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1 Turán’s Theorem

Let G be a simple graph with n vertices and e edges. If e is large, one would expect that G should
contain many cliques, i.e., collections of mutually neighbouring vertices. A natural question arises:
if G does not contain a (k+1)-clique (i.e., a clique of k+1 vertices), what is the largest possible value
for e? Let us denote by T (n, k) the largest possible number of edges in a (k+ 1)-clique-free simple
graph with n vertices, and let us refer to any (k+1)-clique-free simple graph with n vertices having
T (n, k) edges as extremal. Clearly T (n, 1) = 0, and T (n, k) must be a non-decreasing function of k.

Turán’s theorem, a fundamental result in extremal graph theory, provides an exact formula for
T (n, k), and a characterization of the extremal graphs.

Theorem 1 (Turán) Let n = qk + r, where q and r are integers and 0 ≤ r < k. Then

T (n, k) =
k − 1

2k
n2 − r

2

(
1− r

k

)
,

achieved, uniquely, by the complete multipartite graph Kq, . . . , q︸ ︷︷ ︸
k−r

,q + 1, . . . , q + 1︸ ︷︷ ︸
r

having k vertex

classes, r of them with q + 1 vertices and the rest with q vertices.

A complete multipartite graph in which the number of elements in different vertex classes differs by
at most one is known as a Turán graph, in connection with this theorem. For example, the graphs
achieving T (9, 3) = 27 and T (9, 4) = 30 are shown below.
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Before proving this theorem, let G = (V,E). Let us write ∂(v) for the degree of a vertex v ∈ V ,
i.e., for the number of edges of E incident on v. If E contains an edge incident on vertices u and
v, let us write uv ∈ E, and call u and v neighbours in G. Let us write u � v if uv 6∈ E, i.e., if u
and v are not neighbours in G.

Clearly v � v for all vertices v, and if v � w then w � v for all pairs of vertices v, w; thus the
relation � is reflexive and symmetric. However, in a general graph G, it is not true that if u � v
and v � w then u � w, i.e., � is not transitive in general.

Now let G = (V,E) be any simple graph. If we have a pair u, v ∈ V with u � v and with
∂(u) > ∂(v), then G can be modified to have more edges, without introducing a clique larger than
any of the cliques in G. Simply delete vertex v (and all edges incident on v) and clone u, i.e., create
a copy of u′ of u, and include a new edge u′w in E whenever uw is in E. Call the resulting graph
G′ = (V ′, E′), and note that |V ′| = |V |. Since a clique cannot contain both u and u′, any clique
containing u′ cannot be larger than a clique containing u. The number of edges in G′ is given by

|E′| = |E| − ∂(v) + ∂(u) > |E|.

Thus in an extremal graph, non-neighbouring vertices must have equal degree.

A similar argument applies when a non-neighbour has the same degree as a pair of neighbouring
vertices of that same degree. Suppose we have G = (V,E) without a k-clique and a triple u, v, w ∈ V
with u � v, u � w, vw ∈ E and ∂(u) = ∂(v) = ∂(w). Again G can be modified to have more edges,
without introducing any cliques larger than those present in G. Simply delete vertices v and w and
clone u twice. By the same reasoning as in the previous paragraph, no large cliques are introduced
by this procedure. In the resulting graph G′ = (V ′, E′), we have |V ′| = |V | and

|E′| = |E| − (∂(v) + ∂(w)− 1) + 2∂(u) = |E|+ 1.

The previous two paragraphs imply that, in an extremal graph (a) one cannot find a pair u, v with
u � v and ∂(u) 6= ∂(v) and (b) if u � v and v � w, then u � w, i.e., the relation � is transitive,
and hence is an equivalence relation.

An extremal graph is thus multipartite and complete: the vertices can be partitioned into the
equivalence classes of �, and each vertex in a given class must be a neighbour of every vertex not
in that class. (This automatically ensures that the degree of each vertex within a given class is the
same.) Note that a complete multipartite graph with k vertex classes contains a k-clique (simply
take k vertices from distinct classes), but no (k + 1)-clique (since every set of k + 1 vertices must,
by the pigeonhole principle, contain at least two vertices from the same class).

Now, of the complete multi-partite graphs on n vertices not having a (k + 1)-clique, which have
the most edges? Note that an extremal (k+ 1)-clique-free graph must contain a k-clique, otherwise
adding an edge would not create (k + 1)-clique. Thus we can restrict our attention to complete
multipartite graphs with exactly k vertex classes V1, . . . , Vk.

By definition
∑k

i=1 |Vi| = n. The degree of each vertex in Vi is given by n − |Vi|, and hence the
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total number of edges in the graph is given by

|E| = 1

2

k∑
i=1

|Vi| (n− |Vi|) =
1

2

(
n2 −

k∑
i=1

|Vi|2
)
.

To maximize |E|, we must solve the following optimization problem: we must choose positive
integers |V1|, . . . , |Vk| so as to minimize

∑k
i=1 |Vi|2, subject to

∑k
i=1 |Vi| = n. Without the integer

constraint, a Lagrange multipliers approach would easily show that the optimal solution is to make
all of the |Vi|’s equal. The actual solution makes them as equal as possible, while still satisfying
the integer constraint.

Suppose for some i, j, we have |Vi| ≥ |Vj | + 2. Modify G to G′ by deleting a vertex from Vi and
adding one to Vj ; and let |V ′i | = |Vi| − 1, |V ′j | = |Vj |+ 1, and |V ′k| = |Vk| when k 6= i, j. Then

k∑
i=1

|Vi|2 −
k∑

i=1

|V ′i |2 = |Vi|2 + |Vj |2 − (|Vi| − 1)2 − (|Vj |+ 1)2

= 2(|Vi| − |Vj | − 1)

> 0.

Thus G′ would have more edges than G. It follows that, in an extremal configuration, the |Vi|’s
must be nearly equal: any |Vi| can differ from any |Vj | by at most one.

The extremal graph for a given n and k is now completely determined: it is a complete k-partite
graph with vertices partitioned into nearly equally sized classes. Let q and r be integers so that
n = kq+ r and 0 ≤ r < k. Then k− r classes contain q vertices and r classes contain q+ 1 vertices.
It is now easy to count the number of edges; we find

|E| = 1

2

(
n2 − (k − r)q2 − r(q + 1)2

)
,

which simplifies (after substituting q = (n− r)/k) to the expression given in Theorem 1.

Theorem 1 is often used in a slightly weaker form by observing that T (n, k) ≤ (k − 1)n2/(2k) for
any choice of n and k. From this, the following Lemma immediately follows.

Lemma 1 A simple graph with n vertices and e edges must contain a (k + 1)-clique if

e >

(
1− 1

k

)
n2

2
.

This guarantee—that a clique of a certain size must exist under some conditions—is very useful for
proving the existence of certain error-correcting codes, as we shall see next.

2 Codes are Cliques

As a warm-up, let dH denote Hamming distance in the vector space Fn
q . Consider the graph

G = (V,E) with qN vertices in which V = FN
q . Allow uv ∈ E if and only if dH(u, v) ≥ d, i.e., if
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the Hamming distance between the corresponding vectors is at least d. A clique in G is therefore
a set of vectors whose pairwise Hamming distance is at least d, i.e., a code of length N over Fq of
minimum Hamming distance at least d.

Note that G is regular: the degree of each vertex is

∂(v) =

N∑
i=d

(
N

i

)
(q − 1)i = qN −

d−1∑
i=0

(
N

i

)
(q − 1)i = qN − Vd−1,

where Vd−1 denotes the volume of a Hamming ball of radius d−1 in FN
q . It follows that the number

of edges |E| is given by

|E| = 1

2
qN∂(v) =

1

2
(q2N − qNVd−1).

According to Lemma 1, a clique of size K + 1 in G (equivalently, a code with K + 1 codewords of

length N and minimum Hamming distance d) certainly exists if |E| >
(
1− 1

K

) q2N

2 , i.e., if

1

2
(q2N − qNVd−1) >

1

2

(
1− 1

K

)
q2N

or

1− Vd−1
qN

> 1− 1

K

or

K <
qN

Vd−1
,

which is a statement of the Gilbert-Varshamov bound.

Now consider a set X and a distance function ρ : X ×X → Z≥0. Let Vr(x) denote the volume of
the ball of “radius” r centered at x, i.e.,

Vr(x) = |{x′ ∈ X : ρ(x, x′) ≤ r}|.

As above, consider the graph G = (V,E) with V = X, and uv ∈ E if and only if ρ(u, v) ≥ d. The
degree of a vertex x is given by |X| − Vd−1(x), and hence the total number of edges in the graph
is given by

|E| =
1

2

∑
x∈X

(|X| − Vd−1(x))

=
|X|
2

(
|X| − V d−1

)
,

where

V d−1 =
1

|X|
∑
x∈X

Vd−1(x)

denotes the average volume of a (d− 1)-ball.
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According to Lemma 1, a clique of size K + 1 in G (equivalently, a code with K + 1 codewords
from X and minimum ρ-distance d) certainly exists if |E| > (1− 1/(K))|X|/2, i.e., if

|X|
2

(
|X| − V d−1

)
>
|X|
2

(
1− 1

K

)
|X|

or

1− V d−1
|X|

> 1− 1

K

or

K <
|X|
V d−1

,

which is a statement of the so-called generalized Gilbert-Varshamov bound.

3 Notes

The content of this article is based on the work of Tolhuizen [1]. Turán’s paper [2] was published in
1941 and is regarded as the starting-point of extremal graph theory. Many proofs of Turán’s theorem
are known; for example, the award-winning paper of Aigner [3] gives six proofs. A particularly short
proof appears in [4, Ch. 4].
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