

∞∑
j=T

Q
(
µ
√
j
)
<

∞∑
j=T

φ
(
µ
√
j
)

µ
√
j

(90)

<
1

µ
√
T

∞∑
j=T

1√
2π

exp{−µ2j/2} (91)

=
1

µ
√
T
· 1√

2π

exp{−µ2T/2}
1− exp{−µ2/2} (92)

<
1 + µ2T

µ2T
·

Q
(
µ
√
T
)

1− exp{−µ2/2} . (93)

Next, let us prove (88). Note that
∞∑
j=T

Q
(
µ
√
j
)

= Q
(
µ
√
T
)

+

∞∑
j=T+1

Q
(
µ
√
j
)

(94)

15We note that there are two types of UEP problems, i.e., bit-wise and
message-wise UEP, but our streaming setup is more related to the bit-wise
UEP. For example, the message-wise UEP problem studied by Shkel et al. [25]
simply considers partitioning a single message set into several sub-message
sets with different error probability requirements.

(a)

≤ Q
(
µ
√
T
)

+

∫ ∞
T

Q
(
µ
√
u
)
du, (95)

where (a) is from Lemma 5. The second term in the RHS of
(95) can be rewritten as follows by the change of variables
µ
√
u = v: ∫ ∞

T

Q(µ
√
u)du =

1

µ2

∫ ∞
µ
√
T

2vQ(v) dv. (96)

Now by applying the technique of integration by parts twice,
we have∫ ∞

µ
√
T

2vQ(v) dv

=
[
v2Q(v)

]∞
µ
√
T

+

∫ ∞
µ
√
T

v2 1√
2π
e−v

2/2 dv (97)

= −µ2TQ(µ
√
T ) +

∫ ∞
µ
√
T

v2 1√
2π
e−v

2/2 dv (98)

= −µ2TQ(µ
√
T ) +

[
−v 1√

2π
e−v

2/2

]∞
µ
√
T

+

∫ ∞
µ
√
T

1√
2π
e−v

2/2 dv (99)

=−µ2TQ(µ
√
T )+µ

√
T

1√
2π
e−µ

2T/2+Q(µ
√
T ). (100)

Note that

(1 + µ2T )Q(µ
√
T )

(a)
> (1 + µ2T )

µ
√
T

1 + µ2T

1√
2π
e−µ

2T/2 (101)

= µ
√
T

1√
2π
e−µ

2T/2, (102)

where (a) is due to the lower bound on the Q function in (89).
By combining (100) and (102), we obtain∫ ∞

µ
√
T

2vQ(v) dv < 2Q(µ
√
T ). (103)

From (95), (96), and (103), we finally obtain (88).

APPENDIX B
PROOF OF LEMMA 4

Fix n ∈ N and s ≥ 0. Then, we have

Pr

(
1

n

n∑
l=1

Zl ≥ εn
)

≤ Pr

(
exp

{
s

n∑
l=1

Zl

}
≥ exp{nsεn}

)
(104)

(a)

≤ exp{−nsεn}E

[
exp

{
s

n∑
l=1

Zl

}]
(105)

(b)
= exp {−n (sεn − log E[exp{sZ1}])} (106)
= exp {−n (sεn − h(s))} . (107)

where (a) follows from Markov’s inequality and (b) follows
from the independence of Zl’s.
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The third-order Taylor series expansion of the cumulant
generating function h(s) can be written as

h(s) = h(0) + sh′(0) +
s2

2
h′′(0) +

s3

6
h′′′(s̃) (108)

for some s̃ ∈ [0, s]. It is easy to check that h(0) = 0, h′(0) =
E[Z1] = 0 and h′′(0) = Var[Z1] = σ2. Now, we take

s :=
εn
σ2
. (109)

Plugging this into (107) and (108) yields

Pr

(
1

n

n∑
l=1

Zl ≥ εn
)

≤ exp

{
−n
(
ε2
n

σ2
− ε2

n

2σ2
− ε3

n

6σ6
h′′′(s̃)

)}
(110)

≤ exp

{
−n
(
ε2
n

2σ2
− ε3

n

6σ6
K

)}
, (111)

where the final inequality holds for all n sufficiently large
since εn → 0 and s̃ → 0 as n → ∞ and thus |h′′′(s̃)| ≤ K.

APPENDIX C
A CHAIN OF EQUALITIES

The following chain of equalities is used in the proof
Theorem 2.

Pr

n(α−B+1)∑
l=1

i(Xl; Ȳl) > α · logMn


=

n(α−B+1)∑
s=1

∑
xs,ȳs

n(α−B+1)∏
t=1

PX(xt)PXW (ȳt)


· 1
{
n(α−B+1)∑

l=1

i(xl; ȳl) > α · logMn

}
(112)

=

n(α−B+1)∑
s=1

∑
xs,ȳs

n(α−B+1)∏
t=1

PX(xt)W (ȳt|xt)
PXW (ȳt)

W (ȳt|xt)


· 1
{
n(α−B+1)∑

l=1

i(xl; ȳl) > α · logMn

}
(113)

=

n(α−B+1)∑
s=1

∑
xs,ȳs

n(α−B+1)∏
t=1

PX(xt)W (ȳt|xt)


· exp

−
n(α−B+1)∑

l=1

i(xl; ȳl)


· 1
{
n(α−B+1)∑

l=1

i(xl; ȳl) > α · logMn

}
(114)

= E

exp

−
n(α−B+1)∑

l=1

i(Xl;Yl)


· 1
{
n(α−B+1)∑

l=1

i(Xl;Yl) > α logMn

} . (115)

APPENDIX D
PROOF OF THEOREM 6

Consider a DMC (X ,Y, {W (y|x) : x ∈ X , y ∈ Y}) with
V > 0 and any sequence of integers Mn such that logMn =
nC − nρn, where ρn > 0, ρn → 0 and nρ2

n →∞. We denote
by PX an input distribution that achieves the dispersion (9).
Fix 0 < γ < 1.

The encoding procedure is the same as that for the basic
streaming setup in Section IV-A. Let us consider the decoding
of Gk at the end of block Tk. The decoding procedure is
modified from that for the basic streaming setup in Section
IV-A as follows:
• The decoding test (20) is modified as follows:

i(x[j:Tk](ĜTk,[1:j−1], g[j:Tk]),y[j:Tk])

> (Tk − j + 1) · (logMn + γnρn), (116)

i.e., the threshold value is increased proportional to γ.
• If there is none or more than one gj that satisfies

the decoding test (116) for some g[j+1:Tk], the decoder
declares an erasure, i.e., Ĝk = 0, and terminates the
decoding procedure.

Similarly as in Section IV-A, we first consider the probability
of error averaged over random codebook Cn. The error event
{Ĝk 6= Gk} for k ∈ N happens only if at least one of the
following 2k events occurs:

E ′k,j := {i(X[j:Tk](G
Tk),Y[j:Tk])

≤ (Tk − j + 1) · (logMn + γnρn)}, j ∈ [1 : k] (117)

Ẽ ′k,j := {i(X[j:Tk](G
j−1, g[j:Tk]),Y[j:Tk])

> (Tk − j + 1) · (logMn + γnρn)

for some g[j:Tk] such that gj 6= Gj}, j ∈ [1 : k]. (118)

We note that (117) and (118) are obtained by replacing logMn

by logMn+γnρn in (21) and (22), respectively. Then, we have

ECn [Pr(Ĝk 6= Gk|Cn)]

≤
k∑
j=1

(
Pr(E ′k,j) + Pr(Ẽ ′k,j)

)
. (119)

On the other hand, the undetected error event {Ĝk 6=
Gk, Ĝk 6= 0} has the following relationship:

{Ĝk 6= Gk, Ĝk 6= 0}
⊆ {ĜTk,[1:k] 6= G[1:k], Ĝk 6= 0} (120)

= ∪j∈[1:k]{ĜTk,[1:j−1] = G[1:j−1],

ĜTk,j 6= Gj , Ĝk 6= 0}. (121)

Hence, the undetected error probability is bounded as fol-
lows:

ECn [Pr(Ĝk 6= Gk, Ĝk 6= 0|Cn)]

≤
k∑
j=1

Pr(ĜTk,[1:j−1] = G[1:j−1],

ĜTk,j 6= Gj , Ĝk 6= 0) (122)
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≤
k∑
j=1

Pr(Ẽ ′k,j). (123)

Now, for j ∈ [1 : k], let us bound Pr(E ′k,j) and
Pr(Ẽ ′k,j). Similarly as in Section IV-A, (Xl, Yl, Ȳl)’s de-
note i.i.d. random variables each generated according to
PX(xl)W (yl|xl)PXW (ȳl) in the following. First, we have

Pr(E ′k,j)

≤ Pr

(
n(Tk−j+1)∑

l=1

i(Xl;Yl) ≤ (Tk − j + 1)

· (logMn + γnρn)

)
(124)

≤ Pr

(
n(Tk−j+1)∑

l=1

i(Xl;Yl) ≤ (Tk − j + 1)

· n(C − (1− γ)ρn)

)
(125)

(a)

≤ exp

{
− (Tk − j + 1)n

(
(1− γ)2ρ2

n

2V

− (1− γ)3ρ3
nτ

)}
(126)

for sufficiently large n, where τ is some non-negative constant
dependent only on the input distribution PX(x) and channel
statistics W (y|x) and (a) is from Lemma 4 in Section IV-A.

Next, we have

Pr(Ẽ ′k,j)

≤MTk−j+1
n · Pr

(
n(Tk−j+1)∑

l=1

i(Xl; Ȳl)

> (Tk − j + 1) · (logMn + γnρn)

)
(127)

(a)
= MTk−j+1

n · E
[

exp

−
n(Tk−j+1)∑

l=1

i(Xl;Yl)


· 1
{
n(Tk−j+1)∑

l=1

i(Xl;Yl) > (Tk − j + 1)

· (logMn + γnρn)

}]
(128)

≤MTk−j+1
n exp{−(Tk − j + 1)(logMn + γnρn)} (129)

= exp {−(Tk − j + 1)γnρn} , (130)

where (a) is obtained by applying a chain of equalities similar
to that in Appendix C.

Hence, we obtain

ECn [Pr(Ĝk 6= Gk|Cn)]

≤
k∑
j=1

(
exp

{
− (Tk − j + 1)nρ2

n(1− γ)2

·
(

1

2V
− (1− γ)ρnτ

)}

+ exp {−(Tk − j + 1)nγρn}
)

(131)

≤
Tk∑
j=T

(
exp

{
−jnρ2

n(1− γ)2

(
1

2V
− (1− γ)ρnτ

)}

+ exp {−jnγρn}
)

(132)

≤ exp
{
−Tnρ2

n(1− γ)2
(

1
2V − (1− γ)ρnτ

)}
1− exp{−nρ2

n(1− γ)2
(

1
2V − (1− γ)ρnτ

)
}

+
exp {−Tnγρn}

1− exp {−nγρn}
(133)

and

ECn [Pr(Ĝk 6= Gk, Ĝk 6= 0|Cn)] ≤ exp {−Tnγρn}
1− exp {−nγρn}

(134)

for sufficiently large n.
To show the existence of a deterministic code, we apply

Markov’s inequality as follows16:

Pr

(
lim sup
N→∞

N∑
k=1

Pr(Ĝk 6= Gk|Cn)

N

> 2 lim sup
N→∞

N∑
k=1

ECn [Pr(Ĝk 6= Gk|Cn)]

N

)
<

1

2
(135)

Pr

(
lim sup
N→∞

N∑
k=1

Pr(Ĝk 6= Gk, Ĝk 6= 0|Cn)

N

> 2 lim sup
N→∞

N∑
k=1

ECn [Pr(Ĝk 6= Gk, Ĝk 6= 0|Cn)]

N

)
<

1

2
. (136)

Then, from the union bound, we have

Pr

(
lim sup
N→∞

N∑
k=1

Pr(Ĝk 6= Gk|Cn)

N

> 2 lim sup
N→∞

N∑
k=1

ECn [Pr(Ĝk 6= Gk|Cn)]

N
or

lim sup
N→∞

N∑
k=1

Pr(Ĝk 6= Gk, Ĝk 6= 0|Cn)

N

> 2 lim sup
N→∞

N∑
k=1

ECn [Pr(Ĝk 6= Gk, Ĝk 6= 0|Cn)]

N

)
< 1. (137)

16Such a technique of applying Markov’s inequality to derandomize the
code was used in the proof of [21, Theorem 1].
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Therefore, there must exist a sequence of codes Cn that
satisfies

lim sup
N→∞

N∑
k=1

Pr(Ĝk 6= Gk|Cn)

N

≤ 2 exp

{
−nρ2

n

(
(1− γ)2 T

2V
+ o(1)

)}
(138)

and

lim sup
N→∞

N∑
k=1

Pr(Ĝk 6= Gk, Ĝk 6= 0|Cn)

N

≤ 2 exp {−nρn(Tγ + o(1))} , (139)

which completes the proof.

APPENDIX E
PROOF OF THEOREM 7

Consider a DMC (X ,Y, {W (y|x) : x ∈ X , y ∈ Y}) with
V > 0 and any sequence of integers Mn such that logMn =
nC − nρn, where ρn > 0, ρn → 0 and nρ2

n →∞. We denote
by PX an input distribution that achieves the dispersion (9).
Fix T ∈ N and 0 < γ < 1.

The encoding procedure is the same as that for the basic
streaming setup in Section IV-A. Let us consider the decoding
of message Gk at the end of block k + d − 1 for d ∈ N.17

If d ∈ [1 : T − 1], the decoder outputs Ĝk+d−1,k = 0. For
d ≥ T , the decoder outputs a message estimate Ĝk+d−1,k ∈ G
or an erasure symbol Ĝk+d−1,k = 0 according to the same
decoding rule illustrated in Appendix D with delay d. Then,
the error probability of Gk after the random decoding delay
Dk = min{d : Ĝk+d−1,k 6= 0} (averaged over the random
codebook generation) is bounded as follows:

ECn
[

Pr(Ĝk+Dk−1,k 6= Gk|Cn)
]

=

∞∑
d=T

ECn
[

Pr(Dk = d, Ĝk+d−1,k 6= Gk,

Ĝk+d−1,k 6= 0|Cn)
]

(140)

≤
∞∑
d=T

ECn
[

Pr(Ĝk+d−1,k 6= Gk, Ĝk+d−1,k 6= 0|Cn)
]

(141)

(a)

≤
∞∑
d=T

exp {−dnγρn}
1− exp {−nγρn}

(142)

≤ exp {−Tnγρn}
(1− exp {−nγρn})2

, (143)

where (a) is from the upper bound (134) on the undetected
error probability with delay d.

On the other hand, the excess of delay averaged over the
random codebook generation is bounded as

ECn [Dk − T |Cn]

= Pr(Dk = T + 1|Cn)+2 Pr(Dk = T + 2|Cn) + · · · (144)

17We note that in the definition of a streaming code with average delay
constraint, the decoder decodes Gk at the end of every block k + d− 1 for
d ∈ N.

= Pr(Ĝk+T−1,k = 0, Ĝk+T,k 6= 0|Cn)

+ 2 Pr(Ĝk+T−1,k = 0, Ĝk+T,k = 0,

Ĝk+T+1,k 6= 0|Cn) + · · · (145)

≤
∞∑

d=T+1

(d− T ) · Pr
(
Ĝk+d−2,k = 0|Cn

)
(146)

≤
∞∑

d=T+1

(d− T ) · Pr
(
Ĝk+d−2,k 6= Gk|Cn

)
(147)

(a)

≤
∞∑

d=T+1

(d− T )

·
(

exp
{
−(d− 1)nρ2

n(1− γ)2
(

1
2V − (1− γ)ρnτ

)}
1− exp{−nρ2

n(1− γ)2
(

1
2V − (1− γ)ρnτ

)
}

+
exp {−(d− 1)nγρn}

1− exp {−nγρn}

)
, (148)

where (a) is from the upper bound (133) on the total error
probability with delay d− 1.

By following similar statements using Markov’s inequality
in the proof of Theorem 6, we can obtain

Pr

(
lim sup
N→∞

N∑
k=1

Pr(Ĝk+Dk−1,k 6= Gk|Cn)

N

> 2 lim sup
N→∞

N∑
k=1

ECn [Pr(Ĝk+Dk−1,k 6= Gk|Cn)]

N

or lim sup
N→∞

N∑
k=1

E[Dk|Cn]

N
− T

> 2 lim sup
N→∞

N∑
k=1

ECn [Dk − T |Cn]

N

)
< 1. (149)

Therefore, there must exist a sequence of codes Cn that
satisfies

lim sup
N→∞

N∑
k=1

Pr(Ĝk+Dk−1,k 6= Gk|Cn)

N

≤ 2 exp {−nρn(Tγ + o(1))} (150)

and18

lim sup
N→∞

N∑
k=1

E[Dk|Cn]

N
≤ T + o(1). (151)

We note that (150) implies

lim sup
n→∞

1

nρn
log

(
lim sup
N→∞

N∑
k=1

Pr(Ĝk+Dk−1,k 6=Gk|Cn)

N

)
≤ −Tγ. (152)

By taking γ → 1, this completes the proof.

18By calculating the infinite series in the RHS of (148), it can be verified
that the RHS of (148) converges to 0 as n tends to infinity.
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