Turán's Theorem and Coding Theory

Frank R. Kschischang
Dept. of Electrical and Computer Engineering
University of Toronto

May 16, 2012

1 Turán's Theorem

Let G be a simple graph with n vertices and e edges. If e is large, one would expect that G should contain many cliques, i.e., collections of mutually neighbouring vertices. A natural question arises: if G does not contain a ($k+1$)-clique (i.e., a clique of $k+1$ vertices), what is the largest possible value for e ? Let us denote by $T(n, k)$ the largest possible number of edges in a $(k+1)$-clique-free simple graph with n vertices, and let us refer to any ($k+1$)-clique-free simple graph with n vertices having $T(n, k)$ edges as extremal. Clearly $T(n, 1)=0$, and $T(n, k)$ must be a non-decreasing function of k.

Turán's theorem, a fundamental result in extremal graph theory, provides an exact formula for $T(n, k)$, and a characterization of the extremal graphs.

Theorem 1 (Turán) Let $n=q k+r$, where q and r are integers and $0 \leq r<k$. Then

$$
T(n, k)=\frac{k-1}{2 k} n^{2}-\frac{r}{2}\left(1-\frac{r}{k}\right),
$$

achieved, uniquely, by the complete multipartite graph $K_{\underbrace{}_{k-r}}^{q, \ldots, q} \underbrace{q+1, \ldots, q+1}_{r}$ having k vertex classes, r of them with $q+1$ vertices and the rest with q vertices.

A complete multipartite graph in which the number of elements in different vertex classes differs by at most one is known as a Turán graph, in connection with this theorem. For example, the graphs achieving $T(9,3)=27$ and $T(9,4)=30$ are shown below.

Before proving this theorem, let $G=(V, E)$. Let us write $\partial(v)$ for the degree of a vertex $v \in V$, i.e., for the number of edges of E incident on v. If E contains an edge incident on vertices u and v, let us write $u v \in E$, and call u and v neighbours in G. Let us write $u \asymp v$ if $u v \notin E$, i.e., if u and v are not neighbours in G.

Clearly $v \asymp v$ for all vertices v, and if $v \asymp w$ then $w \asymp v$ for all pairs of vertices v, w; thus the relation \asymp is reflexive and symmetric. However, in a general graph G, it is not true that if $u \asymp v$ and $v \asymp w$ then $u \asymp w$, i.e., \asymp is not transitive in general.

Now let $G=(V, E)$ be any simple graph. If we have a pair $u, v \in V$ with $u \asymp v$ and with $\partial(u)>\partial(v)$, then G can be modified to have more edges, without introducing a clique larger than any of the cliques in G. Simply delete vertex v (and all edges incident on v) and clone u, i.e., create a copy of u^{\prime} of u, and include a new edge $u^{\prime} w$ in E whenever $u w$ is in E. Call the resulting graph $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$, and note that $\left|V^{\prime}\right|=|V|$. Since a clique cannot contain both u and u^{\prime}, any clique containing u^{\prime} cannot be larger than a clique containing u. The number of edges in G^{\prime} is given by

$$
\left|E^{\prime}\right|=|E|-\partial(v)+\partial(u)>|E| .
$$

Thus in an extremal graph, non-neighbouring vertices must have equal degree.
A similar argument applies when a non-neighbour has the same degree as a pair of neighbouring vertices of that same degree. Suppose we have $G=(V, E)$ without a k-clique and a triple $u, v, w \in V$ with $u \asymp v, u \asymp w, v w \in E$ and $\partial(u)=\partial(v)=\partial(w)$. Again G can be modified to have more edges, without introducing any cliques larger than those present in G. Simply delete vertices v and w and clone u twice. By the same reasoning as in the previous paragraph, no large cliques are introduced by this procedure. In the resulting graph $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$, we have $\left|V^{\prime}\right|=|V|$ and

$$
\left|E^{\prime}\right|=|E|-(\partial(v)+\partial(w)-1)+2 \partial(u)=|E|+1
$$

The previous two paragraphs imply that, in an extremal graph (a) one cannot find a pair u, v with $u \asymp v$ and $\partial(u) \neq \partial(v)$ and (b) if $u \asymp v$ and $v \asymp w$, then $u \asymp w$, i.e., the relation \asymp is transitive, and hence is an equivalence relation.

An extremal graph is thus multipartite and complete: the vertices can be partitioned into the equivalence classes of \asymp, and each vertex in a given class must be a neighbour of every vertex not in that class. (This automatically ensures that the degree of each vertex within a given class is the same.) Note that a complete multipartite graph with k vertex classes contains a k-clique (simply take k vertices from distinct classes), but no $(k+1)$-clique (since every set of $k+1$ vertices must, by the pigeonhole principle, contain at least two vertices from the same class).

Now, of the complete multi-partite graphs on n vertices not having a $(k+1)$-clique, which have the most edges? Note that an extremal $(k+1)$-clique-free graph must contain a k-clique, otherwise adding an edge would not create $(k+1)$-clique. Thus we can restrict our attention to complete multipartite graphs with exactly k vertex classes V_{1}, \ldots, V_{k}.

By definition $\sum_{i=1}^{k}\left|V_{i}\right|=n$. The degree of each vertex in V_{i} is given by $n-\left|V_{i}\right|$, and hence the
total number of edges in the graph is given by

$$
|E|=\frac{1}{2} \sum_{i=1}^{k}\left|V_{i}\right|\left(n-\left|V_{i}\right|\right)=\frac{1}{2}\left(n^{2}-\sum_{i=1}^{k}\left|V_{i}\right|^{2}\right) .
$$

To maximize $|E|$, we must solve the following optimization problem: we must choose positive integers $\left|V_{1}\right|, \ldots,\left|V_{k}\right|$ so as to minimize $\sum_{i=1}^{k}\left|V_{i}\right|^{2}$, subject to $\sum_{i=1}^{k}\left|V_{i}\right|=n$. Without the integer constraint, a Lagrange multipliers approach would easily show that the optimal solution is to make all of the $\left|V_{i}\right|$'s equal. The actual solution makes them as equal as possible, while still satisfying the integer constraint.

Suppose for some i, j, we have $\left|V_{i}\right| \geq\left|V_{j}\right|+2$. Modify G to G^{\prime} by deleting a vertex from V_{i} and adding one to V_{j}; and let $\left|V_{i}^{\prime}\right|=\left|V_{i}\right|-1,\left|V_{j}^{\prime}\right|=\left|V_{j}\right|+1$, and $\left|V_{k}^{\prime}\right|=\left|V_{k}\right|$ when $k \neq i, j$. Then

$$
\begin{aligned}
\sum_{i=1}^{k}\left|V_{i}\right|^{2}-\sum_{i=1}^{k}\left|V_{i}^{\prime}\right|^{2} & =\left|V_{i}\right|^{2}+\left|V_{j}\right|^{2}-\left(\left|V_{i}\right|-1\right)^{2}-\left(\left|V_{j}\right|+1\right)^{2} \\
& =2\left(\left|V_{i}\right|-\left|V_{j}\right|-1\right) \\
& >0
\end{aligned}
$$

Thus G^{\prime} would have more edges than G. It follows that, in an extremal configuration, the $\left|V_{i}\right|$'s must be nearly equal: any $\left|V_{i}\right|$ can differ from any $\left|V_{j}\right|$ by at most one.

The extremal graph for a given n and k is now completely determined: it is a complete k-partite graph with vertices partitioned into nearly equally sized classes. Let q and r be integers so that $n=k q+r$ and $0 \leq r<k$. Then $k-r$ classes contain q vertices and r classes contain $q+1$ vertices. It is now easy to count the number of edges; we find

$$
|E|=\frac{1}{2}\left(n^{2}-(k-r) q^{2}-r(q+1)^{2}\right),
$$

which simplifies (after substituting $q=(n-r) / k$) to the expression given in Theorem 1 .
Theorem 1 is often used in a slightly weaker form by observing that $T(n, k) \leq(k-1) n^{2} /(2 k)$ for any choice of n and k. From this, the following Lemma immediately follows.

Lemma 1 A simple graph with n vertices and e edges must contain a $(k+1)$-clique if

$$
e>\left(1-\frac{1}{k}\right) \frac{n^{2}}{2}
$$

This guarantee - that a clique of a certain size must exist under some conditions-is very useful for proving the existence of certain error-correcting codes, as we shall see next.

2 Codes are Cliques

As a warm-up, let d_{H} denote Hamming distance in the vector space \mathbb{F}_{q}^{n}. Consider the graph $G=(V, E)$ with q^{N} vertices in which $V=\mathbb{F}_{q}^{N}$. Allow $u v \in E$ if and only if $d_{H}(u, v) \geq d$, i.e., if
the Hamming distance between the corresponding vectors is at least d. A clique in G is therefore a set of vectors whose pairwise Hamming distance is at least d, i.e., a code of length N over \mathbb{F}_{q} of minimum Hamming distance at least d.

Note that G is regular: the degree of each vertex is

$$
\partial(v)=\sum_{i=d}^{N}\binom{N}{i}(q-1)^{i}=q^{N}-\sum_{i=0}^{d-1}\binom{N}{i}(q-1)^{i}=q^{N}-V_{d-1},
$$

where V_{d-1} denotes the volume of a Hamming ball of radius $d-1$ in \mathbb{F}_{q}^{N}. It follows that the number of edges $|E|$ is given by

$$
|E|=\frac{1}{2} q^{N} \partial(v)=\frac{1}{2}\left(q^{2 N}-q^{N} V_{d-1}\right) .
$$

According to Lemma 1, a clique of size $K+1$ in G (equivalently, a code with $K+1$ codewords of length N and minimum Hamming distance d) certainly exists if $|E|>\left(1-\frac{1}{K}\right) \frac{q^{2 N}}{2}$, i.e., if

$$
\frac{1}{2}\left(q^{2 N}-q^{N} V_{d-1}\right)>\frac{1}{2}\left(1-\frac{1}{K}\right) q^{2 N}
$$

or

$$
1-\frac{V_{d-1}}{q^{N}}>1-\frac{1}{K}
$$

or

$$
K<\frac{q^{N}}{V_{d-1}},
$$

which is a statement of the Gilbert-Varshamov bound.
Now consider a set X and a distance function $\rho: X \times X \rightarrow \mathbb{Z}^{\geq 0}$. Let $V_{r}(x)$ denote the volume of the ball of "radius" r centered at x, i.e.,

$$
V_{r}(x)=\left|\left\{x^{\prime} \in X: \rho\left(x, x^{\prime}\right) \leq r\right\}\right| .
$$

As above, consider the graph $G=(V, E)$ with $V=X$, and $u v \in E$ if and only if $\rho(u, v) \geq d$. The degree of a vertex x is given by $|X|-V_{d-1}(x)$, and hence the total number of edges in the graph is given by

$$
\begin{aligned}
|E| & =\frac{1}{2} \sum_{x \in X}\left(|X|-V_{d-1}(x)\right) \\
& =\frac{|X|}{2}\left(|X|-\bar{V}_{d-1}\right),
\end{aligned}
$$

where

$$
\bar{V}_{d-1}=\frac{1}{|X|} \sum_{x \in X} V_{d-1}(x)
$$

denotes the average volume of a $(d-1)$-ball.

According to Lemma 1, a clique of size $K+1$ in G (equivalently, a code with $K+1$ codewords from X and minimum ρ-distance d) certainly exists if $|E|>(1-1 /(K))|X| / 2$, i.e., if

$$
\frac{|X|}{2}\left(|X|-\bar{V}_{d-1}\right)>\frac{|X|}{2}\left(1-\frac{1}{K}\right)|X|
$$

or

$$
1-\frac{\bar{V}_{d-1}}{|X|}>1-\frac{1}{K}
$$

or

$$
K<\frac{|X|}{\bar{V}_{d-1}}
$$

which is a statement of the so-called generalized Gilbert-Varshamov bound.

3 Notes

The content of this article is based on the work of Tolhuizen [1]. Turán's paper [2] was published in 1941 and is regarded as the starting-point of extremal graph theory. Many proofs of Turán's theorem are known; for example, the award-winning paper of Aigner [3] gives six proofs. A particularly short proof appears in [4, Ch. 4].

References

[1] L. M. G. M. Tolhuizen, "The generalized Gilbert-Varshamov bound is implied by Turán's Theorem," IEEE Trans. Info. Theory, vol. 43, pp. 1605-1606, Sept. 1997.
[2] P. Turán, "On an extremal problem in graph theory" (in Hungarian), Math. Fiz. Lapok, vol. 48, pp. 436-452, 1941.
[3] M. Aigner, "Turán's graph theorem," Amer. Math. Monthly, vol. 102, pp. 808-816, 1995. (Winner of a 1996 Lester R. Ford award for an article of expository excellence published in The American Mathematical Monthly.)
[4] J. H. van Lint and R. M. Wilson, A Course in Combinatorics, 2nd edition. Cambridge University Press, 2001.

