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For any signal x(t), let

xT (t) = x(t) rect

(
t

T

)
denote a “time-windowed” projection of x(t) taking value zero outside of the interval [−T/2, T/2),
where T > 0. Assume, for each T , that the Fourier transform of xT (t) exists, and is given
by XT (f). To a power signal x we may associate the power spectral density given by

Sx(f) = lim
T→∞

1

T
|XT (f)|2,

measured in units of W/Hz. Roughly speaking, Sx(f) measures the contribution to the
power of x made by complex-exponential signal components at frequency f . The total
power associated with x is then given by

Px =

∫ ∞
−∞

Sx(f) df.

If x is passed through an LTI system with frequency response H(f), then the power spectral
density of the output y is given by Sy(f) = Sx(f)|H(f)|2, having total power

Py =

∫ ∞
−∞

Sx(f)|H(f)|2 df.

In particular, note that if H(f) is a very narrow bandpass filter centered at some frequency
f0, then the power of the output is approximately proportional to Sx(f0); thus, the function
Sx(f) does indeed serve as a density function for power.

We would like to extend this notion of power spectral density to wide-sense stationary random
processes. For any fixed power signal x, at any given frequency f , observe that Sx(f) is some
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fixed non-negative real value that depends on x. For a wide-sense stationary random process
X having power signals as sample functions, it makes sense to define the power spectral
density via the expected value of that real value, i.e., to define

SX(f) = lim
T→∞

1

T
E[|XT (f)|2], (1)

whenever the limit exists. We take (1) as the definition of the power spectral density.

Suppose now that the (complex-valued) random process has autocorrelation functionRX(τ) =
E[X(t)X∗(t − τ)], and that the Fourier transform of RX(τ) exists and is denoted R̂X(f).
The Wiener-Khinchin theorem states that, under mild conditions, SX(f) = R̂X(f), i.e., that
the power spectral density associated with a wide-sense stationary random process is equal
to the Fourier transform of the autocorrelation function associated with that process.

To see this, we follow [1, Sec. 11.2], and note that according to our definition (1), we have

SX(f) = lim
T→∞

1

T
E[|XT (f)|2]

= lim
T→∞

1

T
E

[∫ T/2

−T/2
X(t1)e

− j 2πft1 dt1

∫ T/2

−T/2
X∗(t2)e

j 2πft2 dt2

]

= lim
T→∞

1

T

∫ T/2

−T/2

∫ T/2

−T/2
E[X(t1)X

∗(t2)]e
− j 2πf(t1−t2) dt2 dt1

= lim
T→∞

1

T

∫ T/2

−T/2

∫ T/2

−T/2
RX(t1 − t2)e− j 2πf(t1−t2) dt2 dt1.

The region of integration is the square region shown on the left (below).

t1

t2

T/2−T/2

T/2

−T/2

τ

u

T−T

T

−T

L(τ)

U(τ)

R

Note however that the integrand is constant along contours where t1− t2 is a constant (e.g.,
along the dotted line shown). This motivates us to apply a change of variables, defining
τ = t1 − t2 and u = t1 + t2. Under this change of variables, after noting that[

τ
u

]
=

[
1 −1
1 1

] [
t1
t2

]
,
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so that we have a Jacobian matrix of determinant 2, we get

SX(f) = lim
T→∞

1

T

∫
R
RX(τ)e− j 2πfτ du dτ

2
,

where R is the rotated-and-scaled region shown on the right (in the figure above). Note that
other changes of variables are possible; for example one might take τ = t1 − t2, u = t1. The
region of integration will be different, but the final answer will be the same.

For each value of τ , let us denote the value of u along lower boundary of the region R as
L(τ), and let us denote the value of u along the upper boundary as U(τ), as indicated in the
figure. This gives us

SX(f) = lim
T→∞

1

2T

∫ T

−T

∫ U(τ)

L(τ)

RX(τ)e− j 2πfτ du dτ

= lim
T→∞

1

2T

∫ T

−T
RX(τ)e− j 2πfτ

(∫ U(τ)

L(τ)

du

)
dτ

(a)
= lim

T→∞

1

2T

∫ T

−T
RX(τ)e− j 2πfτ (2T − 2|τ |) dτ

= lim
T→∞

∫ T

−T
RX(τ)

(
1− |τ |

T

)
e− j 2πfτ dτ, (2)

where (a) follows from the fact that, when |τ | ≤ T , we have U(τ)− L(τ) = 2T − 2|τ |.

We recognize that the integral in (2) is simply taking the Fourier transform of the product of
RX(τ) and the triangle function 1

T
rect(τ/T ) ? rect(τ/T ). Applying the modulation theorem

(i.e., the Fourier transform of a product is the convolution of the Fourier transforms), we get

SX(f) = lim
T→∞

R̂X(f) ? T sinc2(fT )

= lim
T→∞

∫ ∞
−∞

R̂X(f − x)T sinc2(xT ) dx.

For any fixed value of f , observe that the convolution is carrying out a “weighted average”
of the values of R̂X , with values near f (corresponding to small |x|) given larger weight and
with values farther from f (corresponding to large |x|) given smaller weight. Indeed, the
function T sinc2(fT ) has unit area, is everywhere non-negative, and, for f 6= 0, converges to
zero as T →∞. In other words, T sinc2(fT ) seems to have, when T is large, the properties
of a Dirac delta. Thus, we are tempted to write

SX(f) = lim
T→∞

R̂X(f) ? T sinc2(fT ) = R̂X(f) ? δ(f) = R̂X(f).

To justify this, let us abstract the situation. Suppose that we have a family of real-valued
functions sT (x), parameterized by a positive real number T , with the properties that
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1. sT (x) ≥ 0 for all x and all T > 0,

2.
∫∞
−∞ sT (x) dx = 1 for all T > 0, and

3. for every ε > 0 and for every δ > 0, we can find a T0 > 0 such that
∫ δ
−δ sT (x) dx ≥ 1− ε

for every T ≥ T0.

Such a family is called an “approximate identity under convolution.” It is not hard to show
that {T sinc2(xT ) : T > 0} is indeed such a family.

Lemma 1. Let g(x) be a given real-valued function that is continuous at x = 0, and is
bounded by some B ≥ 1, i.e., for all x, |g(x)| ≤ B. Let {sT (x) : T > 0} be an approximate
identity under convolution, and furthermore suppose that∫ ∞

−∞
g(x)sT (x) dx

exists for all T > 0. We then have that

lim
T→∞

∫ ∞
−∞

g(x)sT (x) dx = g(0). (3)

Proof. We need to show that for every ε > 0 there exists T0 > 0 such that T ≥ T0 implies∣∣∣∣∫ ∞
−∞

g(x)sT (x) dx− g(0)

∣∣∣∣ ≤ ε.

Thus, let us fix ε > 0. As a first step, let us choose a value δ > 0 so that whenever |x| ≤ δ,
we have that |g(x)− g(0)| ≤ ε/3; since g(x) is continuous at x = 0, such a δ certainly exists.

Next, let us choose T0 such that for all T ≥ T0 we have
∫ δ
−δ sT (x) dx ≥ 1 − ε/(3B); by the

third property of approximate identities, such a T0 certainly exists. Now, let us write∫ ∞
−∞

g(x)sT (x) dx =

∫ δ

−δ
g(x)sT (x) dx+

∫ −δ
−∞

g(x)sT (x) dx+

∫ ∞
δ

g(x)sT (x) dx

and bound the contributions made to the left-hand integral by the terms on the right-hand
side. With the choices for δ and T0 just made, we observe that∫ δ

−δ
g(x)sT (x) dx ≤

∫ δ

−δ
(g(0) + ε/3)sT (x) dx ≤

∫ ∞
−∞

(g(0) + ε/3)sT (x) dx = g(0) + ε/3.

Furthermore∫ δ

−δ
g(x)sT (x) dx ≥

∫ δ

−δ
(g(0)− ε/3)sT (x) dx ≥ (g(0)− ε/3)(1− ε/(3B))

(a)

≥ (g(0)− ε/3)(1− ε/3) ≥ g(0)− 2ε/3,
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where inequality (a) follows from the fact that B ≥ 1. Next let

I2 =

∫ −δ
−∞

g(x)sT (x) dx+

∫ ∞
δ

g(x)sT (x) dx,

and observe that

|I2| ≤
∫ −δ
−∞

BsT (x) dx+

∫ ∞
δ

BsT (x) dx ≤ Bε/(3B) = ε/3.

In sum, we see that for all T ≥ T0 we have

g(0)− ε ≤
∫ ∞
−∞

g(x)sT (x) dx ≤ g(0) + 2ε/3 ≤ g(0) + ε,

which is what we set out to show.

Observe that Lemma 1 extends to complex-valued functions g(x) that are bounded in mag-
nitude and continuous at x = 0, as the real and imaginary parts of the integrand can be
treated separately.

Note that, even though sT (t) does not approach a well-defined function as T →∞, the limit
in (3) nevertheless converges to a well-defined linear functional : namely, the one that maps
g(x) to its value g(0) at x = 0. This is the essence of the definition of the Dirac delta as a
distribution; see, e.g., [2].

Now suppose that RX(τ) is absolutely integrable, i.e., that B =
∫∞
−∞ |RX(τ)| dτ exists. We

then have, for any f , that

|R̂X(f)| =
∣∣∣∣∫ ∞
−∞

RX(τ)e− j 2πfτ dτ

∣∣∣∣ ≤ ∫ ∞
−∞
|RX(τ)e− j 2πfτ | dτ =

∫ ∞
−∞
|RX(τ)| dτ = B.

Thus, if RX(τ) is absolutely integrable, its Fourier transform R̂X(f) (if it exists) is bounded.

Now let us put the pieces together. First, we already have that

SX(f) = lim
T→∞

∫ ∞
−∞

R̂X(f − x)T sinc2(xT ) dx

and we know that {T sinc2 xT ) : T > 0} is an approximate identity for convolution. Further-
more, assuming that RX(τ) is absolutely integrable implies that R̂X(f) is bounded. Thus,
Lemma 1 applies, and we get that

SX(f) = R̂X(f)

at all points f where R̂X(f) is continuous. This is the Wiener-Khinchin theorem.
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