FEC for VoIP using Dual-Delay Streaming Codes

Abstract—We introduce a new class of forward error cor-
rection (FEC) codes for VoIP communications which supports
different recovery delay depending on the channel conditions.
Specifically, our code recovers challenging long bursts with close
to theoretical minimum delay to ensure recovered packetcan meet
playback deadlines, while improving conversational interactivity
by allowing lower recovery delay when burst length decreases.
These DD codes are shown to achieve lower residual loss rates
when compared to existing codes over a wide range of parameters
of the Gilbert-Elliott channel. Experiments over real world packet
traces further show gains in perceptual quality achieved by the
DD codes in terms of the ITU-T G.107 E-model.

Index Terms—VolP Audio Quality, Interactive Multimedia
Applications, Application Layer Forward Error Correction (AL-
FEC), Burst Erasures, E-model

I. INTRODUCTION

Interactive voice applications are sensitive to both network
losses and delay [1]-[4]. Forward error correction (FEC) is
a common practice to recover lost packets in a round-trip-
time independent manner [5]-[11]. Nevertheless, it incurs a
recovery delay associated with the time necessary to collect
enough parity packets for loss recovery. This recovery delay
depends on both the type of FEC used, and the actual loss
pattern. In a typical dynamic environment, losses can range
from simple isolated losses to occasional long bursts. An
important challenge is to design a FEC code that can support
recovery from challenging long bursts with the lowest possible
recovery delay without large penalties to recovery time of short
bursts. In such a way, an application can enjoy low delay
communication during times with isolated losses and short
bursts, but can still practically recover from long bursts which
can severely affect the perceptual audio quality.

Many flavors of FEC with distinct recovery delay character-
istics have been developed for use in different communication
settings. For file transfer or buffered streaming playback, a
common choice is to exploit the relaxed delay requirement by
using a digital fountain type code to achieve high rate and low
complexity. For interactive applications, Reed Solomon (RS)
and Random Linear Codes (RLC) [12] can simultaneously re-
cover m lost packets with only m parity packets. Interestingly,
this does not lead to minimum recovery delay. Since every
audio packet typically corresponds to a different timestamp,
lower recovery delay can be realized by FEC schemes that
preferentially recover earlier losses without waiting to simul-
taneously recover all losses. This is the basis of streaming
codes, an example of which is the Maximally Short (MS)
codes [13], [14] that achieve the minimum possible recovery
delay for single burst of a given length. However, MS cannot
recover from as few as two erasures in random positions. Other
variations of streaming codes over burst erasure channels are

studied in [15]-[17]. In [18]-[20], a family of streaming codes
that recover from both patterns, long bursts and few random
erasures, were proposed. They achieve recovery delay for long
bursts close to the theoretical minimum, but fail to provide low
delay even for a single loss.

In practice, VoIP systems are equipped with adaptive play-
back buffers. Hence, an FEC that recovers quickly from single
or two erasures while also capable of recovering long bursts
is of interest. In other words, we want an FEC scheme
that achieves close to minimum possible recovery delay for
long bursts, so that more loss patterns can be practically
recovered. At the same time, we want shorter recovery delay
for simple one or two losses to improve interactivity over
channels with light losses. In this work, we show that this is in
fact achievable through a careful combination of two baseline
schemes, random linear codes and maximally short codes.
The resulting dual-delay (DD) code is shown to outperform
existing codes over Gilbert-Elliott channels in terms of residual
loss rates and delay adaptability. Furthermore, we use the ITU-
T G.107 E-model to quantify perceptual quality gains achieved
over real world packet traces.

Adaptive schemes for real-time streaming have been stud-
ied in the literature from different perspectives. [21] studied
adapting the transmission strategy when feedback is available.
A class of codes that adapts its playback rate to the channel
erasure probability was proposed in [22]. The most relevant
work is [23], [24], which studied the problem of adapting the
recovery delay to the burst length. Similar to MS codes, these
codes are sensitive to isolated losses. In [25] a robust extension
that allows for recovering a small number of isolated losses at
both users is proposed. However, these codes incur a relatively
long delay when the channel introduces a single erasure.

The rest of the paper is organized as follows. We start
by introducing the streaming setup in Section II. Section III
illustrates two examples of the proposed DD codes at rate 1/2.
The encoding and decoding steps of the general construction
are provided in Section IV. Numerical comparisons to existing
codes are discussed in Section V. Simulation results over
Gilbert-Elliott channels are provided in Section VI. The E-
model R-ratings achieved by different codes over real world
packet traces is presented in Section VII. Finally, conclusions
are provided in Section VIII.

II. STREAMING SETUP

We consider a source that produces one packet of size k
symbols every t, seconds, namely s[t] for ¢t = 0,5, 2ts, . ..
In a typical VoIP application, ¢ can be 5, 10, 20 or 30 millisec-
onds and k is few tens of bytes. For simplicity, we drop ¢ in
all packet indices and use s[0], s[1],s[2], ... instead. The FEC
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Fig. 1: Examples of two different erasure patterns. The first
corresponds to a single erasure burst of length B = 4 packets,
whereas the second is an isolated erasure pattern with N =
3 losses. Gray and white squares correspond to erased and
perfectly received packets respectively.

encoder combines the source packet stream in a causal fashion
and generates another stream of channel packets x[t] of size
n > k symbols. The rate of the code is R = k/n. In case
of systematic codes, x[t] = (s[t], p[t]), where p[t] denotes the
parity-check stream. Systematic codes are of practical interest,
since no decoding is needed in case of no losses.

We consider a class of erasure channels that introduces
either bursts or random isolated erasures. In particular, the
channel can introduce either a single erasure burst of maxi-
mum length B packets or up-to N < B erasures in random
positions. The channel output is y[t] = = when an erasure
occurs at time ¢t and y[t] = x[t] otherwise. Although the
channel model we consider is somewhat simplistic, we will
verify that the insights gleaned from their analysis are valuable
in our experiments on statistical channels and real world traces.

In case of isolated erasures, the receiver recovers every
erased packet with a maximum delay of 77 packets, i.e.,
slt] = gt (v[0], ..., ylt + 1)), )
whereas in the burst erasure case, the receiver tolerates a
slightly longer delay of 7% > 17 packets,
2
slt] = 97 (v (0], ..., [t + ). 2
The special case of T = T5 = T is studied in [18], [20], [26].

ITI. DUAL-DELAY CODES: R = 1/2 EXAMPLES

We start by providing examples for DD codes at R = 1/2
where the construction is in its simplest form. In this special
case, the parity-check packets are a combination of a Random
Linear Code and a shifted Repetition code, i.e.,

M
plt] = pult] +palt] = Y _ayslt — il +sft — M~ A] (3)
j=1
where the first term corresponds to the parity-check packets of
a random linear code of rate R = 1/2 and memory M packets,
whereas the second term corresponds to a repetition code with
a shift of M + A packets. The coefficients of the random
linear code o for j € {1,2,..., M} in (3) are selected such
that every M consecutive parity-check packets are linearly
independent in the combined source packets. We denote a DD
code of rate R, memory M and shift A by (R, M,A) DD
code. The following are two examples of DD codes at R =
1/2 that will be used in the subsequent sections.
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Fig. 2: Channel packets of DD codes at R =1/2, A = 4 and
memories M = 1,2. The decoding steps in case of a burst of
length B = 4 are illustrated for both constructions. We drop
the RLC code coefficients a; for simplicity.

A. (R=1/2,M = 1,A = 4) Dual-Delay Code
Substituting in (3), the overall parity-check of the (1/2,1,4)
DD code is,
pli] = sft — 1] + st — 5], 4)
where oy = 1 is used. The channel packets x[t] = (s][t], p[t])
for ¢ € [0,7] are shown in Fig. 2a. One can easily verify
that a single erasure at time ¢ = 0 can be recovered using
p[l], i.e.,, T1 = 1. In case of a burst of length B = 4
in the interval [0,3], shown in Fig. 2a, the decoder uses
p[4] = s[3] + s[—1] to recover s[3] with a delay of one
packet. The parities p[5], s[6], p[7] can then be used to recover
s[0], s[1], s[2] respectively, i.e., with a delay of T> = 5 packets.

B. (R=1/2,M =2,A = 4) Dual-Delay Code
In this construction, we use a memory M = 2 RLC code
and a repetition code with shift A + M = 6. The overall
parity-check of this DD code is,
plt] = aas[t — 1] + aqgs[t — 2] + s[t — 6]. %)
The channel packets x[t] for ¢ € [0, 7] are shown in Fig. 2b.
In case of a single erasure at time ¢ = 0, the erased packet
s[0] can be directly recovered from p[1], i.e., with a delay of
one. If the channel introduces N = 2 erasures, they can either
be isolated or in a burst. If they are isolated, each packet can be
recovered with a delay of one packet, whereas if they happen
in a burst, e.g., s[0] and s[1] are erased, the decoder first uses,
p[3] = ais[2] + ass[1] + s[—3],
to decode s[1] at time 3, i.e., with a delay of 2 packets. Now
the decoder can go back to subtract s[1] from
p[2] = ais[1] + azs[0] + s[—4]
to recover s[0] and the corresponding delay is 3 packets.
In case of a burst of length B = 4 in the interval [0, 3],
shown in Fig. 2b, the decoder can use the parities p[4] and p|[5]
to recover s[t+ 2] and s[t+ 3] with a delay of 3 and 2 packets



respectively similar to the case of NV = 2 erasures discussed
above. Then a;s[5] + azs[4] is computed and subtracted from
p[6] to recover s[0] with a delay of 75 = 6 packets. Similarly,
s[1] is decoded from p|[7] with the same delay.

IV. DUAL-DELAY CODES: GENERAL CONSTRUCTION

The construction of a general rate (R, M,A) DD code
requires careful combination of two baseline codes, Random
Linear Codes (RLC) and Maximally-Short (MS) codes. Hence,
we start by briefly summarizing these constructions.

A. Random Linear Convolutional (RLC) Codes

The parity-check packet of a (R, M) RLC code of rate R =

k/n and memory M is given by,
M

plt] =) slt—j]- P,
j=1

where the «; scalars in (3) are replaced by the k x (n — k)
parity-check matrices P; # 0 for j € {1,..., M }. RLC codes
can recover the maximum number of isolated erasures at a

fixed rate and delay. A (R, M) RLC code can recover from
N=(01-R)(j+1), ji=12,....M @)
erasures within a delay of 7' = j packets. In the dual-delay
setup in Section II, this is equivalent to selecting 77 = j €

{1,..., M} to achieve,

N=(1-R)(j+1),B=(1—-R)(M+1),Ty =M.

B. Maximally-Short (MS) Codes

The general construction of the MS code requires splitting
the source packets into two groups, s[t] = (u[t], v[t]) whose
sizes are n — k and 2k — n, respectively. The parity-check
packet of a (R, A) MS code of rate R = k/n is,
A-1
> vt —4]-Pj+ult — A,
j=1
where P; are the (2k — n) x (n — k) parity-check matrices
of a (%,A — 1) RLC code. At a given rate R and delay
T = A, MS codes recover from the longest possible burst,

1 —
B= —RA. (10)
Due to the use of repetition codes, the MS codes incur a long
delay of A packets when recovering from a single loss. For the
same reason, they fail to recover from as few as two isolated
losses. Hence, a (R, A) MS code achieves

N =1, B:%A, T'=T,=A (11)
in our dual-delay setup which clearly makes it not delay
adaptive as it incurs the same delay for both patterns.

We note that in the special case of R = 1/2, the MS code
in (9) is a shifted repetition code, p[t] = s[t — A] which was
used in the two DD code examples in Section III.

C. Dual-Delay Encoder
The encoding steps of a (R, M, A) DD code, for R > 1/2,
M < A, are as follows:

1) Apply a (R, M) RLC code to the source packets s[]
to generate the parity-check packets p;[-] of size n — k
symbols.

(6)

®)

pli] = ®

2) Apply a (R,A) MS code to the source packets s[] to
generate another set of parities pa[-] of size n—k symbols.
3) Concatenate both streams of parity-checks after shifting
the latter by M time slots. Using (6) and (9), the overall
parity-check packet at time ¢ can be written as,
plt] = p1t] + pa[t — M]
M A-1
=Y sft—j] P+ > v[t—M—j]-P}
j=1

1

<

+uft— M — A, (12)
where P} and P are k x (n — k) and (2k —n) x (n — k)
parity-check matrices of (R, M) and (3%, A — 1) RLC
codes, respectively.
4) The channel packet at time ¢ is x[t] = (s[t], p[t]) and the
overall rate of the code is R.

D. Dual-Delay Decoder

Consider a channel that introduces a single erasure burst in
the interval [t,¢ + B — 1]. The decoder first skips the parity-
check packets in the interval [t+ B, ¢+ B+ M —1]. From (12),
the parity-check packets pi[t + B+ M|,...,p1[t+ B+ M +
A—1] combine source packets from time ¢+ B and later which
are not part of the burst. Hence, they are subtracted from the
corresponding p|-] to recover po[t+ B, ..., p2[t+ B+A—1].
These parities together with the source packets in the interval
s[t+B],...,s[t+B+A—1] are used by the (R, A) MS code
to recover all erased packets with a delay of 75 = M + A

packets provided that the burst length does not exceed,
1-R
B=——A.

(13)
In case of N isolated erasures}ztarting at time ¢, we first con-
sider the interval [t,t 4+ M]. The parities pa[t — M], ..., p2[t]
in the interval [¢,t + M] combine source packets from time
t — 1 and earlier which are not erased. These parities can
be subtracted from the corresponding pl-] in (12) to recover
the (R, M) RLC parities p1[t],...,p1[t + M]. The interval
[t,t + M] has at most N erasures and s[t] is thus recoverable
within a delay of 77 = M packets provided that the number
of erasures is not more than,
N=(1-R)(M+1). (14)
The effect of s[t] can now be canceled from all future parity-
check packets and the next interval [t + 1,¢+ M + 1] can be
considered to recover s[t + 1] by time ¢ + M + 1 in a similar
fashion. The decoder repeats the previous step recursively until
all N erased packets are recovered. We point the reader to [20]
discussion on recursive recovery.

Theorem 1. There exists a (R, M, A) DD code which recover
from N isolated erasures within a delay of T1 = M and an
erasure burst of length B within a delay of To = M + A

where N and B satisfy the following inequality,
RB N
= 4> .
1—R+1—R_M+A+1 (15)
We note that the values of B and N in (13) and (14)
satisfy (15) with equality.



Remark 1. At a given rate R, increasing A of the DD
code while fixing M increases the burst erasure correction
capability B and its corresponding delay Ty without affecting
N and Ty. Moreover, varying the parameters M and A while
keeping the sum M + A fixed allows for achieving different
(B, N) pairs that satisfy (15) at a fixed Ty and R.

While our construction holds for any value of R, in the
rest of the paper we will study the special case of R = 1/2.
Practical systems such as Skype are known to use this level
of redundancy in the presence of packet losses [10].

E. Improved Construction

The DD construction in the previous section was shown
to achieve B and N values that satisfy (15) with equality.
However, we believe that larger values of B and N can be
achieved by reducing the memory of the constituent RLC code
used. Let us consider the DD example in Section III-B. Note
that according to (13) and (14), the values N = 2, T} = 3,
T, =6 at R = 1/2 can be achieved using M = 3 and A =3
which results in B = 3. In the (1/2,2,4) DD in Section III-B,
we show that one can use M = 2 to achieve the same N and
T, while increasing B to 4 at T, = 6 by using A = 4.

In other words, reducing the memory of the RLC code to
M = 2 in this construction allowed for a longer B without
changing N, T} or T5. A similar argument can be applied for
all (R =1/2,M = 2,A) codes to achieve N = 2, T} = 3,
B = A and T; = A+2. We conjecture that this result extends
to all (R, M, A) DD code for R > 1/2 and M < A and the

trade-off in (15) can be enhanced to,

_LR(B+N)2M+A. (16)

Numerical search reveals that a (1/2, M) RLC code for

M € {1,...,8} achieves',

N =M, Ty =2M — 1. (17)
This helps constructing (1/2,M,A) DD codes that
achieve (17) and

B=A, =A+ M, (18)

which satisfies the trade-off in (16) at R = 1/2 and M €
{1,...,8}. Compared to (15), this is equivalent to doubling
the value of NV at the same B, T} and T when R = 1/2.

V. NUMERICAL COMPARISONS

In this section, we compare the erasure correction capabil-
ities and recovery delays of existing codes in the literature to
DD codes. We focus on rate R = 1/2 systematic codes, i.e,
x[t] = (s[t], p[t]) where s[t] and p[t] are of the same size.
The following FEC codes are considered.

+ Reed-Solomon Code: Reed-Solomon (RS) codes are
block codes but can be adapted to the streaming setup. A
(n, k) RS code can be applied to a block of k consecutive
source packets and the generated n — k parity packets can
be concatenated to the next block of k packets. Here is

IThe (1/2, M) RLC code in Section IV-A was shown to recover from
(1—R)(M + 1) within a delay of 71 = M. We show that a shorter memory
(1/2, (M —1)/2) RLC code can achieve the same values of N and 7.

TABLE I: Parameters and correction capabilities of FEC codes
in Section V. For each code, the following is indicated: the
maximum perfectly recoverable burst length and its corre-
sponding delay, delay of a single loss, two losses, three losses
and the number of recoverable packets in case of a long burst
B > 6.

Code | B.T | T(N=1) | T(N=2) | T(N=3) | B>6
(6,3) R 35 3 4 5 1
(1/2,5) RLC 35 1 3 5 1
(1/2,5) MS 5,5 5 00 00 5
(1/2,5,4) ERLC || 4,5 4 5 00 1
(1/2,1,4) DD 45 1 5 00 4
(1/2,2,4) DD 4,6 1 3 00 4

an example of a (6,3) RS whose codewords starting at
time t = 0 and ¢ = 3 are,
(s[0],s[1], s[2], p[3], p[4], P[5])
(s[3],s[4],s[5], p[6], 7], P[8])-
The parity-check packets of the first codeword p[3], p[4]
and p[5] are concatenated to the source packets of the
second codeword s[3], s[4] and s[5], respectively, before
transmission.

+« Random Linear Code: The parity-check equation of a
(R=1/2,M) RLC code is given by,

Zaj (19)

We use a (1/2,5) RLC code which achieves B= N =3
and T = T} = 5 (cf. (7))

o Maximally-Short Code: At R = 1/2, MS codes are
shifted repetition codes. We use a (1/2,5) MS whose
parities are p[t] = s[t — 5]. It recovers from B = 5 with
delay 75 = 5 and N = 1 with the same delay 77 = 5.

« Embedded-RLC: Embedded-RLC (ERLC) codes are
proposed in [18] to capture the trade-off between N and
B fora given T. At R = 1/2, the (R, M, A) ERLC code
is a shifted RLC code, i.e.,

M

t]:Zaj-s[t—j].

This is similar to setting o; = 0 for j < A in the
(1/2, M) RLC code in (19). Varying A between 0 and
M achieves different N and B pairs at a fixed delay and
rate. In this example, we consider a (1/2,5,4) ERLC
code which achives N =2, B=4,T) =5 and Ty, = 4.

o Dual-Delay Code: We use the R = 1/2 DD codes in
Sections III-A and III-B.

Table T shows the achievable delays over different era-
sure patterns for the (6,3) RS, (1/2,5) RLC, (1/2,5) MS,
(1/2,5,4) ERLC, (1/2,1,4) DD and (1/2,2,4) DD codes.
The MS code recovers from the longest burst B = 5 but
requires the same relatively long delay when recovering a
single loss and fails to recover from two isolated losses.
The ERLC code is more robust to isolated losses at a slight
reduction in the maximum recoverable burst. However, its

s[t — j]

(20)



recovery delay is still long 7' = 4 in case of single loss. The
RLC code adapts its recovery delay to the number of erasures
at a price of short burst correction capability. The RS code
has similar properties but is less adaptive because of the block
code structure. The proposed DD codes have similar decoding
capabilities as the ERLC code while adapting its delay to the
number of erasures. Furthermore, the repetition codes used
in MS and DD codes allow them to partially recover from
long bursts. In particular, a repetition code with shift A can
recover the last A packets in any burst of length B > A. In
such patterns, RS, RLC and ERLC codes can only recover the
last packet within the deadline.

VI. SIMULATION RESULTS

In this section, we compare the performance of codes
in Section V, as well as other codes, over a wide range
of parameters of the Gilbert-Elliott (GE) channel. The GE
channel is a two state Markov model, with transition prob-
abilities from good-to-bad and bad-to-good given by « and
B, respectively. This results in geometric burst and inter-burst
length distributions of mean 1/8 and 1/, respectively. The
erasure probability in the good-state is € € [0, 1), and in the
bad-state is 1. The overall packet loss rate of a GE(«, 3, €) is,

PLR(a, B,¢) = aiﬁ + aiﬁe. @1)

A. Residual Loss Rates

Fig. 3 provides the results of thre experiments over a set of
Gilbert-Elliott channel realizations. In Fig. 3a, we study the
effect of increasing the i.i.d. loss rate in the good-state in the
range € € [0, 0.05] on the performance of different codes while
fixing 8 = 1/2, i.e., the mean burst length is 2 packets. The
percentage of packet erasures in the good-state, 100e(%), is
on the x-axis whereas the percentage of residual packet losses
at T' = 5 packets is plotted on the y-axis for different codes.
The MS code that recovers from the maximum burst length,
B =5, achieves the minimum loss rate at small values of e.
However, as € increases, its performance deteriorates faster
than any other code since it is designed to recover single
isolated losses only. It is also worth noting that the MS code
fails to recover any erased packet within a delay shorter than
T = 5 packets. The performance of ERLC, RS and RLC codes
do not deteriorate as quickly when € increases. However, their
higher loss rate is determined by the failure to recover (even
partially) from long bursts. On the other hand, the proposed
DD code is robust to isolated losses and thus maintains a slow
deterioration in the performance as € increases. Its capability to
partially recover from bursts longer than 4 allows it to start at
a low loss rate. This is besides recovering the largest fraction
of packets within a short delay, 7" = 1 packet as will be shown
in the next section.

Fig. 3b studies the effect of the mean burst length on the
performance of the codes in Table I. Here, we again fix o =
0.01, and we choose ¢ = 0.025 (the middle point in Fig. 3a)
and vary 3 € [1/3,4/5] to achieve mean burst lengths (MBL)
of 1.25 to 3 packets. The residual packet loss rate is plotted

on the y-axis vs. MBL on the x-axis. We again see that at
T = b5, the DD code outperforms all other codes in almost
all the range of 3. The MS code is considered second best at
this delay, however, this code is not delay adaptive as it fails
to recover any erased packet at a shorter delay. RLC and RS
codes are delay adaptive but they achieve higher loss rates at
T = 5 compared to the proposed DD code. The ERLC code
fail to partially recover any of the packets when lost in a burst
and is also not delay adaptive.

The effect of the guard period separation between bursts is
studied in Fig. 3c. As « increases on the x-axis, the average
separation between bursts 1/« decreases. Code with a long
memory, e¢.g., RLC, ERLC and RS, tries to recover all lost
packets simultaneously. As the bursts get closer to each other,
this incurs long delays. On the other hand, MS and DD codes,
can partially recover from such pattern with no extra delay due
to their constituent repetition codes.

Fig. 4 is similar to Fig. 3 but with a different set of
channel and code parameters. The simulated codes are (12, 6)
RS, (1/2,11) RLC, (1/2,11) MS, (1/2,11,9) ERLC and
(1/2,9,2) DD codes. Similar to Fig. 3a, the DD code starts
at a low loss rate and increases slowly as € increases. At the
same delay, its ability to partially recover from long bursts
allows it to outperform all other codes for all the MBL range
in Fig 4b. It constituent repetition code can recover some of
the lost packets when bursts are close to each other and hence
the low loss rate in Fig. 4c.

B. Delay Adaptability

Fig. 5 illustrates the simulation results over a Gilbert-Elliott
channel at o = 0.01. Fig. 5a, 5b and 5c correspond to three
different (3, €) pairs, namely, (2/3,0.025), (1/2,0.015) and
(2/5,0.005), respectively. The figure compares different codes
in terms of fraction of recovered packets out of all losses with
respect to varying recovery delay threshold T'. As expected, a
larger fraction of lost packets can be recovered as the maxi-
mum recovery delay is increased. In particular, if the channel
introduces isolated losses, the DD code can recover the largest
fraction of lost packets among all other codes within a delay of
T = 1. On the other hand, when the channel introduces burst
losses, increasing the allowable delay to 7' = 5 allows the DD
code to recover more than 90% of the lost packets. RLC and
RS codes achieve a smooth performance improvement while
increasing the maximum delay 7'. However, these codes fail
to recover when the channel introduces long bursts as shown
in Fig. 5¢ where the average burst length is 1/8 = 3 packets.
Moreover, their fraction of lost packets recovered at 7' = 1
and 7" = 2 is less than that of the DD code. MS and ERLC
codes achieve a comparable performance to that of the DD
code at T = 5 but both codes cannot adapt their decoding
delay. The MS code fail to recover any lost packet with a
delay shorter than T = 5 because of the shifted repetition
code used. Similarly, ERLC codes with a shift of A = 4 can
only start decoding with a delay of 7" = 4 packets.

From Fig. 5a to 5b to 5c, the i.i.d. loss rate € is decreasing
and the mean burst length 1/8 is increasing while fixing «,
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i.e., the channel is getting more bursty. Hence, the fraction of
recoverable packets with a short delay is decreasing (75%,
65% and 55% respectively) since recovering burst losses
require a longer delay. The DD recovers more than 90% of the
packets in all three cases by adapting its delay. In other words,
if the channel is bursty, adapting the adaptive playback buffer
to accommodate packets recovered within a longer delay can
boost the number of recovered packets.

We use the same set of codes in Fig. 4 in Fig. 6 to study their
performance while changing the maximum delay T. We set
a = 0.001 and use (8,¢) = (1/4,0.035) in Fig. 6a, (8,¢) =
(1/5,0.025) in Fig. 6b and (3,€) = (1/6,0.015) in Fig. 6c.
The maximum delay 7" in the range O to 11 is plotted on the
x-axis whereas the fraction of recovered packets is on the y-
axis. The delay of 7" = 11 packets can correspond to a delay
of 110 ms in a VoIP system that uses packets with 10 ms
duration. Note that an RLC with a reduced memory is used
in constructing the (1/2,11,2) DD code to achieve N = 2,
Ty =3, B=9 and T, = 11 as suggested in Section IV-E.

Increasing the maximum delay 7' allows for recovering
a larger fraction of lost packets. The performance of RLC
and RS codes improves smoothly with 7', however, they are
slightly slower than DD codes due to the ability of the latter
to recover the last two packets in any long burst within a delay

of 3 packets (see Section III-B). Moreover, the DD codes
outperform all other codes at the delay of 7" = 11 packets
specially in the case of large mean burst length 1/5 = 6 in
Fig. 6¢. This is similar to the conclusion made in Fig. 5. As
the i.i.d. loss rate € decreases and the mean burst length 1/
increases, a larger fraction of lost packets is recovered with a
longer delay. For example, more than 30% of the lost packets
are recovered at 7' = 11 using the DD code in Fig. 6c.

VII. EXPERIMENTAL RESULTS

In this section, we study the performance of different FEC
codes in Section V over a set of real world packet traces [27].
These traces consist of around 150 million packets collected
over a wireless sensor network while varying 32 different pa-
rameters, e.g., packet inter-arrival time, payload-size, distance
between nodes. We consider all packets with inter-arrival time
equal to 20 ms which is used by many VoIP applications.
These are a total of 18.75 million packets with loss rate 8.3%.
We parse the trace files and generate a vector of ones and
zeros that correspond to lost and received packets respectively.
We divide the trace into non-overlapping windows of length
15000 packets, each corresponding to 5 minutes of audio. The
FEC codes in Section V are then simulated over each window.
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We use the transmission rating factor R of the ITU-T G.107
E-model [28] to compare the performance of these codes. The
R-factor is a single metric which predicts the subjective quality
experienced by an average listener by combining different
effects such as, signal-to-noise ratio, equipment impairments,
echo, delay, packet loss rate, burstiness of the losses, etc.
According to [28], the R-factor lies in the range from 0 to
100 and can be interpreted in terms of user satisfaction. A
value less than 60 is considered unacceptable whereas values
above 90 are very good. Values in the range [60, 70], [70, 80]
and [80,90] can be interpreted as “Many Users Dissatisfied”,
“Some Users Dissatisfied” and “Satisfied”, respectively.

Using the residual loss pattern of each FEC in every
window, we compute the packet loss rate Ppl and the burst
factor BurstR to compute the R-factor, R(Ppl, BurstR, D),
where D is the delay in milliseconds and is computed as
follows. We let the total network delay between the transmitter
and the receiver be ¢,, = 50 ms and hence, D = t, + T - t,
where ts = 20 ms is the packet duration and 7" is the maximum
allowed FEC recovery delay in packets. We note that the
default values for all other parameters in [28, Table 3] are
used while computing the R-factor.

Fig. 7 and 8 illustrate the fraction of packets recovered
and the R-factor for every code vs. the maximum recoverable

delay T' in packets. This implicitly assumes that a playback
buffer with a fixed delay 7" is used. However, the figure studies
how the buffer should be adapted depending on the channel
conditions. In other words, sometimes allowing for a longer
delay helps as most the lost packets are recovered with a long
delay. On the other hand, when most the packets are recovered
with a short delay, increasing the allowed delay might affect
the interactivity of the application.

Since different FEC codes are optimized for different era-
sure patterns, we divide the 1250 windows of the trace into
4 different categories and compare the performance of these
codes in each category. The 4 categories are:

1) Mild Windows: This category contains 363 windows with
short bursts of length B = 3 or less and a small fraction of
isolated losses, < 1%. RLC and DD codes recover more than
75% of the lost packets within a delay of a single packet. A
longer delay T = 5 allows all codes to recover > 95% as
shown in Fig. 7a. However, Fig. 8a shows that the fraction of
packets recovered with a delay of 7" =1 is indeed enough to
get a R-factor above 90 (very good quality). Increasing the
delay can help recover a larger fraction of the lost packets but
reduces the value of the R-factor in the case of mild windows
as this extra delay affects the interactivity of the application.
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2) Bursty Windows: This category consists of 307 windows
with maximum bursts lengths B € [4,20] but small number
of isolated losses < 1%. The MS code designed for burst
erasure channels recovers around 65% of the lost packets but
all at 7' = 5 as shown in Fig. 7b. The DD code achieves a
slightly better performance at 7' = 5. More importantly, the
DD recovers more than 30% of the lost packets within a delay
of T' =1 packet. This is more than all other simulated codes
including RLC code. This results in being the only code with
R-factor in the acceptable range (> 60) at 7' = 1 and a rating
close to 80 at 7' = 5 as shown in Fig. 8b. Since the channel
introduces many burst losses, allowing for a longer delay can
significantly increase the performance specially when using
the DD code. It is worth noting that the RLC code is the
worse at 7' = 5 for windows in this category as it can only
recover from bursts of length 3 or less.

3) Isolated Windows: This category consists of 63 windows
with short bursts B < 3 but a large number of isolated losses
> 1%. As shown in Fig. 7c¢, the RLC code designed for
isolated erasures recovers from more than 95% of the losses
with a delay of 1 packet and the percentage increases to around
98% at T' = 5. Interestingly, the proposed DD codes achieves
a similar performance. This is translated to a large gain in
terms of R-factor as shown in Fig. 8c. Allowing for a single
delay increases the R-factor from 45 to around 87, i.e., from
“unacceptable” to “satisfied”. Extra delay is not needed in this
category of windows as they do not include long bursts.

4) Mixed Windows: This category contains 339 windows
with long bursts B € [4,20] and large fraction of isolated

losses > 1%. Again, RLC and DD are the only codes which
recovers more than 60% of the lost packets within a single
packet of delay. The latter achieves a slightly higher percentage
as shown in Fig. 7d. Codes with a competitive performance
to DD codes at 7' = 5 are RS and ERLC codes. However,
these codes do not provide satisfactory performance at shorter
delays. With high loss rates and long bursts, the R-factor is
always lower than 70. In such challenging windows, Fig. 8d
suggests allowing for a long delay to achieve ratings outside
the “unacceptable” range.

The main conclusion from Fig. 7 can be explained as
follows. Every FEC code is designed for a set of erasure
patterns and delay distribution. The MS code is designed for
channels with long bursts but requires a long delay even when
recovering a single erasure. RLC and RS codes recover quickly
from isolated losses but fail to recover from long bursts. ERLC
codes can recover from both patterns, isolated losses and
burst losses. However, these codes still require a delay of at
least T = 4 packets. The proposed DD codes achieves fast
recovery in case of isolated losses without compromising its
burst erasure correction capability. This allows it to achieve the
best performance — in terms of fraction of recovered packets,
fast recovery of isolated losses, and R-factor — among all other
codes in all four categories.

Using the same set of codes in Sections VI and VII helps
building a connection between the simulation results over
Gilbert-Elliott channels and that over real-packet traces. In
Fig. 5, it was shown that as the mean burst length 1/4
increases, larger fraction of erased packets are decoded with



a longer delay. A similar conclusion can be drawn by looking
at the simulation results over the real packet traces in Fig. 7.
Moreover, when the channel introduces short bursts, RLC
codes are the main competitors with the DD code (cf. Fig. 3b).
However, as the mean burst length increases the performance
of the RLC codes deteriorate and the MS code becomes
the only competitor. The same conclusion can be made by
comparing Fig. 7b and 7c.

VIII. CONCLUSIONS

We introduce a new class of FEC, dual-delay (DD) codes,
for low-delay streaming applications such as VoIP. When
recovering from long burst losses, our codes outperform
baseline schemes such as random linear codes and Reed-
Solomon codes. When recovering from isolated loss patterns,
our codes provide considerably faster recovery than previously
proposed streaming codes. We propose a general construction
for DD codes and characterize the performance trade-off
between burst-loss correction and isolated-loss correction, as
well as the delays associated with each of these patterns.
Using simulations over statistical channels, we demonstrate
that DD codes not only achieve significant performance gains
over previously proposed codes in the overall packet loss rate,
but also recover a large fraction of packets with a considerably
shorter delays. Finally by using real-world packet loss traces,
and the E-model performance metric recommended in ITU-
T G.107, we demonstrate that DD codes can be a promising
candidate for interactive streaming applications such as VoIP.

Our proposed DD codes provide a rich design space that
can be valuable in many interactive streaming applications. For
example, many practical VoIP systems use adaptive playback
buffers where the playback deadline can be adjusted. Using the
delay adaptivity of DD codes, the deadline can be kept low
to improve interactivity when there are isolated losses over
the channel. In the presence of longer bursts, the deadline
can be increased to improve error resiliency. A thorough
investigation of such systems appears to be a promising avenue
of future work. On the theoretical side, DD codes require
large column distance in smaller windows for isolated loss
correction and larger column span in longer windows for burst
loss correction. Studying fundamental trade-offs underlying
these metrics along the lines of [20] is also a promising
direction for future work.
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