
Coordinated Variable Structure Switching Attack in
the Presence of Model Error and State Estimation

Shan Liu, Deepa Kundur, Takis Zourntos and Karen L. Butler-Purry
Department of Electrical and Computer Engineering

Texas A&M University
College Station, Texas 77843-3128, USA
{liu2712, dkundur, takis, klbutler}@tamu.edu

Abstract—Coordinated variable structure switching attacks
have been recently proposed as a class of cyber-physical attacks
on future smart grid systems. In the traditional formulation of
this assault, the opponent is assumed to have a local model of
the power system and knowledge of the state (rotor angle and
frequency) of a target generator under attack. In this paper,
we study the performance of this attack when the opponent
has imperfect knowledge of the local system dynamics and
partial knowledge of the generator state. In such a situation,
we demonstrate how the attacker can make use of Luenberger-
based state estimation techniques that are robust to model error
to still achieve power system disruption via rotor angle instability.

I. INTRODUCTION

One of the critical challenges in the design and deployment
of smart grid systems is that of ensuring system security. Given
the increasing dependence of these emerging power systems
on information technology, cyber security issues, in particular,
become of crucial importance. Government initiatives around
the world are providing resources to aid in addressing system
security. As a result, a spectrum of smart grid stakeholders
ranging from electric power utilities to device vendors are
aligning their visions to include cyber protection.

Within this climate of rapid decision-making and focused
integration, a fundamental need arises to better understand
overall system vulnerabilities as a result of cyber-physical
integration. Recent work focused on false data injection attacks
has demonstrated the vulnerabilities in residual-based bad data
detection approaches used for state estimation [1], [2], and
other work has founded on integrity attacks [3]. In this work,
we focus on studying the parallel problem of vulnerabilities
stemming from cyber-enablement of circuit breakers and the
associated variability in system architecture.

Recently, the authors identified a class of attacks termed
coordinated variable switching attacks for smart grid systems
that exploit a somewhat “emergent” property in switched
dynamical systems called the sliding mode to destabilize
target synchronous generators [4]–[7]. To apply the attack, an
opponent must have knowledge of the local dynamics of the
power system as well as the rotor angle and frequency state of
the target generator(s). In this work we assess the feasibility
of such an attack under:

1) model error; here we assume the opponent has an under-
standing of the structure of the dynamics, but has biased

parameter values; and
2) incomplete state information; we focus on the situation

whereby the opponent has knowledge of the frequency,
but not phase of the target generator and must estimate
the former via knowledge of the terminal voltage and
current of an associate transmission line.

In the next section, we summarize our coordinated switching
attack. Section III studies the effect of model error on attack
identification. Section IV introduces a Luenberger-based ap-
proach for estimating system state from other known signal
quantities. Simulations demonstrate the effectiveness of the
attack under error and partial knowledge. Final remarks are
provided in Section V.

II. COORDINATED SWITCHING ATTACKS

A. Attack Construction and Existence Condition

Switched systems are a type of variable structure system that
consist of a family of subsystems and a rule that governs the
switching among them. For example, consider the following
single-switch system consisting of two possible dynamics:

ẋ(t) =

{
A1(x, t), s(x) > 0 (switch closed)
A2(x, t), s(x) < 0 (switch open)

(1)

where x(t) ∈ Rn is the state vector, Ai(x, t) ∈ Rn is the
subsystem dynamics when the switch is either open/closed,
and s(x) ∈ R; s(x) = 0 is called the switching surface.
For certain system parameters and selection of s(x) it can be
shown that Eq. 1 exhibits a form of emergent behavior known
as a sliding mode [4], [5]. Here, the trajectory of the state
x(t) is attracted and subsequently confined to the s(x) = 0
manifold, which in the case of a sliding mode is also termed
the sliding surface.

Coordinated variable structure switching attacks are a new
class of cyber-physical attacks that employ a variable structure
systems theory model of a smart grid. The attack is designed
to achieve a form of physical disruption through cyber cor-
ruptions of the associated communication channels or control
signals of target switch(es). Attack execution requires use of
local state-dependent information of the physical power system
(possibly attackable by eavesdropping on communication links
of appropriate measurement devices). The existence of such
vulnerabilities can be found through both visual inspection [4],



Fig. 1: One line diagram of revised Western Electricity Coor-
dinating Council (WECC) 3-machine, 9-bus system. The (red)
dashed rectangle is approximated as a SMIB system.

[5] and mathematical analysis employing the following theo-
rem on a linearized model of the system [6], [7].

Theorem 1 (Existence of a Sliding Mode). Given the variable
structure system:

ẋ =

{
A1x+ b1, s(x) > 0

A2x+ b2, s(x) ≤ 0
(2)

where x ∈ Rn×1, Ai ∈ Rn×n, bi ∈ Rn×1 and

s(x) = Cx ∈ R (3)

for constant row vector C = [c1 c2 · · · cn] ∈ R1×n the
necessary and sufficient conditions for the existence of a
sliding mode are:{

C(A1x+ b1) < 0, s(x) > 0

C(A2x+ b2) > 0, s(x) < 0
. (4)

In this paper we study the effect of model error and state
estimation on the identification and performance of such an
attack. We will focus our results on the test system discussed
in the next section.

B. System Modeling and Variable Structure Representation

We consider the Western Electricity Coordinating Council
(WECC) 3-machine, 9-bus system of Fig. 1. The (blue) dashed
lines represent the cyber components, which correspond to
communication channels, sensors, breaker actuators and the
control center. The (black) solid lines illustrate physical power
system elements including generators, loads, switches, trans-
mission lines.

We approximate this system by using the following second
order nonlinear single-machine infinite bus (SMIB) model: δ̇1 = ω1

M1ω̇1 = PM1 − E2
1G11 − sLPL

−E1E∞B1∞ sin δ1 −D1ω1

(5)

where δ1 and ω1 are the rotor angle and rotor speed deviation

of Generator G1, respectively, and collectively form the system
state vector x = [δ1 ω1]

T . The parameters M1, D1 and E1

represent the moment of inertia, damping coefficient, and
internal voltage of Generator G1, respectively, E∞ is the
voltage magnitude at the infinite bus, PL is the local load
at Bus 1, sL is the load switch status (sL = 1, if the load
is connected; sL = 0, otherwise), and B1∞ is the transfer
susceptance of the line between Bus 1 and infinite bus.

Assuming P1 = PM1 − E2
1G11 − sLPL and C1∞ =

E1E∞B1∞ where C1∞ = 1, D1 = 0.1,M1 = 0.1, PM1 −
E2

1G11 − PL = 0, PM1 − E2
1G11 = 0.9, the overall variable

structure system can be represented in linearized form as [8]:

A1 :

{
δ̇1 = ω1

ω̇1 = −10δ1 − ω1
if PL connected

A2 :

{
δ̇1 = ω1

ω̇1 = 9− 10δ1 − ω1
if PL not connected

. (6)

where the system state [δ1 ω1]
T represents the rotor phase

angle and frequency of Generator G1.

III. SYSTEM MODELING ERROR

Our focus in this section is on representing modeling error
and its effect on the switching attack. We specifically model
errors as biases to system parameter coefficients. For the
linearized model of our test system of Eq. 6 the errors are
represented as:

A1 :

{
δ̇1 = 0(1 + ε11) + (1 + ε12)ω1

ω̇1 = −10(1 + ε13)δ1 − (1 + ε14)ω1
. (7)

A2 :

{
δ̇1 = 0(1 + ε21) + (1 + ε22)ω1

ω̇1 = 9− 10(1 + ε23)δ1 − (1 + ε24)ω1
. (8)

A. Effect of Model Error on Attack Existence Region

Assuming s > 0 and s < 0 correspond to the
load switch being closed (subsystem A1) and open (sub-
system A2), respectively, our system of Eq. 7-8 corre-

sponds to A1 =

[
0 1 + ε12

−10(1 + ε13) −(1 + ε14)

]
, A2 =[

0 1 + ε22
−10(1 + ε23) −(1 + ε24)

]
, b1 =

[
0
0

]
and b2 =

[
0
9

]
of

Eq. 2. Eq. 4 of Theorem 1 provides the following existence
conditions for the sliding mode s = c1δ1 + c2ω1:


{
c1(1 + ε12)ω1 − 10c2(1 + ε13)δ1 − c2(1 + ε14)ω1 < 0

for c1δ1 + c2ω1 > 0{
c1(1 + ε22)ω1 − 10c2(1 + ε23)δ1 − c2(1 + ε24)ω1 + 9c2 > 0

for c1δ1 + c2ω1 < 0

.

(9)

The inequalities above enable the attacker to identify param-
eters C = [c1 c2] for execution of the attack. As is observed
from Fig. 2, the existence of εij creates two possible forms
of error: first, false negative or missed values for C, and,
second, false positive values for C. Fig. 2(b) demonstrates how
parameter error creates false negative and positive existence
regions. We observe that for “small” errors (i.e., less than
10% deviation in parameter value) and significant existence



(a) State trajectory for s = 6δ1 + ω1.

Fig. 3: State trajectory for s = 6δ1 + ω1.

regions in [c1 c2]-parameter space as in Fig. 2, selecting values
of [c1 c2] for attack execution is best done using internal
values within the [c1 c2]-existence region. For instance, if we
constrain c2 = 1 (to avoid scale ambiguity) then the parameter
value for c1 must be selecting somewhere along the horizontal
line of Fig. 2(b). We select C = [6 1] corresponding to
s = 6δ1 + ω1 for our test case which lies in a region fairly
distinct from the boundary of our existence region.

B. WECC 3-Generator, 9-Bus Simulation Study

To verify that the selected s = 6δ1 + ω1 (based on
the linear and error-prone system) represents a valid sliding
surface in a more realistic test system, we demonstrate the
execution of the switching attack on a PSCAD simulation of
the WECC 3-generator, 9-bus system in Fig 1. Here, the base
MVA is 100, the system normal frequency is 60 Hz and the
generator parameters are shown in Table I. The transmission
line connecting Generator G1 and the infinite bus are modeled
using an inductor of 0.014 H. The local load PL is chosen to
be 32.4 MW modeled using a constant resistor. The PSCAD
step size was chosen to be 50 µs.

The initial state of the WECC system is set to to the stable
focus of (1.1198, 0). If s > 0, the system dynamics switch to
system A1 and if s < 0, they switch to A2. The switching
attack is applied from 0 to 2.5 seconds that drives the system
trajectory across the stability boundary of A2 at which point
the switch is permanently set to A2 making the system
unstable. PSCAD simulations demonstrate in Fig. 3 how at
time 2.5 seconds, the system trajectory goes to unstable.

Table II presents results on the attack existence range of
C = [c1 1] (note: c2 = 1 is fixed as discussed above) for
different system models: linearized SMIB of Eq. 6 with no
parameter error, nonlinear SMIB of Eq. 5 with and without
parameter error (random errors of εij = ±0.1 were consid-
ered) and the high-order WECC test system of Fig. 1 and
Table I. It is clear that there is a large overlap in the existence
of a sliding mode in both the nonlinear and linearized versions.
Thus we conclude that our approach to attack identification is
robust to both linearization of the system model and parameter
error of approximately ±10%. In the next section we discuss
the effects of model error on system state estimation.

TABLE I: Generator parameters for WECC system.

Name Parameter Gen 1 Gen 2
Rated RMS Line-Line
Volatge Vgl−l 13.8 kV 16.5 kV
Active Power Pg 36 MW 100 MW
Power Factor pfg 0.8 0.8
Frequency f 60 Hz 60 Hz
Direct axis unsaturated
reactance Xd 1.55 0.146
D axis unsaturated
transient reactance Xd’ 0.22 0.0608
D axis open circuit
unsaturated transient
time constant Tdo’ 8.95 sec 8.96
Q axis unsaturated
reactance Xq 0.76 0.0969
Q axis unsaturated
transient reactance Xq’ N.A 0.0969
Q axis open circuit
unsaturated transient
time constant Tqo’ N.A 0.31
Inertia Constant H 0.5 sec 23.64

Name Parameter Gen 3 Gen 4
Rated RMS Line-Line
Volatge Vgl−l 18.0 kV 13.8 kV
Active Power Pg 163 MW 85MW
Power Factor pfg 0.8 0.8
Frequency f 60 Hz 60 Hz
Direct axis unsaturated
reactance Xd 0.8958 1.3125
D axis unsaturated
transient reactance Xd’ 0.1198 0.1813
D axis open circuit
unsaturated transient
time constant Tdo’ 6.0 5.89
Q axis unsaturated
reactance Xq 0.8645 1.2578
Q axis unsaturated
transient reactance Xq’ 0.1969 0.25
Q axis open circuit
unsaturated transient
time constant Tqo’ 0.539 0.6
Inertia Constant H 6.4 3.01

TABLE II: Empirical existence of sliding surface s = c1δ1+ω1

for linearized SMIB, nonlinear SMIB, nonlinear SMIB with
parameter errors and WECC test system. Simulation tests were
conducted for −20 ≤ c1 ≤ 20.

Linearized SMIB Nonlinear SMIB
No sliding mode −20 ≤ c1 < 0.7 −20 ≤ c1 < 0.6
Sliding mode exists 0.7 ≤ c1 ≤ 20 0.6 ≤ c1 ≤ 20

Nonlinear SMIB WECC
with parameter error

No sliding mode −20 ≤ c1 < 0.6 −20 ≤ c1 < 0.7
Sliding mode exists 0.6 ≤ c1 ≤ 20 0.7 ≤ c1 ≤ 20

IV. DYNAMIC STATE ESTIMATION

A. State Estimator with Model Parameter Error

Power systems need to be continuously monitored in order
to keep the system in a normal and secure state, thus know-
ing the system state is necessary and important. When the
physical state of the system cannot be observed directly, a
state estimator is employed using input-output measurements
of the real system. Coordinated variable structure switching
attacks require local state information of the target generator.
This can be obtained by an attacker through eavesdropping.



(a) Attack existence range, no error.
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Fig. 2: The effect of model parameter error on identification and execution of attack parameters.

Fig. 4: Luenberger observer for state estimation.

The feasibility of this depends on the communication media
and protocols used and its discussion is beyond the scope of
this paper. To ensure that the coordinated variable structure
switching attack can be implemented with limited state in-
formation (in this paper we assume that the frequency ω1 is
known but phase δ1 must be estimated), we introduce a method
that makes use of a Luenberger observer to estimate δ1. The
architecture of a Luenberger observer for state estimation is
shown in Fig. 4.

Consider the subsystem dynamics of the actual variable-
structure system with known output y(t):{

ẋ(t) = Aix(t) + bi
y(t) = Kx(t)

(10)

where i = 1 (for s > 0) or i = 2 (for s < 0), x(t) ∈ Rn×1
is the state vector, y(t) ∈ Rn×1 is the output, Ai ∈ Rn×n,
bi ∈ Rn×1 and K ∈ R1×n. The state estimator makes use of
y(t) to determine an estimate of the state x̂(t) assuming the
actual system parameters Ai, bi and K are known; since these
values are typically estimated they are distinctively denoted
by Âi = Ai + EAi

, b̂i = bi + Ebi and K̂ = K + EK where
Ex denotes the corresponding additive error matrix/vector. The
estimator dynamics are given by:{

˙̂x(t) = Âix̂(t) + b̂i + L(y(t)− ŷ(t))
ŷ(t) = K̂x̂(t)

(11)

where x(t) ∈ Rn×1 is the state vector, y(t) ∈ Rn×1 is the
system output, Ai ∈ Rn×n, bi ∈ Rn×1, K ∈ R1×n and i =
1, 2. It is well known that for Âi = Ai, b̂i = bi and K̂ = K
the estimator error e(t) = x(t)− x̂(t) dynamics satisfies:

ė(t) = ẋ(t)− ˙̂x(t) = (Ai − LK)e(t) (12)

whereby if the pair (Ai,K) is observable, the estimation error
e(t) will decay to zero for any initial condition e(t0). The
observer dynamical behavior can be adjusted by adjusting the
observer gain L = [l1 l2]

T . In particular, the initial observer
state need not match the initial system state as long as the
observer gain L is chosen such that all eigenvalues of the
matrix Ai − LK are placed to the left in the complex plane.
Applying this principle to our variable structure system, we
propose the following theorem.

Theorem 2 (State Estimator with Model Parameter Er-
ror). Consider the variable structure system of Eq. 10
with state estimator dynamics of Eq. 11. For Âi =[
ai1(1 + εi1) ai2(1 + εi2)
ai3(1 + εi3) ai4(1 + εi4)

]
and K̂ = [ k1(1+γ1) k2(1+γ2) ],

assuming |εij |, |γi| � 1, the convergence of the state estimator
depends only on the errors of the main diagonal of Âi and
the errors of K̂ while x(t) is bounded. To guarantee error
convergence, we require l1k1(1+γ1)+ l2k2(1+γ2)−ai1(1+
εi1)− ai4(1 + εi4) > 0.

Proof: The error dynamics in general are:

ė(t) = ẋ(t)− ˙̂x(t)

= (Ai − LK)x(t)− (Âi − LK̂)x̂(t) + (bi − b̂i)
= (Âi − LK̂)e(t)− (EAi

− LEK)x(t) + Ebi .

While the switched system is stable, the system state x(t) is
bounded and |x(t)| ≤ Bx < ∞. Given the bounded errors of
|εij | ≤ Bij � 1, |γi| ≤ BK � 1 and ‖Ebi‖ ≤ Bbi < ∞,
we have a bounded term (EAi

− LEK)x(t) +Ebi ≤ (BAi
−

LBK)Bx + Bbi . Thus, the error dynamics will converge to
N , a neighborhood of x(t), whose size is dependent on the



Fig. 5: SMIB System Model

magnitude of the bound on (EAi−LEK)x(t)+Ebi . Therefore,
the estimation error e(t) will decay to N for any initial
condition e(t0) if the pair (Âi, K̂) is observable.

Âi − LK̂ =
[
ai1(1+εi1)−l1k1(1+γ1) ai2(1+εi2)−l1k2(1+γ2)
ai3(1+εi3)−l2k1(1+γ1) ai4(1+εi4)−l2k2(1+γ2)

]
The eigenvalues of the matrix Âi − LK̂ are given by:

det(λI − (Âi − LK̂))

= λ2 + (l1k1(1 + γ1) + l2k2(1 + γ2)− ai1(1 + εi1)− ai4(1 + εi4))λ

+(ai1(1 + εi1)ai4(1 + εi4)− ai2(1 + εi2)ai3(1 + εi3)

−ai1(1 + εi1)l2k2(1 + γ2)− ai4(1 + εi4)l1k1(1 + γ1)

+ai2(1 + εi2)l2k1(1 + γ1) + ai3(1 + εi3)l1k2(1 + γ2))

Based on the equations above, the real part of the eigenvalues
are given by

Re(λi) = −
l1k1(1 + γ1) + l2k2(1 + γ2)− ai1(1 + εi1)− ai4(1 + εi4)

2
(13)

To guarantee Re(λi) < 0, we require

l1k1(1+ γ1)+ l2k2(1+ γ2)− ai1(1+ εi1)− ai4(1+ εi4) > 0.
(14)

Thus, the convergence of the state estimator depends only on
the errors εi1, εi4, γ1 and γ2 found along the main diagonal
of Âi and in K̂.

It is clear that appropriate design of L can compensate for
model error if error bounds are known.

B. Case Study

We empirically study state estimation in the context of
variable structure system attacks in the presence of model error
using our WECC test system. We assume that the generator
frequency is known to the attacker, but the rotor phase angle
must be estimated from terminal voltage and current of the
associate transmission line. Specifically, we employ the SMIB
model of Fig. 5; according to the Kirchoff’s Voltage Law:

E0∠δ = jX ′dI∠α+ E∠θ

= (E cos θ −X ′dI · sinα) + j(E sin θ −X ′dI cosα)

where E0∠δ is the generator internal voltage, jX ′d is the
impedance of transmission line, I∠α is the current of trans-
mission line and E∠θ is the terminal voltage. Thus, the
generator internal voltage E0 and phase angle δ can be
estimated using the following equations:

E0 =

√
(E cos θ −X ′dI · sinα)

2
+ (E sin θ −X ′dI cosα)

2

(15)

and tan δ =
E sin θ+X′dI cosα
E cos θ−X′dI sinα

. Given the approximation that
tan δ ≈ δ when δ is small, we have

δ ≈ tan δ =
E sin θ +X ′dI cosα

E cos θ −X ′dI sinα
. (16)

Therefore, δ can be estimated via the terminal voltage E∠θ
and current I∠α of transmission line as follows:[

E sin θ+X′dI cosα
E cos θ−X′dI sinα

ω

]
⇒
[
δ
ω

]
(17)

According to Theorem 2, we must choose the observer gain L
such that all eigenvalues of the matrix (Âi−LK̂) are placed to
the left in the complex plane when giving the WECC system
model with errors.

Given the system model of Eq. 7-8 we consider the case in

which x(t) = [δ ω]
T ∈ Rn×1, y(t) = [

E sin θ+X′dI cosα
E cos θ−X′dI sinα

ω]
T
∈

Rn×1, and Â1 =

[
0 1 + ε12

−10(1 + ε13) −(1 + ε14)

]
, Â2 =[

0 1 + ε22
−10(1 + ε23) −(1 + ε24)

]
, b1 =

[
0
0

]
and b2 =

[
0
9

]
,

K̂ = [1, 1] (assuming no error).
Applying Theorem 2, we have

det(λI − (Âi − LK̂))

= λ2 + (l1 + l2 + (1 + εi4))λ+ (10(1 + εi2)(1 + εi3)

+(1 + εi4)l1 + (1 + εi2)l2 − 10(1 + εi3)l1)

For Re(λi) < 0, we therefore require:

l1 + l2 + (1 + εi4) > 0 (18)

Thus, in this case the behavior of the state estimator only
depends on εi4, i = 1, 2. Assuming, all errors are within the
range ±10, in order to make sure the eigenvalues are in the left
hand plane, our our observer gain L is chosen as L = [1 10].

We tested the observer with the attack s = 6δ1 + ω1

discussed in previous section. The system dynamics travel
along with the sliding mode and still achieve the instability
and disruption as shown in Fig. 6; the phase angel and
frequency deviations between the estimate state and real state
with different set of error are shown. Different model errors
have been tested leading to the following observations:

1) As predicted by our analysis, as the error values increase,
so does the deviation between x̂(t) and x(t).

2) As stated in Theorem 2, the performance of the estimator
is only dependent on the error values εi1, εi4, γ1 and γ2
and not on εi2 or εi3.

In order to demonstrate our results on a more realistic test
system, we applying our attack s = 6δ1 + ω1 to a higher
order model of the WECC system in PSCAD. Even in the
presence of model error, the state estimator can track the
real state with reasonable accuracy within 0.7 seconds. The
corresponding simulation results for the rotor angle, deviation
from the nominal frequency of G1 and the switch status are
shown in Fig. 7.



(a) G1 phase angle. (b) G1 deviation from nominal frequency. (c) System trajectory.

Fig. 6: Comparison of model errors in WECC system with Luenberger Observer.

(a) G1 phase angle. (b) G1 deviation from nominal frequency. (c) Switch Status.

Fig. 7: PSCAD simulation results of WECC system with Luenberger Observer.

V. CONCLUSIONS

In this paper, we studied the performance of coordinated
variable structure switching attacks in the presence of both
model error and state estimation. We demonstrated the po-
tential of the traditional Luenberger observer for coordinated
switching attacks when the system state is only partially
known to the attacker. Moreover, we identified that the rate
of convergence of the state estimator is a function of only
specific error terms on the observer system model. Future work
focuses on different strategies that exploit the existence of
stable sliding modes and identifying inherently secure smart
grid topologies.
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