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For any signal z(t), let
t
xp(t) = x(t) rect (T)

denote a “time-windowed” projection of x(t) taking value zero outside of the interval [-1'/2,T'/2),
where T' > 0. Assume, for each T, that the Fourier transform of x(t) exists, and is given
by X7 (f). To a power signal x we may associate the power spectral density given by

Su0) = Jim 21X (/)P

T—oo

measured in units of W/Hz. Roughly speaking, S,(f) measures the contribution to the
power of x made by complex-exponential signal components at frequency f. The total
power associated with x is then given by

r- [ s.()ar.
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If = is passed through an LTI system with frequency response H(f), then the power spectral
density of the output y is given by S, (f) = S.(f)|H(f)[?, having total power

r= [ splEPay.

In particular, note that if H(f) is a very narrow bandpass filter centered at some frequency
fo, then the power of the output is approximately proportional to S, (fo); thus, the function
Sz (f) does indeed serve as a density function for power.

We would like to extend this notion of power spectral density to wide-sense stationary random
processes. For any fixed power signal x, at any given frequency f, observe that S, (f) is some
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fixed non-negative real value that depends on x. For a wide-sense stationary random process
X having power signals as sample functions, it makes sense to define the power spectral
density via the expected value of that real value, i.e., to define

1
Sx(f) = lim ZE[Xz(f)[], (1)
—oo T’
whenever the limit exists. We take (1) as the definition of the power spectral density.

Suppose now that the (complex-valued) random process has autocorrelation function Rx (1) =
E[X(t)X*(t — 7)], and that the Fourier transform of Ry (7) exists and is denoted Rx(f).
The Wiener-Khinchin theorem states that, under mild conditions, Sx (f) = Rx(f), i.e., that
the power spectral density associated with a wide-sense stationary random process is equal
to the Fourier transform of the autocorrelation function associated with that process.

To see this, we follow [1, Sec. 11.2], and note that according to our definition (1), we have
1 5
Sx(f) = Jim —E[[Xr(f)[]
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1 T/2
= lim =F
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X*(ty)el 2t dt2]
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T/2 T/2
= lim —/ / (tg)] —i2nf(ti—t2) dtg dtl
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T/2 T/2
= lim —/ / Rx(t; — ty)e 12 (=t2) ¢, dt,.

The region of integration is the square region shown on the left (below).
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Note however that the integrand is constant along contours where ¢; — t5 is a constant (e.g.,
along the dotted line shown). This motivates us to apply a change of variables, defining
T =1, — ty and u = t; + t5. Under this change of variables, after noting that
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so that we have a Jacobian matrix of determinant 2, we get

1 - dud
Sx(f) = lim —/ RX(T)e_J%fT—u T,
T—0o0 R 2
where R is the rotated-and-scaled region shown on the right (in the figure above). Note that
other changes of variables are possible; for example one might take 7 = t; — ¢y, u = t;. The
region of integration will be different, but the final answer will be the same.

For each value of 7, let us denote the value of u along lower boundary of the region R as
L(7), and let us denote the value of u along the upper boundary as U(7), as indicated in the
figure. This gives us

1 T U(r) )
Sx(f) = lim —/ Rx(1)e 1?7 dudr

—T J L(7)
= lim L/T Rx(7)e 1% /U(T) du | dr
T—o00 2T -T X L(T)
@, L " e
_zlggoﬁ/_TRX(T)e 257 (9T — 9|7]) dr
— 1 g 7| —jonfr
= lim » Rx(T) (1 — ?) e dr, (2)

where (a) follows from the fact that, when |7| < T, we have U(7) — L(7) = 2T — 2|7|.

We recognize that the integral in (2) is simply taking the Fourier transform of the product of
Rx(7) and the triangle function £ rect(/T') xrect(r/T'). Applying the modulation theorem
(i.e., the Fourier transform of a product is the convolution of the Fourier transforms), we get

Sx(f) = lim Ry (f)*Tsinc®(fT)

= lim Rx(f — x)T sinc®(2T) da.
T—o0 oo

For any fixed value of f, observe that the convolution is carrying out a “weighted average”
of the values of Ry, with values near f (corresponding to small |z|) given larger weight and
with values farther from f (corresponding to large |z|) given smaller weight. Indeed, the
function T sinc?(f7T) has unit area, is everywhere non-negative, and, for f # 0, converges to
zero as T — oco. In other words, T sinc?(fT) seems to have, when T is large, the properties
of a Dirac delta. Thus, we are tempted to write

A

Sx(f) = Jim Rx(f)*Tsine®(fT) = Ry (f) #6(f) = Rx(/)

To justify this, let us abstract the situation. Suppose that we have a family of real-valued
functions sr(x), parameterized by a positive real number T', with the properties that
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1. ST(w) > 0 for all x and all 7" > 0,
2. [7 sr(z)dz =1 for all T > 0, and

3. for every e > 0 and for every § > 0, we can find a 7 > 0 such that fis sp(x)de > 1—e¢
for every T' > Tj.

Such a family is called an “approximate identity under convolution.” It is not hard to show
that {T sinc®*(2T) : T > 0} is indeed such a family.

Lemma 1. Let g(z) be a given real-valued function that is continuous at x = 0, and is
bounded by some B > 1, i.e., for all x, |g(x)| < B. Let {sp(x) : T > 0} be an approzimate
identity under convolution, and furthermore suppose that

| s)srto) s

—00

exists for all T'> 0. We then have that

[e.e]

lim g(x)sr(x) dr = g(0). (3)

T—o00 oo

Proof. We need to show that for every € > 0 there exists Ty > 0 such that 7" > Tj implies

I

Thus, let us fix € > 0. As a first step, let us choose a value § > 0 so that whenever |z| <4,
we have that |g(x) — ¢(0)] < €/3; since g(z) is continuous at « = 0, such a J certainly exists.
Next, let us choose Tj such that for all 7" > Tj, we have ffé sr(z)dz > 1—¢/(3B); by the
third property of approximate identities, such a Ty certainly exists. Now, let us write

/_"O g(x)sr(z) de = /6 g(x)sr(r)dr + /__6g(x)sT(:c) do + /500 g(z)sp(z) dz

[e's) -6 [e's)

and bound the contributions made to the left-hand integral by the terms on the right-hand
side. With the choices for § and Tj just made, we observe that

1 4 00
/_ g(z)sr(z)da < / (9(0) + €/3)sp(x) dx < / (9(0) + €/3)sp(x)dz = ¢g(0) + €/3.

1 - —0o0

Furthermore

0 §
/59(93)8T(33) dz > /5(9(0) —€/3)sr(x)dz > (9(0) — ¢/3)(1 — €/(3B))

(a)

> (9(0) —¢/3)(1 = ¢/3) = g(0) — 2¢/3,



where inequality (a) follows from the fact that B > 1. Next let

L= [ st [ o

o0

and observe that

-4 0
|I5] < / Bsp(z)dx +/5 Bsp(z)dx < Be/(3B) = ¢/3.

o0

In sum, we see that for all T > Ty we have

mm—es/fg@wﬂmdmsmm+aa3smm+a

o0

which is what we set out to show. O

Observe that Lemma 1 extends to complex-valued functions g(x) that are bounded in mag-
nitude and continuous at x = 0, as the real and imaginary parts of the integrand can be
treated separately.

Note that, even though s (t) does not approach a well-defined function as T — oo, the limit
in (3) nevertheless converges to a well-defined linear functional: namely, the one that maps
g(x) to its value g(0) at = = 0. This is the essence of the definition of the Dirac delta as a
distribution; see, e.g., [2].

Now suppose that Rx(7) is absolutely integrable, i.e., that B = [* |Rx(7)|dr exists. We
then have, for any f, that

|Rx(f)| = ‘/OO RX(T)@_jQTrdeT

§/ |RX(T)6_j27TfT|dT:/ |Rx(7)|dT = B.

Thus, if Rx(7) is absolutely integrable, its Fourier transform Ry (f) (if it exists) is bounded.

Now let us put the pieces together. First, we already have that

Sx(f) = lim h Rx(f — )T sinc®(2T) dz

T—oo J_

and we know that {Tsinc?zT) : T > 0} is an approximate identity for convolution. Further-
more, assuming that Rx(7) is absolutely integrable implies that Rx(f) is bounded. Thus,
Lemma 1 applies, and we get that

Sx(f) = Rx(f)

at all points f where J%X( f) is continuous. This is the Wiener-Khinchin theorem.
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