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In combinatorics, probability, information theory, and elsewhere, one often needs to have
estimates of, or bounds on, the factorial function

particularly for large n. When dealing with n! it always occurs that it may be easier to take
logarithms and deal with In(n!) = " | In(i) instead. Since In(x) is an increasing function
of z > 0, we have, for any ¢ > 1,

/i_illn(x)da: <In(7) < /;H In(x)dz.

Adding these inequalities with i = 1,2,...,n, we get

/0 " n(2)dz < In(n!) < /1 " ),

Since, for 0 < a < b, we have
b
/ In(z)dz = (zIn(z) — z)> =blnb—b—alna+a

and (remembering that lim, ,oalna = 0) we get
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Thus n! grows more quickly than (n/e)", but not as quickly as e((n + 1)/e)", i.e., n! lies
somewhere “in between”.
This betweenness is captured in Stirling’s Formula, which gives

n! ~V2mn (E> = V2" T2,
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where ~ means that the ratio of the two sides approaches unity in the limit as n — oo, i.e.,

n!
lim ——— = 1. 1
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True to Stigler’s Law,' Stirling’s formula was first discovered by Abraham de Moivre, who
understood that
n! ~ K(n/e)"+1/?

for some constant K. It was Stirling who first realized that K = v/2me, and both Stirling
and de Moivre published proofs in 1730; see [1, Ch. 24] for a history.

In this brief note, inspired by [2], we equip ourselves with (1), and seek an exact expression
for n! in the form

nl = Cln/A P T 16) (2)

for some constants A, B, and C' (to be determined), and a suitably-defined function f.
The infinite product expresses an n-dependent correction factor that provides the precise
adjustment that must be made to C(n/A)"*5 to get n!.

The convenience of (2) becomes evident when one considers the ratio (n+1)!/n! = n+1.
We then get
((n+1)/A)"H+E

(n/A)" 7B [ (n)

Fn) = % (1 + %)HB.

Plugging into (2), the right-hand side becomes

() = cmmwg (%) |
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from which we determine that

Of course to be useful, we need that the infinite product converges to a positive constant,

which can only happen if
1 1\ itB
lim — (14 - =1
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The limit is easily computed as e/A (independent of B). Thus we find that the only possible
choice for the constant A is A = e, and we get that

g(n) = O(n/e)nwﬁ (ﬂ) |

(&

Stigler’s Law of Eponymy: “no scientific discovery is named after its original discoverer.” This law is
attributed to R. K. Merton.



Note that g(n) now has the property that g(n + 1) = (n+ 1)g(n). Provided that we can
choose constants B and C' so that g(1) = 1, then we will have the desired equality. Thus we
now require

1= lim 0(1/6)1+Bﬁ (ﬂ) (3)
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which is the logarithm of the product in (3). We require h(m) to approach a finite limit as
m — oo. Expanding h(m), we get

> (=(i) + (i +1)) + Zz’(— In(i) + In(i + 1))
=—m+ B(—1In(1) +In(2) — In(2) + In(3) + - - - — In(m) + In(m + 1))
+ (= In(1) + In(2) — 2In(2) 4+ 21n(3) — 3In(3) + 3In(4) + - - - — mIn(m) + mIn(m + 1))
=—m+ Bln(m+ 1) —In(m!) + mIn(m + 1)
=(m+ B)In(m+ 1) —m — In(m!).
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h(m)=—m+ B

Now, using the fact from (1) that In(m!) — L Inm + L In(27) + mIn(m) — m as m — oo, we
get that
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=-3 In(27) + lim ((m +B)In(m+1) — (m + 5) ln(m))
m—0o0
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00, if B> 1/2;
1—1iIn(27), if B=1/2;
—00, if B<1/2.

Thus we see that we have no choice but to set B = 1/2, and, for this choice of B we can
determine the value of C' to arrive at Mermin’s equality [2]

n! = (27n)'/? (E)nﬁ <M) . (4)
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Now to find bounds on n!, one approach is to simply find bounds on

ﬁ ((1 + 1éz')i+1/2) '

i=n
j)it+1/2 . . .
% > 1 for all ¢« > 1, an obvious lower bound is

n! > (2mn)'/? <E>
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An upper bound can be obtained from the Taylor series expansion for 1 In((1+z)/(1 — z)),

namely
1 1+ x> 2d
—1In =r+—=+—=+--

2 11—z 3 )
Substituting x = 1/(2i + 1), we get
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from which it follows that
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Subtracting one from both sides we get the upper bound

(2¢+1)ln(1+z’>_1<1( 1 N 1 +)
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Exponentiating and substituting into (4) we get a telescoping exponent that yields the bound

n! < (27n)'/? <E>nel/(12”).
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More elaborate bounds are possible. Following the same Taylor series approach, we see

that
n\" 1 1 1
| — /2 <_>
" e geXp<3(2¢+1)2+5(2¢+1)4+ )
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