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1 Numbers and Equations

Numbers have often been invented to solve equations.

For example, by introducing negative numbers the natural numbers N = {0, 1, 2, . . .} can be
extended to the integers Z = {. . . ,−2,−1, 0, 1, 2, . . .} so that we may solve simple equations
such as x+2 = 0. Likewise, by introducing integer quotients, the integers can to be extended
to the rational numbers Q = {a/b : a, b ∈ Z, b 6= 0} so that we may solve simple equations
such as 2x = 1.

The rationals seem like a very nice set in which to do arithmetic. There is a well-defined ad-
dition operation and a well-defined multiplication operation, and Q is closed with respect to
these operations. Addition and multiplication are associative (i.e., for all x, y, z ∈ Q, x(yz) =
(xy)z and likewise for addition) and commutative (i.e., for all x, y ∈ Q, x + y = y + x and
likewise for multiplication). Every element x ∈ Q has an additive inverse −x (from which
we may define a subtraction operation) and every nonzero element x ∈ Q, x 6= 0, has a mul-
tiplicative inverse 1/x (from which we may define a division operation). Furthermore, multi-
plication and addition satisfy the distributive law, i.e., for all x, y, z ∈ Q, x(y+z) = xy+xz.
Mathematically speaking, the rational numbers form a field. Who could ask for anything
more?

The trouble is that certain simple equations such as

x2 − 2 = 0 (1)
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have no solutions in Q, i.e., no rational number x satisfies (1). However, following the
progression from N to Z to Q, we might try to get around this problem by extending Q, i.e.,
by adjoining an element—let’s call it θ for now—that satisfies θ2 − 2 = 0, or, equivalently,
θ2 = 2. We will demand that θ be combinable with ordinary rational numbers (and with
itself) via addition and multiplication, while satisfying all of the formal arithmetic properties
(such as closure with respect to addition and multiplication, associativity, commutativity,
the distributive law, etc.) that we have grown to expect.

If we denote this extended set by Q[θ], then certainly Q[θ] must contain all numbers of the
form a + bθ, where a, b ∈ Q. Numbers involving higher powers of θ do not arise, since any
such higher power can be reduced to a multiple of a lower power, i.e., θ2 = 2, θ3 = 2θ,
θ4 = 4, etc. Indeed, the sum, difference, product and quotient of any two elements of this
form is another element of this form (provided that we don’t attempt to divide by zero). To
see this, observe that

(a+ bθ)± (c+ dθ) = (a± c) + (b± d)θ,

and since a±c and b±d are rational when a, b, c and d are rational, we have another number
of the same form. Likewise

(a+ bθ)(c+ dθ) = ac+ adθ + bcθ + bdθ2

= (ac+ 2bd) + (ad+ bc)θ.

Again, since ac+2bd and ad+bc are rational when a, b, c and d are rational, we have another
number of the same form. Finally, to show that we can form quotients, it is enough to show
that we can form reciprocals. Note that if a and b are not both zero then

1

a+ bθ
=

a− bθ
(a+ bθ)(a− bθ)

=
a− bθ
a2 − b2θ2

=
a

a2 − 2b2
− b

a2 − 2b2
θ.

Now, a2 − 2b2 6= 0 (why?), so a/(a2 − 2b2) and −b/(a2 − 2b2) are rational when a, b, c and
d are rational; thus once again we have another number of the same form. Indeed, we have
shown that Q[θ] is a field, and unlike Q, in this field (1) does indeed have a solution.

Since every element of Q[θ] can be written as a+ bθ, with a, b ∈ Q, we could associate such
an element with the ordered pair (a, b). We might refer to the first component, a, as the
“rational part” of a + bθ and the second component, b, as the “irrational part” of a + bθ.
(Note that the “irrational part” is in fact itself a rational number!) The arithmetic in Q[θ]
could be defined via operations that occur on such ordered pairs, e.g.,

(a, b) + (c, d) = (a+ c, b+ d)

(a, b)× (c, d) = (ac+ 2bd, ad+ bc)
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From this viewpoint there is no mention of the “irrational” number θ; indeed, from this
viewpoint one can simply regard θ as a “tag”, pointing out which of the two rational numbers
in question is the designated “irrational part.”

By the way, a more usual notation for θ is
√

2.

2 Complex Numbers and the Complex Plane

So far we have “extended” Q by adjoining
√

2, thus taking one small step toward the con-
struction of the real numbers R. Let us now proceed to the point where we have constructed
all of R. Certain real numbers (e.g., 3

√
3) appear as the zeros of a polynomial with rational

coefficients and can be adjoined to Q in the same manner that we used to adjoin
√

2; others
(e.g., π) appear as the limit points of certain sequences.

Unfortunately, even in R, many polynomials have no zeros, e.g., there is no real number x
that satisfies

x2 + 1 = 0. (2)

Emboldened by our experience in extending Q, let us extend R by introducing a new element,
a purely “imaginary” number, j, that satisfies j2 +1 = 0. Once again, we will demand that j
satisfy all of the formal arithmetic properties (such as closure with respect to addition and
multiplication, associativity, commutativity, the distributive law, etc.) that we have grown
to expect in R.

Let us denote the extended set by C. Certainly, as we compute all possible sums and products
involving real numbers and j, we find that C must contain all numbers of the form a + b j,
where a, b ∈ R. Numbers involving higher powers of j do not arise, since any such higher
power can be reduced to a multiple of a lower power, i.e., j2 = −1, j3 = − j, j4 = 1, etc. We
have, for all a, b, c and d in R,

(a+ b j)± (c+ d j) = (a± c) + (b± d) j

(a+ b j)× (c+ d j) = (ac− bd) + (ac+ bd) j

and, provided a and b are not both zero,

1

a+ b j
=

a− b j
(a+ b j)(a− b j)

=
a− b j
a2 + b2

.

This shows that the sum, difference, product and quotient of any two elements of this form
is another element of this form (provided that we don’t attempt to divide by zero), and so C
is a field. The elements of C are called complex numbers and C is referred to as the complex
field.
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We usually denote individual complex numbers with a single symbol, such as z. Now, since
every such element can be written in the form z = a + b j, with a, b ∈ R, we can associate
such an element with the ordered pair (a, b) of real numbers. We refer to the first component,
a, as the “real part” of z (written Re(z)) and the second component, b, as the “imaginary
part” of z (written Im(z)). Thus for all z ∈ C, we have

z = Re(z) + Im(z) j .

Note that the “imaginary part” is in fact itself a real number! If Im(z) = 0, then z is referred
to as a (purely) real number; likewise if Re(z) = 0, then z is referred to as a purely imaginary
number. Thus, in particular, j itself is purely imaginary.

Two complex numbers z1 and z2 are equal if and only if their real and imaginary parts agree,
i.e.,

z1 = z2 if and only if [Re(z1) = Re(z2)] and [Im(z1) = Im(z2)].

Thus every complex equality can always be regarded as a pair of real equalities.

The complex conjugate z∗ of a complex number z = Re(z) + Im(z) j is the complex number

z∗ = Re(z)− Im(z) j .

Note that z∗ = z if and only if Im(z) = 0, i.e., if and only if z is real.

The complex conjugate obeys the following properties for all w, z ∈ C:

(w ± z)∗ = w∗ ± z∗;
(wz)∗ = (w∗)(z∗);

(w/z)∗ = (w∗)/(z∗) (z 6= 0).

Furthermore, for all z ∈ C we have

z + z∗ = 2Re(z);

z − z∗ = 2 j Im(z);

(z∗)∗ = z.

It is possible to show (see the problems) that if f(x) = a0 + a1x + a2x
2 + · · · + adx

d is a
polynomial with real coefficients (i.e., a0, a1, . . . , ad ∈ R) and f(z) = 0 for some complex
value z, then we must also have f(z∗) = 0. In other words, if z is a zero of a polynomial
with real coefficients then so is its complex conjugate z∗.

Note that, unlike the real numbers, complex numbers are not in general ordered, i.e., it
makes no sense to ask which is larger: 2 + 3 j or 3 + 2 j. However, we can always compare
the magnitudes of two complex numbers. The magnitude (or absolute value or modulus) |z|
of a complex number z is defined as

|z| =
√
zz∗ =

√
Re2(z) + Im2(z).
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Figure 1: (a) Several points in the complex plane. (b) The polar form of a complex number.

Clearly |z| is a non-negative real number, and |z| = 0 if and only if z = 0. Note that
|z∗| = |z|, i.e., a complex number and its complex conjugate have the same magnitude.

It is very convenient to visualize C as a two-dimensional vector space over R, i.e., as a plane.
Naturally, this plane is referred to as the complex plane. The number a+ b j corresponds to
the point with coordinates (a, b) in the complex plane, as shown in Fig. 1(a).

In Figure 1(a), the two axes have been labelled x and y. Since each point on the x-axis
represents a real number, this axis is called the real axis. Similarly, the y-axis is called the
imaginary axis. These two axes intersect at 0, which is the only complex number that is
simultaneously purely real and purely imaginary.

The magnitude |z| of a complex number z has a geometric interpretation in the complex
plane: |z| measures the (Euclidean) distance between the origin 0 and z. Or if z is regarded
as a vector in the complex plane, then |z| is the length of this vector. Similarly, z∗ represents
the geometric reflection of z in the real axis.

3 Polar Form

The set of points at unit distance from the origin in the complex plane, corresponding to
the complex numbers z with |z| = 1, form a circle of unit radius centered at the origin. This
circle is called the unit circle in the complex plane. Every point on the unit circle can be
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represented in the form z = cos θ + j sin θ, where (from now on) θ represents an angle.

More generally, as illustrated in Fig. 1(b), a complex number z = a+ b j can be represented
in the polar form

z = r(cos θ + j sin θ), (3)

where r = |z| and, if z 6= 0, cos θ = Re(z)/|z| and sin θ = Im(z)/|z|. The angle θ is called
the argument or phase of z, and is denoted arg(z). The phase of z = 0 is not defined.

Now, since cos(x) and sin(x) are periodic with period 2π, it is clear that if θ1 is a value of
arg(z), then so are θ1 ± 2π, θ1 ± 4π, θ1 ± 6π, and so on. Thus arg(z) does not specify a
unique angle, but rather it specifies an infinite class of equivalent angles, each differing from
the others by some integer multiple of 2π. For example,

arg(j) =
π

2
+ k2π, k ∈ Z

= {. . . ,−7π/2,−3π/2, π/2, 5π/2, . . .}.

So that every complex number has a unique phase, we can select an angle from any half-open
interval I of the real numbers of length 2π, so that it is impossible for more than one angle
from each equivalence class to fall in I. By convention, this interval is usually chosen as
(−π, π], and the corresponding angle is referred to as the principle value of the argument,
denoted Arg(z), or ∠z. Note the capital letter: whereas arg(z) denotes an infinite set of
equivalent angles, Arg(z) specifies a unique angle in the range (−π, π]. Thus, for example,
Arg(1) = 0, Arg(j) = π/2, Arg(−1) = π, and Arg(− j) = −π/2.

Although polar form is an inconvenient representation for complex addition, it is great for
multiplication. Indeed, if we multiply z1 = r1(cos θ1 + j sin θ1) with z2 = r2(cos θ2 + j sin θ2),
we get

z1z2 = r1(cos θ1 + j sin θ1)r2(cos θ2 + j sin θ2)

= r1r2[cos θ1 cos θ2 − sin θ1 sin θ2 + j(cos θ1 sin θ2 + sin θ1 cos θ2)]

= r1r2[cos(θ1 + θ2) + j sin(θ1 + θ2)].

We see that under complex multiplication, magnitudes multiply and phases add, i.e.,

|z1z2| = |z1| · |z2|

and
arg(z1z2) = arg(z1) + arg(z2),

where the latter equality is interpreted in the following way: if we substitute a specific angle
for arg(z1) and a specific angle for arg(z2), their sum is a member of the equivalence class of
angles of z1z2.
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Now, if z 6= 0, we have z(1/z) = 1; this means that if z has the polar form z = r(cos θ+j sin θ),
then 1/z must have the polar form

1

z
=

1

r
[cos(−θ) + j sin(−θ)],

so that their product has the polar form 1 = 1(cos 0 + j sin 0). Thus taking reciprocals in
polar form is just as convenient as complex multiplication. It follows from this that if z2 6= 0

arg(1/z2) = − arg(z2),

|z1/z2| = |z1|/|z2|,
and

arg(z1/z2) = arg(z1)− arg(z2), provided z1 6= 0.

The property that the phase of a product is the sum of the phases is very reminiscent of
the rule for multiplying exponentials, where the exponent of a product is the sum of the
exponents, i.e., exey = ex+y. As we will see in the next section, where we consider the
complex exponential function, this connection is not a coincidence.

4 The Complex Exponential

To define a complex exponential function ez, we would certainly wish to mimic some of the
familiar properties of the real exponential function; e.g., ez should satisfy, for all z1, z2 and
z,

ez1ez2 = ez1+z2

ez1/ez2 = ez1−z2

d

dz
ez = ez.

(The last equation requires that we first define what we mean by complex differentiation,
something that is beyond the scope of these notes. However, see, e.g., [1, 2].) Here we will
introduce the complex exponential in a sneaky way: via its Maclaurin series. (Recall that
the Maclaurin series of a function is the Taylor expansion of the function around zero.)

Recall that the real-valued functions cos(x), sin(x), and ex have Maclaurin series given,
respectively, by

cos(x) = 1− x2

2!
+
x4

4!
− x6

6!
+ · · · ,

sin(x) = x− x3

3!
+
x5

5!
− x7

7!
+ · · · ,

ex = 1 + x+
x2

2!
+
x3

3!
+ · · · ,
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and that each of these series is convergent for every value of x ∈ R.

It would be natural indeed to define

ez = 1 + z +
z2

2!
+
z3

3!
+ · · ·

=
∞∑
i=0

zi

i!
, (4)

and this is precisely what we will do. Although we will not prove this here, the Maclaurin
series (4) is convergent for every value of z ∈ C. Clearly this complex-valued exponential
agrees with the usual real-valued exponential at every point z on the real-axis in the complex
plane.

To see that ez1ez2 = ez1+z2 , we multiply the corresponding Maclaurin series. This method of
multiplying series is sometimes called the Cauchy product. We want to form

ez1ez2 =

(
z01
0!

+
z11
1!

+
z21
2!

+
z31
3!

+ · · ·
)
×
(
z02
0!

+
z12
1!

+
z22
2!

+
z32
3!

+ · · ·
)
.

Using the distributive law and grouping terms having the same total exponent (sum of z1
exponent and z2 exponent), we get

ez1ez2 =
z01z

0
2

0!0!
+

[
z11z

0
2

1!0!
+
z01z

1
2

0!1!

]
+

[
z21z

0
2

2!0!
+
z11z

1
2

1!1!
+
z01z

2
2

0!2!

]
+

[
z31z

0
2

3!0!
+
z21z

1
2

2!1!
+
z11z

2
2

1!2!
+
z01z

3
2

0!3!

]
+ · · ·

This sum can be written as

ez1ez2 =
∞∑
i=0

i∑
j=0

zi−j1 zj2
(i− j)!j!

=
∞∑
i=0

1

i!

i∑
j=0

i!zi−j1 zj2
(i− j)!j!

=
∞∑
i=0

1

i!

i∑
j=0

(
i

j

)
zi−j1 zj2

=
∞∑
i=0

(z1 + z2)
i

i!

= ez1+z2 ,

where, in the second last equality, we have made use of the binomial expansion (which holds
in any field).

Now, writing z = a+ j b, with a ∈ R and b ∈ R, we find that

ez = ea+j b = eaej b.
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Since ea is a (well understood) real-valued exponential, we see that the key to understanding
the complex-valued exponential is to understand the function ej b for real b.

For this, we apply the Maclaurin series. We have, for real b,

ej b =
∞∑
i=0

(j b)i

i!

= 1 + j b+
(j b)2

2!
+

(j b)3

3!
+

(j b)4

4!
+

(j b)5

5!
+

(j b)6

6!
+

(j b)7

7!
+ · · ·

= 1 + j b− b2

2!
− j b3

3!
+
b4

4!
+

j b5

5!
− b6

6!
− j b7

7!
+ · · · ,

where we have used the fact that j2 = −1, j3 = − j, j4 = 1, etc. Grouping the real and
imaginary parts, we find that, for real b,

ej b =

(
1− b2

2!
+
b4

4!
− b6

6!
+ · · ·

)
+ j

(
b− b3

3!
+
b5

5!
− b7

7!
+ · · ·

)
= cos b+ j sin b.

Thus we find that ej b is essentially a trigonometric function: it has real part cos b and
imaginary part sin b. Applied to z = a+ j b, the complex exponential returns

ez = ea+j b = ea(cos b+ j sin b).

Using the complex exponential allows us to write, in a more compact way, the polar form
(3) of a complex number having magnitude r and phase θ: we have

r(cos θ + j sin θ) = rej θ.

The fact that phases add under complex multiplication now becomes obvious, since

r1e
j θ1r2e

j θ2 = r1r2e
j(θ1+θ2).

Since cos(−θ) = cos(θ) and sin(−θ) = − sin(θ), we have

ej θ = cos θ + j sin θ and e− j θ = cos θ − j sin θ. (5)

Adding the two equations in (5) yields ej θ + e− j θ = 2 cos θ, or

cos θ =
ej θ + e− j θ

2
.

Subtracting the two equations in (5) yields ej θ − e− j θ = 2 j sin θ, or

sin θ =
ej θ − e− j θ

2 j
.

These relationships often allow one to derive various trigonometric identities via the complex
exponential function.
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Exercises

1. Prove that no rational number x satisfies (1).

2. Work out the rules of arithmetic for elements in Q[
√

3].

3. Let f(x) be any polynomial in x with coefficients in C. It can be shown that every
non-constant polynomial with coefficients in C, i.e., every function

f(x) = a0 + a1x+ a2x
2 + · · ·+ adx

d

with a0, a1, . . . , ad ∈ C and d > 0 has a zero in C, i.e., f(x) = 0 for some x ∈ C. This
means that we cannot find new elements that satisfy simple polynomial relations to
adjoin to C. Mathematically speaking, the complex field C is “algebraically closed.”
Show that the fact that C is algebraically closed implies that every polynomial f(x)
of degree d > 0 factors into a product of d degree-one polynomials with complex
coefficients. (Hint: show that if f(x0) = 0, then f(x) = (x − x0)g(x) where g(x) is a
polynomial of degree d− 1. Then apply the principle of mathematical induction.)

4. Let f(x) be a polynomial with real-valued coefficients. Show that if f(z) = 0 for some
complex number z, then f(z∗) = 0 as well. (Hint: consider [f(z)]∗.)

5. A complex-valued function f(z) is said to be periodic with period z0 if f(z+z0) = f(z)
for all z ∈ C. Show that ez is periodic with period 2π j.

6. Show that (cos θ+j sin θ)n = cos(nθ)+j sin(nθ), a result known as De Moivre’s formula.

7. Use De Moivre’s formula to show that

cos(3θ) = cos3(θ)− 3 cos(θ) sin2 θ

and
sin(3θ) = 3 cos2(θ) sin(θ)− sin3(θ)

8. Show that the complex exponential takes on every complex value except 0.
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Spoiler Alert

Don’t read further unless you want to see the solutions to the exercises.
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Solutions to the Exercises

1. Suppose, to the contrary, that q2 = 2 for some rational number q. As a rational
number, q can be written as a/b, where a and b are integers, b 6= 0, and a and b have
no nontrivial common factors. In particular, a and b can be chosen so that at most
one of them is even.

Now if (a/b)2 = 2, then a2/b2 = 2, so a2 = 2b2. Thus a2 is even. Now a cannot be odd,
since the square of an odd number is odd; therefore, a must be even, i.e., a = 2c for
some integer c. Substituting 2c for a, we see that (2c)2 = 2b2, or b2 = 2c2. Thus b2 is
even, and so b is even. We find that a and b are both even, in contradiction with our
earlier choice of a and b. Thus no such q can possibly exist.

2. Let θ be an element that satisfies θ2 = 3. It can be shown that θ is irrational. Adding,
subtracting and multiplying with rational numbers will always yield numbers of the
form a + bθ, with a, b ∈ Q. Higher powers of θ do not arise. Let a, b, c, d be rational
numbers. Then clearly

(a+ bθ)± (c+ dθ) = (a± c) + (b± d)θ,

and

(a+ bθ)(c+ dθ) = ac+ bdθ2 + (bc+ ad)θ

= ac+ 3bd+ (bc+ ad)θ.

Finally, provided c and d are not both zero,

a+ bθ

c+ dθ
=

(a+ bθ)(c− dθ)
(c+ dθ)(c− dθ)

=
(ac− 3bd) + (bc− ad)θ

c2 − 3d2
.

Now the denominator cannot be zero (otherwise θ would be rational), and hence we
have a well-defined division operation.

3. Let f(x) = a0 + a1x + . . . + adx
d be a polynomial with complex coefficients. We will

write f(x) ≡ 0 if f(x) is the zero polynomial (i.e., the polynomial with only zero
coefficients). Unless f(x) ≡ 0, we will let deg f(x) denote the degree of polynomial
f(x), i.e., the largest value of i such that ai 6= 0.

First, let us show that if f(x0) = 0 (and f(x) 6≡ 0) then f(x) = q(x)(x− x0) for some
polynomial q(x). We will do this via the “division algorithm” for polynomials. Let
f(x) and g(x) be two polynomials. Unless g(x) ≡ 0, using polynomial long division
it is always possible to find polynomials q(x) (the so-called “quotient”) and r(x) (the
so-called “remainder”) such that f(x) = q(x)g(x) + r(x) with r(x) ≡ 0 or deg r(x) <
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deg g(x). Note that the remainder is either identically zero, or has a degree strictly
smaller than that of g(x).

Now, let f(x) be a polynomial with coefficients in C, and suppose f(x0) = 0 for some
x0 ∈ C. Let g(x) = x−x0. Note that deg g(x) = 1. By the division property described
above, we can find q(x) and r(x) such that

f(x) = q(x)(x− x0) + r(x),

with r(x) ≡ 0 or deg r(x) < 1. In either case r(x) = a0 for some complex number a0.
However, evaluating f(x) at x = x0 yields f(x0) = 0 = q(x0)(x0− x0) + r(x0) = r(x0),
so a0 = 0. This shows that f(x) = q(x)(x − x0). If f(x) has degree d > 0, then q(x)
must have degree d− 1 (since degrees add under polynomial multiplication).

Now if f(x) is a polynomial over C of degree one, then the claimed property is obviously
true, since f(x) = f(x) is a “factorization” of f(x) into a “product” of degree-one
polynomials. Now assume, for d ≥ 1, that every polynomial of degree d over C factors
as a product of d degree-one polynomials. Let f(x) be a polynomial of degree d + 1
over C. Since C is algebraically closed, f(x) has a zero, i.e., f(x0) = 0 for some x0 ∈ C.
By our previous result, this implies that

f(x) = q(x)(x− x0) (6)

for some polynomial q(x) of degree d. By our hypothesis, however, q(x) itself factors
as a product of d degree-one polynomials. Substituting this factorization for q(x) in
(6), we obtain a factorization of f(x) as a product of d+ 1 degree-one polynomials.

Since the claimed property holds for all degree-one polynomials, and we have just
shown that whenever the property holds for all polynomials of degree d ≥ 1 it also
holds for all polynomials of degree d+ 1, it follows from the Principle of Mathematical
Induction that the property holds for all d ≥ 1.

4. Let f(x) = a0 + a1x+ a2x
2 + · · ·+ adx

d be a polynomial with a0, a1, . . . , ad ∈ R. Note
that [f(x)]∗, the complex conjugate of f(x) can be written as

[f(x)]∗ = (a0 + a1x+ a2x
2 + · · ·+ adx

d)∗

= a∗0 + a∗1x
∗ + a∗2(x

2)∗ + · · ·+ a∗d(x
d)∗

= a0 + a1x
∗ + a2(x

∗)2 + · · ·+ ad(x
∗)d

= f(x∗),

where, in the second last equality we have used the property that a∗i = ai and (xi)∗ =
(x∗)i. Thus if f(z) = 0 for some z, then f(z∗) = [f(z)]∗ = 0 also.

5. For all z ∈ C we have ez+2π j = eze2π j = ez, since e2π j = cos(2π) + j sin(2π) = 1.

6. We have (cos θ + j sin θ)n = (ej θ)n = ejnθ = cos(nθ) + j sin(nθ).
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7. From De Moivre’s formula, we have

cos(3θ) + j sin(3θ) = (cos θ + j sin θ)3

cos3(θ) + 3 cos2(θ) j sin(θ) + 3 cos(θ) j2 sin2(θ) + j3 sin3(θ)

= cos3(θ)− 3 cos(θ) sin2(θ) + j[3 cos2(θ) sin(θ)− sin3(θ)]

Equating real and imaginary components yields the desired identities.

8. Let z = rej θ with r > 0. Then z = eln rej θ = eln r+j θ, which shows that z is in the
range of the complex exponential. On the other hand, if a+ b j is a complex value with
a, b ∈ R, then ea+b j = eaej b has magnitude ea, which is nonzero. Thus 0, which has
magnitude 0, is not in the range of the complex exponential.
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