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1 The Basics

Let p be a prime, let q = pm for some integer m ≥ 1, and let Fq be the finite field with q
elements.

For any positive integer n, define [[n]] as

[[n]]
def
= qn − 1,

a quantity that counts the number of nonzero vectors in a vector space of dimension n over
Fq.

For n ≥ i, we have

[[n]]− [[i]] = qi[[n− i]] and [[n]]− [[n− i]] = qn−i[[i]].

Let

[[n]]!
def
=

n∏
i=1

[[i]],

and define
[[0]]!

def
= 1.

For any non-negative integer n and any integer i satisfying 0 ≤ i ≤ n, define[
n

i

]
def
=

[[n]]!

[[i]]![[n− i]]!
. (1)
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The quantity
[
n
i

]
, a q-analogue of the binomial coefficient, is known as a Gaussian coefficient

(or a Gaussian binomial or a q-binomial coefficient). To denote the dependence of
[
n
i

]
on q,

the notation
[
n
i

]
q

is often used, but we will tend to drop the subscript when q is fixed.

Note that

lim
q→1

[[a]]

[[b]]
=
a

b
,

from which it follows that

lim
q→1

[
n

i

]
=

(
n

i

)
;

thus in the slightly strange limit as q → 1, the Gaussian coefficient reduces to the ordinary
binomial coefficient.

As we will explore in this note, Gaussian coefficients turn out to be useful in counting
subspaces of vector spaces over Fq as well as certain matrix families.

Let us start by writing
[
n
i

]
explicitly in several different ways as

[
n

i

]
=

(qn − 1)(qn−1 − 1)(qn−2 − 1) · · · (qn−i+1 − 1)

(qi − 1)(qi−1 − 1)(qi−2 − 1) · · · (q − 1)

=
(1− qn)(1− qn−1)(1− qn−2) · · · (1− qn−i+1)

(1− q)(1− q2)(1− q3) · · · (1− qi)

=
(qn − 1)(qn − q)(qn − q2) · · · (qn − qi−1)

(qi − 1)(qi − q)(qi − q2) · · · (qi − qi−1)
,

where, in each case, an empty product (that occurs when i = 0) is taken as unity.

Note that
[
n
n

]
=
[
n
0

]
= 1. From (1) it is easy to see that

[
n

i

]
=

[
n

n− i

]
.

We can obtain two “Pascal-type” identities by observing that, for 0 < i < n,

[[n]][[n− i]]
[
n− 1

i− 1

]
= [[n]][[i]]

[
n− 1

i

]
= [[i]][[n− i]]

[
n

i

]
. (2)

From this it follows that, for any A,[
n

i

]
= A

[[n]]

[[i]]

[
n− 1

i− 1

]
+ (1− A)

[[n]]

[[n− i]]

[
n− 1

i

]
.
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For example, setting A = [[i]]/[[n]] yields[
n

i

]
=

[
n− 1

i− 1

]
+ qi

[
n− 1

i

]
, (3)

while setting 1− A = [[n− i]]/[[n]] yields[
n

i

]
= qn−i

[
n− 1

i− 1

]
+

[
n− 1

i

]
. (4)

Of course, setting A = 1 and A = 0 yields[
n

i

]
=

[[n]]

[[i]]

[
n− 1

i− 1

]
=

[[n]]

[[n− i]]

[
n− 1

i

]
.

Since
[
0
0

]
= 1, from (3) or (4) and from the boundary cases

[
n
0

]
=
[
n
n

]
= 1, it follows by

induction that
[
n
i

]
is a polynomial of degree i(n− i) in q. For example,[

n

1

]
= 1 + q + q2 + · · ·+ qn−1,[

4

2

]
= 1 + q + 2q2 + q3 + q4,[

5

2

]
= 1 + q + 2q2 + 2q3 + 2q4 + q5 + q6,

etc. Let pn,i(q) denote the polynomial corresponding to
[
n
i

]
. It is easy to verify that each

such polynomial is self-reciprocal, i.e., for 0 ≤ j ≤ i(n− i), the coefficient of qj is the same
as that of qi(n−i)−j. Equivalently,

pn,i(q) = qi(n−i)pn,i(1/q).

From this observation, we get yet another expression for
[
n
i

]
, namely[

n

i

]
= qi(n−i) (1− q−(n−i+1))(1− q−(n−i+2))(1− q−(n−i+3)) · · · (1− q−n)

(1− q−1)(1− q−2)(1− q−3) · · · (1− q−i)
. (5)

2 Combinatorics

2.1 Ordered Bases and Full-Rank Matrices

Let V be an n-dimensional vector space over Fq. By an ordered k-basis we mean an ordered
k-tuple (b1, . . . , bk) of linearly independent vectors b1, b2, . . . , bk from V . How many distinct
ordered k-bases can be constructed? Let us denote this number as B(n, k).
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In a generic k-basis (b1, . . . , bk), the vector b1 can be chosen in qn − 1 = [[n]] ways, as b1
can be any nonzero vector in V . Once b1 is chosen, b2 can be chosen in qn − q = q[[n − 1]]
ways, as b2 can be any vector not in the one-dimensional subspace spanned by b1. Once b1
and b2 are chosen, b3 can be chosen in qn− q2 = q2[[n− 2]] ways, as b3 can be any vector not
in the two-dimensional subspace spanned by b1 and b2. Continuing in this way, we find that
V has

B(n, k) = (qn − 1)(qn − q)(qn − q2) · · · (qn − qk−1)

= qk(k−1)/2 [[n]]!

[[n− k]]!

distinct ordered k-bases.

Let F k×n
q denote the set of k×n matrices with entries from Fq, with k ≤ n. Among these

matrices, how many have rank k? Since there is a one-to-one correspondence between such
matrices and ordered bases from V , we see that there are B(n, k) rank-k matrices in F k×n

q .
In particular,

B(n, n) = qn(n−1)/2[[n]]!

gives the number of invertible n × n matrices over Fq, i.e., the cardinality of the general
linear group GL(n, Fq).

If C is a k-dimensional linear code over Fq, then C has B(k, k) = qk(k−1)/2[[k]]! distinct
ordered k-bases, and hence C has B(k, k) distinct full-rank generator matrices.

We will return to matrices in Section 2.3. However, it is useful, next, to count subspaces.

2.2 Subspaces, Superspaces and Intersection

2.2.1 Subspaces

Let V be an n-dimensional vector space over Fq. How many distinct k-dimensional subspaces
does V possess?

From our work above, we know that we can draw B(n, k) distinct ordered k-bases from
V . On the other hand, any particular k-dimensional subspace has B(k, k) distinct ordered
k-bases. Since no two distinct k-dimensional subspaces can share a basis, we find that the
B(n, k) ordered k-bases can be partitioned into distinct classes, each of size B(k, k), where
each class corresponds to a distinct subspace of V . The number of distinct subspaces is,
therefore, given as

B(n, k)

B(k, k)
=
qk(k−1)/2[[n]]!/[[n− k]]!

qk(k−1)/2[[k]]!
=

[[n]]!

[[k]]![[n− k]]!
=

[
n

k

]
.
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Thus the Gaussian coefficient
[
n
k

]
counts the number of distinct k-dimensional subspaces of

an n-dimensional vector space over Fq, i.e., the size of the Grassmannian G(n, k).

2.2.2 Superspaces

Let V be a k dimensional subspace of an n-dimensional vector space W over Fq. By a
superspace of V we mean a subspace of W that contains V . Among the j-dimensional
subspaces of W , how many contain V ? In other words, how many distinct j-dimensional
superspaces does V have?

We observe that W can be written as the direct sum W = V ⊕ U , where U is an n− k-
dimensional subspace of W , intersecting trivially with V . Every j-dimensional subspace of
W containing V is the direct sum V ⊕ U ′, where U ′ is a j − k-dimensional subspace of U .
Each different U ′ gives a different superspace of V . Since U ′ can be chosen in[

n− k
j − k

]

ways, this is the number of distinct j-dimensional superspaces of V .

For example, if V is zero-dimensional, i.e., k = 0, then every j-dimensional subspace of
W contains V , and we recover the Gaussian coefficient

[
n
j

]
as in the previous subsection.

2.2.3 Intersections

Let W be an n-dimensional vector space over Fq and let V be a fixed k-dimensional subspace
of W . How many j-dimensional subspaces of W intersect V in exactly an `-dimensional
subspace? Let us denote this number by N(n, k, j, `).

The subspace U of intersection can be chosen in
[
k
`

]
ways. This subspace can be extended

to a j-dimensional subspace in

(qn − qk)(qn − qk+1)(qn − qk+2) · · · (qn − qk+j−`−1)

(qj − q`)(qj − q`+1)(qj − q`+2) · · · (qj − qj−1)
= q(j−`)(k−`)

[
n− k
j − l

]

ways. To see this, observe that we can extend U by adjoining any of the qn− qk vectors not
in V , then adjoining any of the qn− qk+1 vectors not in the resulting (k+ 1)-space, etc., but
that any specific choice is in an equivalent class of size (qj−q`)(qj−q`+1) · · · (qj−qj−1). The
total number of j-dimensional subspaces of W that intersect V in exactly an `-dimensional
subspace is therefore given as

N(n, k, j, `) = q(k−`)(j−`)

[
k

`

][
n− k
j − `

]
.
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Some special cases are worth examining, as N(n, k, j, `) subsumes some of our earlier
work.

For example, N(n, k, j, j) is the number of j-dimensional subspaces of W that intersect
V in a j-dimensional subspace of V . This is equivalent to determining the number of j-
dimensional subspaces of V , and is given as

N(n, k, j, j) = q(k−j)(j−j)

[
k

j

][
n− k

0

]
=

[
k

j

]
.

Similarly, N(n, k, j, k) is the number of j-dimensional subspaces of W that intersect V in a
k-dimensional subspace of V (i.e., V itself). This is equivalent to determining the number
of j-dimensional superspaces of V and is given as

N(n, k, j, k) = q(k−k)(j−k)

[
k

k

][
n− k
j − k

]
=

[
n− k
j − k

]
.

Similarly, N(n, k, j, 0) counts the number of j-dimensional subspaces of W that intersect
trivially with V ; there are

N(n, k, j, 0) = q(k−0)(j−0)

[
k

0

][
n− k
j

]
= qjk

[
n− k
j

]

such subspaces. Finally, N(n, k, k, k − i) counts the number of k-dimensional spaces that
intersect V in a (k− i)-dimensional space; this is the number of vertices at graph distance i
from V in the Grassmann graph containing V , and is given by

N(n, k, k, k − i) = qi2
[
k

`

][
n− k
k − `

]
.

2.3 Matrices Revisited

We return now to counting matrices.

How many m× n matrices over Fq have rank r? Denote this number by A(m,n, r).

Only the zero matrix has rank zero, so A(m,n, 0) = 1.

A rank-1 matrix can be obtained as product of a nonzero m × 1 column vector with a
nonzero 1×n row vector. The column vector can be chosen in [[m]] ways, and the row vector
in [[n]] ways. Thus there are [[m]][[n]] such products, but not all are distinct, since, e.g.,
scaling the first vector by a nonzero α and the second by α−1 yields the same rank-1 matrix.
Thus, we have over-counted by a factor of [[1]], hence

A(m,n, 1) = [[m]][[n]]/[[1]].
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More generally, we will evaluate A(m,n, r) in three different ways.

First, let rs(M) denote the r-dimensional row space of a rank-r matrix M ∈ Fm×n
q . We

can define an equivalence relation on the set of rank-r matrices in Fm×n
q by writing M1 ∼M2

if and only if rs(M1) = rs(M2). There are
[
n
r

]
equivalence classes. How many matrices are in

each equivalence class? Let V be a fixed r-dimensional subspace of F n
q , and let R be a fixed

r×n matrix with rs(R) = V . Let M be m×n matrix with rs(M) = V . Since each row of M
can be expressed uniquely as a linear combination of the rows of R, there is a unique m× r
matrix A such that M = AR. Since r = rank(M) ≤ min{rank(A), rank(R)} ≤ rank(A) ≤ r,
the matrix A must necessarily have rank r. Conversely, if A is any m × r matrix of rank
r, then AR is an m × n matrix with row space V . Thus, denoting the equivalence class
containing M as [M ], we have

[M ] = {AR : A ∈ Fm×r
q , rank(A) = r}.

Since, for A1, A2 ∈ Fm×r
q and rank(A1) = rank(A2) = r, we have A1R = A2R implies

A1 = A2, the elements of [M ] are in one-to-one correspondence with the set of m × r
matrices of rank r, of which there are B(m, r) = qr(r−1)[[m]]!/[[m− r]]!. Thus,

A(m,n, r) =

[
n

r

]
B(m, r)

= qr(r−1)/2 [[n]]!

[[r]]![[n− r]]!
[[m]]!

[[m− r]]!

= qr(r−1)/2
r−1∏
i=0

[[m− i]][[n− i]]
[[i+ 1]]

.

A second way to obtain A(m,n, r) is to interchange the roles of rows and columns in the
previous paragraph, defining an equivalence relation in terms of column space (instead of
row space). We find, in that case, that

A(m,n, r) =

[
m

r

]
B(n, r)

= qr(r−1)/2 [[m]]!

[[r]]![[m− r]]!
[[n]]!

[[n− r]]!

= qr(r−1)/2
r−1∏
i=0

[[m− i]][[n− i]]
[[i+ 1]]

.

Yet a third way to obtain A(m,n, r) is to define two rank-r m×n matrices to be equivalent
if and only if the have the same row space and the same column space. In this case, there
are

[
m
r

][
n
r

]
equivalence classes. A given equivalence class corresponding to column space U

and row space V is obtained as

{LGR : G ∈ F r×r
q , rank(G) = r},
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where L is a fixed m× r basis matrix for U and R is a fixed r× n basis matrix for V . Thus
there are B(r, r) = qr(r−1)/2[[r]]! elements in each equivalence class, yielding

A(m,n, r) =

[
m

r

][
n

r

]
B(r, r)

= qr(r−1)/2[[r]]!
[[m!]]

[[r]]![[m− r]]!
[[n!]]

[[r]]![[n− r]]!

= qr(r−1)/2
r−1∏
i=0

[[m− i]][[n− i]]
[[i+ 1]]

.

3 Asymptotics

Recall from (5) that[
n

i

]
= qi(n−i) (1− q−(n−i+1))(1− q−(n−i+2))(1− q−(n−i+3)) · · · (1− q−n)

(1− q−1)(1− q−2)(1− q−3) · · · (1− q−i)
,

hence, assuming that the complicated expression in the fraction is close to one, an “estimate”
for

[
n
i

]
is [

n

i

]
≈ qi(n−i). (6)

Let

fn,i(q)
def
= q−i(n−i)

[
n

i

]
be the factor that corrects the estimate (6). Note that fn,i(q) = fn,n−i(q) and that fn,0(q) =
fn,n(q) = 1 (i.e., the estimate is correct in the trivial extreme cases).

Next observe that
fn,i+1(q)

fn,i(q)
=

1− q−(n−i)

1− q−(i+1)
.

From this we see that n − 1 ≥ 2i implies fn,i+1 ≥ fn,i. When this condition is no longer
satisfied, i.e., when n − 1 < 2i, then fn,i > fn,i+1. Thus, for fixed n and q, fn,i(q) is
monotonically non-decreasing with i ≤ dn/2e, reaching its peak at i = dn/2e or i = bn/2c.
Thus, for any i,

1 ≤ fn,i(q) ≤ fn,bn/2c(q).

Since fn,i(q) ≥ 1, we see that qi(n−i) never overestimates
[
n
i

]
.

Define
gn(q) = fn,bn/2c(q).
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Observe that
gn+1(q)

gn(q)
> 1,

thus, for fixed q, gn(q) increases montonically with n. Let h(q) = limn→∞ gn(q). We have

h(q) =
∞∏
i=1

1

1− q−i
, (7)

and fn,i(q) ≤ h(q) for all n and i. In summary, we may conclude that

qi(n−i) ≤
[
n

i

]
≤ h(q)qi(n−i),

where h(q) is given in (7).

The series for h(q) converges rapidly; the following table lists h(q) for various values of
q.

q h(q)
2 3.4627
3 1.7853
4 1.4523
5 1.3152
7 1.1950
8 1.1636
9 1.1408

11 1.1101
16 1.0711
32 1.0333
64 1.0161

128 1.0079
256 1.0039

Note that h(q) decreases monotonically with q, approaching q/(q − 1) for large q.

To see that h(q) decreases monotonically, recall that the function

p(x) =
∞∏
i=1

1

1− xi

is a generating function for partitions of the integers. When written as a formal power series,

p(x) =
∑
i≥0

pix
i,

the coefficient pi of xi, for i > 0, expresses the number of ways that the integer i can be
written as a sum of positive integers. Note that

p(x) = (1 + x+ x2 + x3 + · · ·)(1 + x2 + x4 + x6 + · · ·)(1 + x3 + x6 + · · ·) · · · .
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From this we see that p(x) is an infinite product of monotically increasing functions of x;
hence p(x) is monotonically increasing with x.

Still to Do

Add references.

Connect to the q-Pochhammer symbol?

Derive the Newton binomial formulas (see Wikipedia).

Find/solve other useful combinatorial problems involving Gaussian coefficients. Perhaps
the book by Van Lint would be useful? One example of such a problem: let U and V
be two spaces in a Grassmannian separated by (graph) distance d. Let V + denote the 1-
neighbourhood of V (including V itself). Elements of V + are either at distance d− 1, d or
d+ 1 from U . How many of each?
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