Stirling's Formula

Frank R. Kschischang

September 26th, 2014

In combinatorics, probability, information theory, and elsewhere, one often needs to have estimates of, or bounds on, the factorial function

$$
n!=\prod_{i=1}^{n} i
$$

particularly for large n. When dealing with n ! it always occurs that it may be easier to take logarithms and deal with $\ln (n!)=\sum_{i=1}^{n} \ln (i)$ instead. Since $\ln (x)$ is an increasing function of $x>0$, we have, for any $i \geq 1$,

$$
\int_{i-1}^{i} \ln (x) \mathrm{d} x<\ln (i)<\int_{i}^{i+1} \ln (x) \mathrm{d} x .
$$

Adding these inequalities with $i=1,2, \ldots, n$, we get

$$
\int_{0}^{n} \ln (x) \mathrm{d} x<\ln (n!)<\int_{1}^{n+1} \ln (x) \mathrm{d} x
$$

Since, for $0<a \leq b$, we have

$$
\int_{a}^{b} \ln (x) \mathrm{d} x=\left.(x \ln (x)-x)\right|_{a} ^{b}=b \ln b-b-a \ln a+a
$$

and (remembering that $\lim _{a \rightarrow 0} a \ln a=0$) we get

$$
n \ln n-n<\ln (n!)<(n+1) \ln (n+1)-(n+1)+1
$$

or

$$
\left(\frac{n}{e}\right)^{n}<n!<e\left(\frac{n+1}{e}\right)^{n+1}
$$

Thus n ! grows more quickly than $(n / e)^{n}$, but not as quickly as $e((n+1) / e)^{n+1}$, i.e., n ! lies somewhere "in between".

This betweenness is captured in Stirling's Formula, which gives

$$
n!\sim \sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n}=\sqrt{2 \pi} n^{n+1 / 2} e^{-n}
$$

where \sim means that the ratio of the two sides approaches unity in the limit as $n \rightarrow \infty$, i.e.,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{n!}{\sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n}}=1 \tag{1}
\end{equation*}
$$

True to Stigler's Law, ${ }^{1}$ Stirling's formula was first discovered by Abraham de Moivre, who understood that

$$
n!\sim K(n / e)^{n+1 / 2}
$$

for some constant K. It was Stirling who first realized that $K=\sqrt{2 \pi e}$, and both Stirling and de Moivre published proofs in 1730; see [1, Ch. 24] for a history.

In this brief note, inspired by [2], we equip ourselves with (1), and seek an exact expression for $n!$ in the form

$$
\begin{equation*}
n!=C(n / A)^{n+B} \prod_{i=n}^{\infty} f(i) \tag{2}
\end{equation*}
$$

for some constants A, B, and C (to be determined), and a suitably-defined function f. The infinite product expresses an n-dependent correction factor that provides the precise adjustment that must be made to $C(n / A)^{n+B}$ to get n !.

The convenience of (2) becomes evident when one considers the ratio $(n+1)!/ n!=n+1$. We then get

$$
n+1=\frac{((n+1) / A)^{n+1+B}}{(n / A)^{n+B} f(n)}
$$

from which we determine that

$$
f(n)=\frac{1}{A}\left(1+\frac{1}{n}\right)^{n+B}
$$

Plugging into (2), the right-hand side becomes

$$
g(n)=C(n / A)^{n+B} \prod_{i=n}^{\infty}\left(\frac{\left(1+\frac{1}{i}\right)^{i+B}}{A}\right)
$$

Of course to be useful, we need that the infinite product converges to a positive constant, which can only happen if

$$
\lim _{i \rightarrow \infty} \frac{1}{A}\left(1+\frac{1}{i}\right)^{i+B}=1
$$

The limit is easily computed as e / A (independent of B). Thus we find that the only possible choice for the constant A is $A=e$, and we get that

$$
g(n)=C(n / e)^{n+B} \prod_{i=n}^{\infty}\left(\frac{\left(1+\frac{1}{i}\right)^{i+B}}{e}\right) .
$$

[^0]Note that $g(n)$ now has the property that $g(n+1)=(n+1) g(n)$. Provided that we can choose constants B and C so that $g(1)=1$, then we will have the desired equality. Thus we now require

$$
\begin{equation*}
1=\lim _{m \rightarrow \infty} C(1 / e)^{1+B} \prod_{i=1}^{m}\left(\frac{\left(1+\frac{1}{i}\right)^{i+B}}{e}\right) \tag{3}
\end{equation*}
$$

Let

$$
h(m)=\sum_{i=1}^{m}\left((i+B) \ln \left(\frac{i+1}{i}\right)-1\right),
$$

which is the logarithm of the product in (3). We require $h(m)$ to approach a finite limit as $m \rightarrow \infty$. Expanding $h(m)$, we get

$$
\begin{aligned}
h(m)= & -m+B \sum_{i=1}^{m}(-\ln (i)+\ln (i+1))+\sum_{i=1}^{m} i(-\ln (i)+\ln (i+1)) \\
= & -m+B(-\ln (1)+\ln (2)-\ln (2)+\ln (3)+\cdots-\ln (m)+\ln (m+1)) \\
& +(-\ln (1)+\ln (2)-2 \ln (2)+2 \ln (3)-3 \ln (3)+3 \ln (4)+\cdots-m \ln (m)+m \ln (m+1)) \\
= & -m+B \ln (m+1)-\ln (m!)+m \ln (m+1) \\
= & (m+B) \ln (m+1)-m-\ln (m!)
\end{aligned}
$$

Now, using the fact from (1) that $\ln (m!) \rightarrow \frac{1}{2} \ln m+\frac{1}{2} \ln (2 \pi)+m \ln (m)-m$ as $m \rightarrow \infty$, we get that

$$
\begin{aligned}
\lim _{m \rightarrow \infty} h(m) & =\lim _{m \rightarrow \infty}\left(-m+B \ln (m+1)+m \ln (m+1)-\frac{1}{2} \ln m-\frac{1}{2} \ln (2 \pi)-m \ln (m)+m\right) \\
& =-\frac{1}{2} \ln (2 \pi)+\lim _{m \rightarrow \infty}\left((m+B) \ln (m+1)-\left(m+\frac{1}{2}\right) \ln (m)\right) \\
& =-\frac{1}{2} \ln (2 \pi)+\lim _{m \rightarrow \infty}\left(\left(m+\frac{1}{2}\right) \ln \left(\frac{m+1}{m}\right)+\left(B-\frac{1}{2}\right) \ln (m+1)\right) \\
& =1-\frac{1}{2} \ln (2 \pi)+\lim _{m \rightarrow \infty}\left(B-\frac{1}{2}\right) \ln (m+1) \\
& = \begin{cases}\infty, & \text { if } B>1 / 2 ; \\
1-\frac{1}{2} \ln (2 \pi), & \text { if } B=1 / 2 ; \\
-\infty, & \text { if } B<1 / 2 .\end{cases}
\end{aligned}
$$

Thus we see that we have no choice but to set $B=1 / 2$, and, for this choice of B we can determine the value of C to arrive at Mermin's equality [2]

$$
\begin{equation*}
n!=(2 \pi n)^{1 / 2}\left(\frac{n}{e}\right)^{n} \prod_{i=n}^{\infty}\left(\frac{(1+1 / i)^{i+1 / 2}}{e}\right) \tag{4}
\end{equation*}
$$

Now to find bounds on n !, one approach is to simply find bounds on

$$
\prod_{i=n}^{\infty}\left(\frac{(1+1 / i)^{i+1 / 2}}{e}\right)
$$

Since $\frac{(1+1 / i)^{i+1 / 2}}{e}>1$ for all $i \geq 1$, an obvious lower bound is

$$
n!>(2 \pi n)^{1 / 2}\left(\frac{n}{e}\right)^{n}
$$

An upper bound can be obtained from the Taylor series expansion for $\frac{1}{2} \ln ((1+x) /(1-x))$, namely

$$
\frac{1}{2} \ln \left(\frac{1+x}{1-x}\right)=x+\frac{x^{3}}{3}+\frac{x^{5}}{5}+\cdots
$$

Substituting $x=1 /(2 i+1)$, we get

$$
\frac{1}{2} \ln \left(\frac{1+i}{i}\right)=\frac{1}{2 i+1}+\frac{1}{3(2 i+1)^{3}}+\frac{1}{5(2 i+1)^{5}}+\cdots
$$

from which it follows that

$$
\left(\frac{2 i+1}{2}\right) \ln \left(\frac{1+i}{i}\right)=1+\frac{1}{3(2 i+1)^{2}}+\frac{1}{5(2 i+1)^{4}}+\cdots .
$$

Subtracting one from both sides we get the upper bound

$$
\begin{aligned}
\left(\frac{2 i+1}{2}\right) \ln \left(\frac{1+i}{i}\right)-1 & <\frac{1}{3}\left(\frac{1}{(2 i+1)^{2}}+\frac{1}{(2 i+1)^{4}}+\cdots\right) \\
& =\frac{1}{12}\left(\frac{1}{i}-\frac{1}{i+1}\right) .
\end{aligned}
$$

Exponentiating and substituting into (4) we get a telescoping exponent that yields the bound

$$
n!<(2 \pi n)^{1 / 2}\left(\frac{n}{e}\right)^{n} e^{1 /(12 n)}
$$

More elaborate bounds are possible. Following the same Taylor series approach, we see that

$$
n!=\sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n} \prod_{i=n}^{\infty} \exp \left(\frac{1}{3(2 i+1)^{2}}+\frac{1}{5(2 i+1)^{4}}+\cdots\right)
$$

References

[1] Anders Hald, A History of Probability and Statistics and their Applications Before 1750. New York: Wiley, 1990.
[2] N. David Mermin, "Stirling's formula!," Am. J. Phys., vol. 52, pp. 362-365, April 1984. Reprinted as Ch. 23 of N. David Mermin, Boojums All the Way Through: Communicating Science in a Prosaic Age. New York: Cambridge University Press, 1990.

[^0]: ${ }^{1}$ Stigler's Law of Eponymy: "no scientific discovery is named after its original discoverer." This law is attributed to R. K. Merton.

