Zippel's Lemma or the Sparse Zeros Lemma

Frank R. Kschischang

November 7, 2009

Let $f \in F\left[x_{1}, \ldots, x_{n}\right]$ be a polynomial in n variables over an arbitrary field F, in which the degree of f as a polynomial in x_{i} is at most d, for $1 \leq i \leq n$. We say that f has "degree bounded by d."

Proposition: Let $f \in F\left[x_{1}, \ldots, x_{n}\right]$ have degree bounded by d and let $S \subset F$ be a set of $d+1$ distinct elements of F. If $f\left(s_{1}, \ldots, s_{n}\right)=0$ for all n-tuples $\left(s_{1}, \ldots, s_{n}\right)$ in S^{n}, then $f \equiv 0$, i.e., f is identically the zero polynomial.

Proof: We proceed by induction on n, the number of variables. Recall that a univariate polynomial of degree at most d over F can have at most d zeros; this establishes the truth of the proposition for $n=1$.

Suppose, for some $n \geq 1$, that the proposition is true for all polynomials of degree bounded by d in $F\left[x_{1}, \ldots, x_{n}\right]$. Let $f \in F\left[x_{1}, \ldots, x_{n+1}\right]$ have degree bounded by d, written as

$$
f\left(x_{1}, \ldots, x_{n+1}\right)=\sum_{i=0}^{d} f_{i}\left(x_{1}, \ldots, x_{n}\right) x_{n+1}^{i}
$$

where $f_{i} \in F\left[x_{1}, \ldots, x_{n}\right]$ are polynomials of degree bounded by d. Suppose that $f\left(s_{1}, \ldots, s_{n+1}\right)=$ 0 for all $\left(s_{1}, \ldots, s_{n+1}\right) \in S^{n+1}$. Then, in particular, each polynomial $f\left(s_{1}, \ldots, s_{n}, x_{n+1}\right)$ in x_{n+1} (fixing $\left(s_{1}, \ldots, s_{n}\right)$) has at least $d+1$ zeros, and hence must identically be the zero polynomial. This implies that $f_{i}\left(x_{1}, \ldots, x_{n}\right)=0$ for all $\left(s_{1}, \ldots, s_{n}\right) \in S^{n}$. By assumption, each such f_{i} must be identically the zero polynomial, which implies that f is identically the zero polynomial.

Thus if the proposition is true for $n \geq 1$ variables, it is also true for $n+1$ variables. Since the proposition is true if $n=1$, by induction it follows that the proposition is true for all $n \geq 1$.

Corollary: Let $f \in F\left[x_{1}, \ldots, x_{n}\right]$ be a polynomial of degree bounded by d. If f is not identically the zero polynomial, and if F has more than d elements, then $f\left(s_{1}, \ldots, s_{n}\right) \neq 0$ for some $\left(s_{1}, \ldots, s_{n}\right) \in F^{n}$.

In particular, if F is a finite field of q elements, then f must evaluate to a nonzero value in $F_{q^{m}}$, where m is the smallest value such that $q^{m}>d$.

Notes: The corollary is referred to as the "Sparse Zeros Lemma" in [1], in which the authors cite [2], [3] (see also [4]), and [5]. The terminology "Zippel's Lemma" follows from [6], where a version of the proposition (first?) appeared.

References

[1] C. Fragouli and E. Soljanin, "Network Coding Fundamentals," Foundations and Trends in Networking, volume 2, Issue 1, 2007.
[2] R. W. Yeung, S.-Y. R. Li, N. Cai, and Z. Zhang, "Network Coding Theory: A Tutorial," Foundations and Trends in Communications and Information Theory, volume 2, 2006.
[3] N. J. A. Harvey, "Deterministic Network Coding by Matrix Completion," MS Thesis, 2005.
[4] N. J. A. Harvey, D. R. Karger, and K. Murota, "Deterministic Network Coding by Matrix Completion," Proc. 16th Annual ACM-SIAM Symp. on Discrete Algorithms (SODA05), Vancouver, B.C., pp. 489-498, 2005.
[5] J. T. Schwartz, "Fast Probabilistic Algorithms for Verification of Polynomial Identities," J. of the $A C M$, vol. 27, pp. 701-717, 1980.
[6] R. E. Zippel, "Probabilistic Algorithms for Sparse Polynomials," Lecture Notes in Computer Science, vol. 72, pp. 216-226, Springer-Verlag, 1979.

