
BeeHive� Global Multimedia Database Support for

Dependable� Real�Time Applications

John A� Stankovic Sang H� Son J�org Liebeherr

Technical Report CS������

Department of Computer Science

University of Virginia

Charlottesville� VA ����	

Email
 fstankovic j son j jorgg�cs�virginia�edu

Abstract

The con�uence of computers� communications and databases is quickly creating a global

virtual database where many applications require real�time access to both temporally accurate

and multimedia data� We are developing a global virtual database� called BeeHive� which is

enterprise speci�c and o�ers features along real�time� fault tolerance� quality of service for audio

and video� and security dimensions� Support of all these features and tradeo�s between them

will provide signi�cant improvement in performance and functionality over browsers� browsers

connected to databases� and� in general� today�s distributed databases� We present a high level

design for BeeHive and various novel component technologies that are to be incorporated into

BeeHive�

Key Words� Real�Time� Databases� Virtual Databases� Global Databases� Multimedia Databases� Multimedia�

Quality�of�Service� Resource Reservation� Fault Tolerance� Security�

� Introduction

The Next Generation Internet �NGI� will provide an order of magnitude improvement in the com�

puter�communication infrastructure� What is needed is a corresponding order of magnitude im�

provement at the application level� One way to achieve this improvement is through global virtual

databases� Such databases will be enterprise speci�c and o�er features along real�time	 fault toler�

ance	 quality of service for audio and video	 and security dimensions� Support of all these features

and tradeo�s between them will provide an order of magnitude improvement in performance and

functionality over browsers	 browsers connected to databases	 and	 in general	 today
s distributed

databases� Such global virtual databases will not only be enterprise speci�c	 but also interact

�given proper protections� with the worldwide information base via wrappers� Such wrappers may

be based on Java and Java Data Base Connectivity standards�

There are many research problems that must be solved to support global	 real�time virtual

databases� Solutions to these problems are needed both in terms of a distributed environment at the

database level as well as real�time resource management below the database level� Included is the

need to provide end�to�end guarantees to a diverse set of real�time and non�real�time applications

over the current and next generation Internet� The collection of software services that support this

vision is called BeeHive�

The BeeHive system that is currently being de�ned has many innovative components	 including�

� real�time database support based on a new notion of data deadlines	 �rather than just trans�

action deadlines�	

� parallel and real�time recovery based on semantics of data and system operational mode �e�g�	

crisis mode�	

� use of re�ective information and a speci�cation language to support adaptive fault tolerance	

real�time performance and security	

� the idea of security rules embedded into objects together with the ability for these rules to

utilize pro�les of various types	

� composable fault tolerant objects that synergistically operate with the transaction properties

of databases and with real�time logging and recovery	

� a new architecture and model of interaction between multimedia and transaction processing	

� a uniform task model for simultaneously supporting hard real�time control tasks and end�to�

end multimedia processing	 and

� new real�time QoS scheduling	 resource management and renegotiation algorithms�

The BeeHive project builds upon these results and combines them into a novel design for a

global virtual database�

In the remainder of this paper we discuss the high�level BeeHive system and sketch the design of

a native BeeHive site showing how all the parts �t together� We also present technical details on the

main functional ingredients of BeeHive which include Resource Management and QoS	 Real�Time

Legion BW

LEGACY SYSTEMS BW = BeeHive Wrapper

BW

BW

BW

RDBMS

OODB

Native BeeHive Sites

Sites Ported to BeeHive

OR DB

BeeHive System

Figure � BeeHive�

Databases	 Adaptive Fault Tolerance	 and Security� A brief description of the state of art is given�

A summary of the work concludes the paper�

� General BeeHive Design

��� An Overview of the Design

BeeHive is an application�focussed global virtual database system� For example	 it could provide the

database level support needed for information technology in the integrated battle�eld� BeeHive is

di�erent than the World Wide Web and databases accessed on the Internet in many ways including

BeeHive
s emphasis on sensor data	 use of time valid data	 level of support for adaptive fault

tolerance	 support for real�time databases and security	 and the special features that deal with

crisis mode operation� Parts of the system can run on �xed secure hosts and other parts can be

more dynamic such as for mobile computers or general processors on the Internet�

The BeeHive design is composed of native BeeHive sites	 legacy sites ported to BeeHive	 and

interfaces to legacy systems outside of BeeHive �see Figure ��

The native BeeHive sites comprise a federated distributed database model that implements a

temporal data model	 time cognizant database and QoS protocols	 a speci�cation model	 a mapping

from this speci�cation to four APIs �the OS	 network	 fault tolerance and security APIs�	 and

underlying novel object support� Any realistic application will include legacy databases� BeeHive

permits porting of these databases into the BeeHive virtual system by a combination of wrappers

and changes to the underlying software of these systems� It is important to mention that BeeHive	

while application focussed	 is not isolated� BeeHive can interact with other virtual global databases	

or Web browsers	 or individual non�application speci�c databases via BeeHive wrappers� BeeHive

will access these databases via downloaded Java applets that include standard SQL commands� In

many situations	 not only must information be identi�ed and collected	 but it must be analyzed�

�

This analysis should be permitted to make use of the vast computer processing infrastructure

that exists� For example	 BeeHive will have a wrapper that can utilize a distributed computing

environment	 such as the Legion system ����	 to provide signi�cant processing power when needed�

��� Native BeeHive Design

The basic design of a native BeeHive site is depicted in Figure �� At the application level	 users

can submit transactions	 analysis programs	 general programs	 and access audio and video data�

For each of these activities the user has a standard speci�cation interface for real�time	 QoS	 fault

tolerance	 and security� At the application level	 these requirements are speci�ed in a high level

manner� For example	 a user might specify a deadline	 full quality QoS display	 a primary�backup

fault tolerance requirement	 and a con�dentiality level of security� For transactions	 users are

operating with an object�oriented database invoking methods on the data� The data model includes

timestamped data and data with validity intervals such as is needed for sensor data or troop

position data� As transactions �or other programs� access objects	 those objects become active

and a mapping occurs between the high level requirements speci�cation and the object API via

the mapping module� This mapping module is primarily concerned with the interface to object

wrappers and with end�to�end issues� A novel aspect of our work is that each object has semantic

information �also called re�ective information because it is information about the object itself�

associated with it that makes it possible to simultaneously satisfy the requirements of time	 QoS	

fault tolerance	 and security in an adaptive manner� For example	 the information might include

rules or policies and the action to take when the underlying system cannot guarantee the deadline

or level of fault tolerance requested� This semantic information also includes code that makes calls

to the resource management subsystem to satisfy or negotiate the resource requirements� The

resource management subsystem further translates the requirements into resource speci�c APIs

such as the APIs for the OS	 the network	 the fault tolerance support mechanisms	 and the security

subsystem� For example	 given that a user has invoked a method on an object with a deadline and

primary�backup requirement	 the semantic information associated with the object makes a call to

the resource manager requesting this service� The resource manager determines if it can allocate

the primary and backup to �� execute the method before its deadline and ��� inform the OS via

the OS API on the modules
 priority and resource needs�

In terms of this design	 the main tasks to be undertaken include

� the full development of the high�level speci�cation including how these requirements interact

with each other	

� the implementation of real�time object�oriented database support	

� the design and implementation of our semantics enhanced objects	

� the design and implementation of the object�oriented wrappers	

� the development of the mapping module	

� the design and implementation of the resource management	 fault tolerance	 and security

subsystems�

�

Semantic Information

...

DATA

Methods

OBJECT DATABASE

Object

Object 1

...

Object 2 Object 3

Resource Manager

Analysis

Resources
(Network, OS, etc.)

Resource
Management

Service-specific
(low-level) API

Application Level

FT API RT API Security API

Active Objects

.
.
.

Method/Object

Method/Object

.
.
.

ET

Mapper

Video

BT (Time, QoS, FT, Security)

TR (Time, QoS, FT, Security)

QOS API

Figure �� Native BeeHive Site�

In the following sections	 some of our ideas on resource management	 real�time databases	

adaptive fault tolerance	 and security are described�

� Resource Management and QoS

A critical component for the success of BeeHive is its ability to e�ciently manage a vast amount

of resources� BeeHive requires end�to�end resource management	 including physical resources such

as sensors	 endsystems resources such as operating systems	 and communications resources such as

link bandwidth�

We assume that low�level resource management is available for single low�level system resources	

such as operating systems and networks� For networks	 resource reservation signaling is based on

the RSVP ��� and UNI ��� ��� protocols for IP networks and ATM networks	 respectively� Likewise	

we assume that all operating systems are provided with a resource management entity�

Based on these comparatively primitive resource management systems	 BeeHive will imple�

ment a sophisticated end�to�end adaptive resource management system that supports applications

with widely varying service requirements	 such as requirements on timeliness	 fault tolerance	 and

security� The resource management in BeeHive o�ers the following services�

� Provide service�speci�c application programming interfaces �APIs� that allow application

programmers to specify the desired QoS without requiring knowledge of the underlying low�

level resource management entities� The QoS can be a function of mode �normal or crisis

�

RSVP UNI 4.0

ATM Network

Resource

Planner

FT API RT API Security API

Resource
Management

IP Network Real-Time OS

Resource

Manager

BeeKeeper
Service

Mapper

Admission

Controller

Resource Allocation Module

QOS API Service-
specific API

Objects

Resources

Figure �� Resource Management in BeeHive�

mode��

� Map qualitative	 application�speci�c service requirements into quantitative resource alloca�

tions�

� Dynamically manage network and systems resources so as to maximize resource utilization�

By providing service�speci�c APIs	 we allow application programmers to specify the QoS re�

quirements of an application in an application�speci�c fashion� The resource management entities

of BeeHive are responsible for mapping the QoS requirements into actual resource needs� The

advantage of this approach is a signi�cant increase of reusability� Speci�cally	 an application need

not be modi�ed if the underlying resource infrastructure changes� �It may be convenient to think

of our approach as �Resource Hiding���

To maximize resource utilization in BeeHive	 we will enhance resource management with a

planning component� The planning component keeps track of the dynamic behavior of resource

usage� By maintaining information not only of the current state of resource utilization	 but also

of past and �predicted� future usage	 the resource management scheme can adapt to the changing

resource demands in the system especially during crisis�

In Figure � we illustrate the main components of the resource management system in BeeHive�

These components will be discussed below�

Service�Speci�c Application Programming Interfaces

The application programming interface �API� provided by BeeHive must satisfy several con�

straints� On the one hand	 the API must allow the application programmer to access the full

functionality of the system without being burdened with internal details� On the other hand	 the

API must be simple enough as to provide a simple �and extensible� internal representation� The

�

API of the resource management system in BeeHive is a trade�o� between the requirements for

application speci�city and internal simplicity�

� Since BeeHive operates in a heterogeneous distributed computing environment	 application

programmers should not be required to have knowledge of the underlying resource infrastruc�

ture on top of which the application is being executed�

� Rather than adopting a �one�size��ts�all� approach	 we provide a set of di�erent APIs� More

speci�cally	 we design a separate API for each of the value�added services provided by BeeHive�

In this project	 we will build four APIs for the following services�

� Applications with Real�Time Requirements�

� Applications with QoS Requirements�

� Applications with Fault�Tolerance Requirements�

� Applications with Security Requirements�

For example	 the service�speci�c API allows application developers to specify the QoS re�

quirements of a fault�tolerant application in terms of MTTF �Mean Time To Failure�� The

resource manager maps these service�speci�c QoS requests into actual resource requests� Of

course	 applications and�or individual tasks or transactions may require more than one or

even all services� The BeeKeeper �described next� is responsible for tradeo�s between these

services�

�BeeKeeper� � The Resource Manager of BeeHive

The resource manager of BeeHive	 referred to as the �BeeKeeper�	 is the central entity of the

resource management process� The main function of the BeeKeeper is the mapping of service�

speci�c	 possibly qualitative	 QoS requirements into actual	 quantitative	 resource requests� The

following are the main components of the BeeKeeper�

� The Service Mapper performs the mapping of qualitative resource requests into quantitative

requests for physical resources� The service mapper generates a uniform internal represen�

tation of the multiple �service�dependent� QoS requests from applications� The uniform

presentation is derived from a novel task model discussed below�

� The Admission Controller performs the tests that determine if BeeHive has su�cient re�

sources to support the QoS requirements of a new application without compromising the QoS

guarantees made to currently active applications�

� The Resource Allocation Module is responsible for managing the interface of BeeHive to un�

derlying resource management systems of BeeHive components	 i�e�	 the resource management

entities of an ATM network	 an RSVP managed IP network	 or a real�time operating system	

such as RT�Mach� It maintains a database on resources allocated to the BeeHive application�

� The Resource Planner attempts to globally optimize the use of resources� The Admission

Controller of the BeeKeeper merely decides whether a new application is admitted or re�

jected� Obviously	 such a binary admission control decision leads to a greedy and globally

�

suboptimal resource allocation� �Note that all current resource allocation methods	 e�g�	 for

ATM networks or real�time operating systems	 are greedy�� The Resource Planner is a mod�

ule that enhances the admission control process in order to provide globally optimal resource

allocations� The Resource Planner prioritizes all current and incoming requests for resources�

Based on the prioritization	 it devises a resource allocation strategy�

The Resource Planner obtains from the Resource Allocation Module information on the state

of current resource allocations� As much as possible	 the Resource Planner should be provided

with information on future resource usage� The Resource Planner processes this information

and provides input to the Admission Controller�

In BeeHive	 the Resource Planner of the BeeKeeper plays a central role for adaptive resource

allocation� If an incoming request with high�priority cannot be accommodated	 the Resource

Planner initiates a reduction of the resources allocated to low�priority applications� If neces�

sary	 the Resource Planner will decide upon the preemption of low�priority applications�

Internal Uniform Task Model� An important part of resource management in BeeHive is a new

task model which yields a uniform presentation of applications within the BeeKeeper� The model	

referred to as uni�ed task model	 is �exible enough to express the stringent timeliness requirements

of all applications that run in BeeHive� On the other hand	 the scheme is sophisticated enough

to cope with the complexity of multimedia tasks	 such as variable bit rate compression of video

streams� The uni�ed task model will provide us with a single abstraction for reasoning about

multimedia and real�time systems	 thereby	 overcoming the traditional separation of multimedia

and real�time control systems�

Let a�t� denote the execution time necessary for a task to complete the workload that arrives for

the task at time t� Let A�t� t� � � �
R
t�t��

a�x�dx denote the execution time necessary to complete

the workload that arrives to the system in the time interval �t� t� � ��

Then the workload that arrives for a task can be characterized by a so�called task envelope A�

which provides an upper bound on A	 that is	 for all times � � � and t � � we have ����

A�t� t� � � � A���� ��

A task envelope A� should be subadditive	 that is	 it should satisfy

A��t�� �A��t�� � A��t� � t�� �t�� t� � � ���

If a task envelope A�

� satis�es �� but is not subadditive	 it can be replaced by a subadditive

envelope A�

� such that A�

��t� � A�

��t� for all t � �� The notion of task envelopes is powerful enough

to describe all hard real�time and soft�real time tasks�

The processing requirements of a task are described as follows� Let S�t� t�� � denote the amount

of service time that a processor can devote to processing one or more instances of the task in time

interval �t� t�� �� With the task envelope A� and a deadline for completing an instance of that task	

say D	 a task always meets its deadline if for all � � D we have� min�fA
��t��� � S��� t��g � D� We

use S��t� � A��t�D� to denote the service envelope of the task	 with the following interpretation�

If a processor can guarantee for each time interval of length � that a task obtains a service of at

least S�	 then a deadline violation will never occur�

�

� Real�Time Databases

In applications such as the integrated battle�eld or agile manufacturing	 the state of the environ�

ment as perceived by the controlling information system must be consistent with the actual state

of the environment being controlled or within prescribed limits� Otherwise	 the decisions of the

controlling system may be wrong and their e�ects disastrous� Hence	 the timely monitoring of the

environment	 the timely processing of the sensed information	 and the timely derivation of needed

data are essential� Data maintained by the controlling systems and utilized by its actions must be

up�to�date and temporally correlated� This temporal consistency must be maintained through the

timely scheduling of the actions that refresh the data�

In these applications	 actions are triggered by the occurrence of events� An event triggers an

action only if certain conditions hold� For instance	 the occurrence of the event corresponding to

a temperature reading would trigger an emergency reaction only if the temperature value is above

a threshold value� The Event�Condition�Action �ECA� paradigm of active databases is convenient

to enforce these constraints and also to trigger the necessary actions� Rules can be designed to

trigger entry into speci�c modes� to trigger the necessary adaptive responses to time constraint

violations � to e�ect recovery	 to trigger actions if temporal data is �about to become� invalid� and

to shed loads as well as adjust deadlines and other parameters	 e�g�	 importance levels and QoS	 of

actions	 when overloads occur ����	 and to help support security� The ECA paradigm will be a core

component of the BeeHive system�

Transactions that process data with validity intervals must use timely and relatively consistent

data in order to achieve correct results� We have developed the ideas of data deadline and forced

delay for processing transactions that use �sensor� data with temporal validity intervals� Data

read by a transaction must be valid when the transaction completes	 which leads to another con�

straint on completion time	 in addition to a transaction
s deadline� This constraint is referred to

as data�deadline� Within the same transaction class	 the scheduling algorithm should be aware of

the data�deadline of a transaction	 that is	 the time after which the transaction will violate tem�

poral consistency�� The scheduling algorithm should account for data�deadlines when it schedules

transactions whenever a data�deadline is less than the corresponding transaction deadline� To do

this	 we have developed earliest data�deadline �rst �EDDF� and data�deadline based least slack �rst

�DDLSF� policies� Since EDDF and DDLSF policies do not consider the feasibility of validity in�

tervals of data objects that a transaction accesses	 they are combined with the idea of Forced�Wait�

With Forced�Wait	 whenever a temporal data object is read by a transaction	 the system checks

if this transaction will commit before the validity of the data object expires� If the validity could

expire before the commit then the transaction is made to wait until the data object is updated	

else the transaction is allowed to continue�

Another important area in real�time database systems is recovery� As a basis for supporting

real�time database recovery	 we assume four�level memory hierarchy� The �rst level consists of

main memory that is volatile� At the second level is non�volatile RAM �NV�RAM�� The third level

consists of the persistent disk storage subsystem	 and at the fourth level is archival tape storage�

The motivation for the use of NV�RAM stems from the fact that maintaining large amounts

of data in main memory can be very expensive while disk I�O times might be unacceptable in

�Note that a transaction can violate temporal consistency without missing its deadline�

�

certain situations� For instance	 writing to disk for the purpose of logging data touched by critical

transactions and reading from disk to undo critical transactions might be too expensive� It is not

di�cult to conceive situations where writing to disk may result in missing deadlines	 but by writing

to NV�RAM	 deadlines can be met� NV�RAM can be used purely as a disk cache where the data

moved to NV�RAM later migrates to the disk or it can be used as a temporary stable storage

where the data is stored for performance reasons and later may or may not not migrate to the disk

depending on the �durability� characteristics of the data�

Persistence of system data structures such as global lock tables	 and rule bases that represent

the dependencies between transactions could become potential bottlenecks in real�time databases�

Making these system data structures persistent in NV�RAM results in better performance�

In our solution	 the characteristics of a particular type of data will determine where data is

placed in the four�level memory hierarchy	 where the logs are maintained and how the system

recovers from transaction aborts� Data is characterized by temporality	 frequency of access	 per�

sistence	 and criticality� We then tailor the data placement and logging and recovery techniques

that are needed to the data characteristics� As an example	 assume we have data which has a short

time validity	 high frequency of access	 non�persistent	 and is critical� Positions of �ying aircraft

are examples of such data� This kind of data will be placed in main memory� For space reasons	

the data might temporarily migrate to NV�RAM if the validity is long enough for a NV�RAM

write and read� No�steal bu�er policy will be used and so there is no need to undo� In addition	

given the short validity	 redos will also not be needed or feasible� If some data has long validity	

high frequency of access	 persistent	 and is critical �reactor temperatures in a chemical plant have

this property�	 then this kind of data will be placed in main memory for performance reasons�

No�steal bu�er policy along with the force policy will be used where data is forced to NV�RAM

and subsequently to disk� Similar tailored solutions exist for the other possibilities�

The frequency of access attribute dictates where one should place the data such that I�O costs

are minimized� In traditional databases	 disk pre�fetching is a technique that is used to minimize

the I�O delay� In our context	 an analog of this technique can be used	 also to ensure that valid

data is available when needed� Speci�cally	 a similar technique	 namely	 pre�triggering	 can be used

to acquire temporal data that is going to be accessed	 but is invalid or will become invalid by the

time the data is needed� Instead of triggering a transaction to acquire the data just before it is

needed	 the transaction can be triggered earlier	 at some opportune time�

� Adaptive Fault Tolerance

Given the large and ever�growing size of databases and global virtual databases	 faults may occur

frequently and at the wrong times� For the system to be useful and to protect against common

security breach points	 we must have adaptive fault tolerance�

Our approach is to design adaptive and database centric solutions for non�malicious faults�

Any system that deals with faults must �rst specify its fault hypotheses� In particular	 we will

consider the following fault hypotheses� processors may fail silently �multiple failures are possible��

transient faults may occur due to power glitches	 software bugs	 race conditions� and timing faults

can occur where data is out of date or not available in time� If the global virtual database can

handle these faults and operate e�ciently	 then it should prove to be robust and useful under typical

�

scenarios� With these fault tolerance mechanisms in place	 it is possible to consider adding support

for malicious faults at a future time	 especially since our solutions �outlined below� will support

adaptive fault tolerance� However	 malicious faults are beyond the scope of work of this proposal�

In our solution we propose a service�oriented fault tolerance and support it with underlying

model based on adaptive fault tolerance�

Service�Oriented FT� For service�oriented fault tolerance we consider how typical users operate

with BeeHive and consider the fault tolerance aspects of these services� The services are�

� Read Only Queries� These can be dynamically requested by users or automatically triggered

by the actions in the active database part of BeeHive� These queries can have soft deadlines

and can retrieve data of all types including text	 audio	 video	 etc�

� Update Transactions� These transactions can be user invoked or automatic� When permitted	

they can update any type of data including temporal data�

� Multimedia Playout and QoS� When data that is retrieved is audio and video	 the playout

itself has time constraints	 is large in volume	 must be synchronized	 can be degraded if

necessary	 etc�

� Analysis Tools� Retrieved data may be fed to analysis tools for further processing� this

processing itself can be distributed�

The user�level fault tolerance interface includes features for each of the four service classes

for each fault type� For example	 the FT service for read�only queries allows queries to proceed

when processors fail	 be retried if transient faults occur	 and can produce partial results prior to

the deadline to avoid a timing fault� For multimedia playout	 processing can be shifted to other

processors when processors fail� A certain degree of transient faults is masked	 and degraded service

is used to avoid some timing faults� Similar fault tolerance services can be de�ned for the other

combinations�

Support for Adaptive Fault Tolerance� Queries	 update transactions	 multimedia playout	 and

analysis tools may access any number of objects� In order to support these fault tolerant services	 we

propose an underlying system model based on adaptive �secure� fault tolerant �real�time� objects�

Since fault tolerance can be expensive	 we must be able to tailor the cost of fault tolerance to

user
s requirements� In our solution	 each object in the system represents data and methods on

that data and various types of semantic information that support adaptive �secure� fault tolerance

in real�time� Brie�y	 this works as follows�

Input to an object can be	 in addition to the parameters required for its functionality	 the time

requirement	 the QoS requirement	 the degree of fault tolerance	 and the level of security� Inside

the object and hidden from the users are control modules which attempt to meet the incoming

requirements dynamically based on the request and the current state of the system� This is a form

of admission control� For example	 a user of an object may want to execute a method on a database

object with a passive backup	 have all outputs from the object encrypted and have results within

three minutes� In such a case the control module inside the object dynamically interacts with the

system schedulers	 resource allocators	 and encryption objects to perform admission control	 make

�

copies and encrypt messages� The admission control calling the schedulers decides whether this can

all be done within three minutes� If not	 its control strategies indicate how to produce some timely

result based on the semantics of the object� In this way the user obtains the fault tolerance	 security

and time requirements desired on this invocation subject to the current system state� Another user

or this same user at a di�erent time may request di�erent levels of service from this object and the

system adapts to try and meet these requirements� Note that crisis mode may trigger changes to

sets of objects based on the embedded tradeo� strategies�

One key research issue is the mapping of the service level fault tolerance request to the under�

lying objects� This research question is one of composition� That is	 given the underlying object

mechanisms that support adaptive fault tolerance how can objects be composed to meet the service

level requirements� Similar mapping questions exist for fault tolerance	 real�time	 and security	 and

their interaction�

� Security

Security is an integral part of the system and is one component in the integrated interface to our

adaptive	 fault tolerant	 real�time	 and secure objects� Our primary goal is to create a security

architecture that is consistent with also meeting real�time	 fault tolerance and QoS requirements�

In the architecture	 users can specify the level of security required and a secure mapping level takes

this requirement and maps it to the underlying security API� This underlying API can change as

results from our project or other projects become known� However	 because of our novel underlying

object paradigm	 some novel security support techniques have been identi�ed� In BeeHive	 classes

�in object oriented programming language terms� have security rules associated with them� Security

rules can be inherited by subclasses or overridden depending on the security model in e�ect for

that object� Rules can belong to each method or to the object as a whole� Each object can have

its own security API which the mappping layer will utilize	 but the rules themselves are hidden�

The security rules can be if�then�else rules as well as utilize the notion of an encrypted pro�le

to either look for patterns of illegal access or	 alternatively	 to certify a good pattern of access�

Standard security features such as passwords	 encryption	 and byte code veri�ers can be part of

this architecture� Legacy systems	 subsystems	 proprietary systems	 etc� can be surrounded by a

�rewall which is an object wrapper with a particular security API�

� Related Work

We are not aware of any e�orts to design and build a system with the same capabilities as BeeHive	

that is	 a global virtual database with real�time	 fault tolerance	 and security properties in hetero�

geneous environments� However	 there are several projects	 past and present	 that have addressed

one or more of the issues of real�time databases	 QoS at the network and OS levels	 multimedia	

fault tolerance	 security	 and distributed execution platforms� We brie�y describe a few of these

projects�

STRIP �STanford Real�Time Information Processor� ��� is a database designed for heterogeneous

environments and provides support for value function scheduling and for temporal constraints on

data� Its goals include high performance and ability to share data in open systems� It does not

support any notion of performance guarantees or hard real�time constraints	 and hence cannot be

used for the applications we are envisioning in this project�

DeeDS �Distributed Active Real�Time Database System� ��� prototype is an event�triggered

real�time database system	 using dynamic scheduling of sets of transactions	 being developed in

Sweden� The reactive behavior is modeled using ECA rules� In the current prototype	 they do not

support temporal constraints of data and multimedia information�

To allow applications to utilize multiple remote databases in dynamic and heterogeneous envi�

ronments	 the notion of mediator was introduced and a prototype was implemented in the PEN�

GUIN system ����� A mediator is a software module that exploits encoded knowledge about certain

sets or subsets of data to create information for a higher layer of applications� It mainly deals with

the mismatch problem encountered in information representation in heterogeneous databases	 but

no real�time and fault�tolerance issues are pursued as in BeeHive�

While commercial database systems such as Oracle ��� or Sybase ���� allow for the storage of

multimedia data	 it is usually done as BLOBs� These systems are not integrated with real�time

applications� Also developed in industry is the Mercuri project ��� where data from remote video

cameras is transferred through an ATM network and displayed using X windows	 but they provide

only best e�ort services� The Presto project deals with providing session�based QoS guarantees to

continuous multimedia database applications	 and does not address the coexistence of control data

with the continuous media data�

Projects such as Legion ���	 ��� concentrate on distributed execution platforms but do not

deal with multimedia databases and end�to�end QoS guarantees� By providing BeeHive wrappers

to Legion we will be able to support Legion objects within BeeHive that satisfy QoS guarantees�

Commercial systems with similar goals as Legion	 however	 focused exclusively on a client�server

model	 are OSF�DCE ���� and CORBA ����� The CORBA standards and products based on them

also do not have the functionality nor real�time properties that we are developing	 although a

real�time CORBA is emerging�

In recent years	 considerable progress has been made in the areas of QoS support for operating

systems	 networks	 and open distributed systems� However	 no existing system can give end�to�end

QoS assurances in a large�scale	 dynamic	 and heterogeneous distributed system� Note that none

of the existing QoS network architectures support an integrated approach to QoS that contains the

network as well as real�time applications�

The Tenet protocol suite ��� developed within the context of the BLANCA Gigabit testbed

networks presented the �rst comprehensive service model for internetworks� The work resulted in

the design of two transport protocols �CMTP	 RMTP�	 a network protocol �RTIP�	 and a signaling

protocol �RCAP� to support a diverse set of real�time services� The protocols of the Tenet Group

have not been tailored towards hard real�time applications	 and rather focused on support of mul�

timedia data� The Tenet protocols do not provide a Middleware layer that can accommodate the

needs of applications with special requirements for security or fault tolerance�

The Extended Integrated Reference Model �XRM� ���� that is being designed and implemented

at Columbia University provides a resource management and control systems for multimedia appli�

cations over ATM networks� XRM is based on previous work on the Magnet�II testbed and shares

with it the restriction to a small number of �xed QoS classes�

Several QoS standardization e�orts are being made by several network communities� The ATM

�

Forum recently completed a tra�c management speci�cation ��� which supports hard�real time

applications via peak rate allocations in the CBR service class� All other ATM service classes only

give probabilistic QoS guarantees� The IntServ working group of the IETF is working towards

a complete QoS service architecture for the Internet	 using RSVP ��� for signaling� The draft

proposal for a guaranteed service de�nition will support deterministic end�to�end delays� However	

an implementation is not yet available� Our work will take full advantage of the framework provided

by ATM� Also	 any output that comes from the IntServ group ���� at IETF will be applicable to

our work�

The RT Mach project ���	 ��� has built distributed real�time operating system services sup�

ported by a guaranteed end�to�end resource reservation paradigm� The RT Mach paradigm is

complemented by a functionally scalable microkernel along with a performance monitoring infras�

tructure� RT Mach is applicable to hard and soft real�time applications	 but the services provided

are not intended to scale to large geographical areas�

The Open Software
s Foundation Research Institute is pursuing several e�orts to build con�g�

urable real�time operating systems for modular and scalable high�performance computing systems�

An important e�ort in respect to fault�tolerance is the CORDS ���� system� CORDS develops an

extensible suite of protocols for fault isolation and fault management in support of dependable dis�

tributed real�time applications� The project is targeted at military embedded real�time applications

and focuses on operating systems solutions	 in particular IPC primitives�

The Globus ��� project is developing basic software infrastructure for computations that inte�

grate geographically distributed computational and information resources� Globus creates a parallel

programming environment that supports the dynamic identi�cation and composition of resources

available on large�scale internets	 and provides mechanisms for authentication	 authorization	 and

delegation of trust within environments of this scale� Globus emphasizes the importance of hetero�

geneity and security� however	 it does not o�er solutions for fault�tolerance and real�time�

BBN
s Corbus ���� is a distributed	 object�oriented system that facilitates the development of

distributed applications� Corbus provides the middleware that closes the gap between QoS of�

fered by real�time operating systems and networks and the communications researchers and object�

oriented applications� Corbus is based on CORBA ���� and its object model�

	 Summary

We have described the design of BeeHive at a high level� We have identi�ed novel component

solutions that will appear in BeeHive� More detailed design is continuing an a prototype system is

planned� Success of our approach will provide major gains in performance �and QoS�	 timeliness	

fault tolerance	 and security for global virtual database access and analysis� The key contributions

would come from raising the distributed virtual system notions to the transaction and database

levels while supporting real�time	 fault tolerance	 and security properties� In application terms	

success will enable a high degree of con�dence in the usability of a virtual database system where

a user can obtain secure and timely access to time valid data even in the presence of faults� Users

can also dynamically choose levels of service when suitable	 or the system can set these service

levels automatically� These capabilities will signi�cantly enhance applications such as information

dominance in the battle�eld	 automated manufacturing	 or decision support systems�

�

However	 since there are key research questions that must be resolved	 there is risk involved

with this approach� Fundamental research questions include�

� developing an overall a priori analysis on the performance and security properties of the

system	 given a collection of adaptive objects	

� developing e�cient techniques for on�line dynamic composition of these new objects	

� analyzing interactions and tradeo�s among the myriad of choices available to the system	

� determining if the fault models are su�cient	

� creating time bounded resource management and admission control policies	

� determining if there is enough access to legacy systems to achieve the security	 functionality	

timeliness	 and reliability required	

� determining how the system works in crisis mode	 and

� determining how the system scales�

References

�� R� Abbott and H� Garcia�Molina	 Scheduling Real�Time Transactions� A Performance Evalu�

ation	 ACM Transactions on Database Systems	 Vol� �	 No� �	 pp� ������	 September ����

��� B� Adelberg	 B� Kao	 and H� Garcia�Molina	 An Overview of the STanford Real�time Infor�

mation Processor	 ACM SIGMOD Record	 ����	 ����

��� B� Adelberg	 H� Garcia�Molina and B� Kao	 Applying Update Streams in a Soft Real�Time

Database System	 Proceedings of the 	

� ACM SIGMOD	 pp� ��� � ���	 ����

��� B� Adelberg	 H� Garcia�Molina and B� Kao	 Database Support for E�ciently Maintaining

Derived Data	 Technical Report	 Stanford University	 ����

��� T� E� Anderson	 D� E� Culler	 and D� A� Patterson	 A Case for NOW �Networks of Worksta�

tions�	 IEEE Micro	 ���������	 February ����

��� S�F� Andler	 J� Hansson	 J� Eriksson	 J� Mellin	 M� Berndtsson	 and B� Eftring	 DeeDS�

Towards a Distributed and Active Real�Time Database Systems	 ACM SIGMOD Record	

���������	 March ����

��� ATM Forum	 ATM Tra�c Management Speci�cation ��	 April ����

��� ATM Forum	 ATM User�Network Interface Speci�cation	 Version ���	 ����

��� N� Audsley	 A� Burns	 M� Richardson and A� Wellings	 A Database Model for Hard Real�Time

Systems	 Technical Report	 Real�Time Systems Group	 Univ� of York	 U�K�	 July ���

�

��� A� Banerjea	 D� Ferrari	 B� A� Mah	 M� Moran	 D� C� Verma	 and H� Zhang� The Tenet Real�

Time Protocol Suite� Design	 Implementation	 and Experiences	 IEEE�ACM Transactions on

Networking	 ������	 February ����

�� A� Bondavalli	 J� Stankovic	 and L� Strigini	 Adaptive Fault Tolerance for Real�Time Systems	

Third International Workshop on Responsive Computer Systems	 September ����

��� A� Bondavali	 J� Stankovic	 and L� Strigini	 Adaptable Fault Tolerance for Real�Time Systems	

Responsive Computer Systems� Towards Integration of Fault Tolerance and Real�Time	 Kluwer	

���	 pp� �������

��� R� Braden	 L� Zhang	 S� Berson	 S� Herzog	 and S� Jamin	 Resource ReSerVation Protocol

�RSVP� � Version Functional Speci�cation	 Internet Draft	 November ����

��� M� J� Carey	 R� Jauhari and M� Livny	 On Transaction Boundaries in Active Databases� A

Performance Perspective	 IEEE Transactions on Knowledge and Data Engineering	 Vol� �	 No�

�	 pp� �������	 September ���

��� R� L� Cruz	 A Calculus for Network Delay	 Part I� Network Elements in Isolation	 IEEE

Transactions on Information Theory	 ��������	 January ���

��� U� Dayal et� al�	 The HIPAC Project� Combining Active Databases and Timing Constraints	

SIGMOD Record	 Vol� �	 No� 	 pp� ����	 March ����

��� M� Di Natale and J� Stankovic	 Dynamic End�to�End Guarantees in Distributed Real�Time

Systems	 Real�Time Systems Symposium	 Dec� ����

��� I� Foster and C� Kesselman	 Globus� A metacomputing infrastructure toolkit	 SIAM �to

appear�	 ����

��� N� Gehani and K� Ramamritham	 Real�Time Concurrent C� A Language for Programming

Dynamic Real�Time Systems	 Real�Time Systems	 Vol� �	 No� �	 December ���

���� A� Grimshaw	 W� Wulf	 and the Legion Team	 The Legion Vision of a Worldwide Virtual

Computer	 CACM	 Vol� ��	 No� 	 January ���	 pp� ������

��� A� Guha	 A� Pavan	 J� Liu	 A� Rastogi	 and T� Steeves	 Supporting Real�Time and Multimedia

Applications on the Mercuri Testbed	 IEEE Journal on Selected Areas in Communications	

Vol� �	 No� �	 May ����

���� J�R� Haritsa	 M�J� Carey and M� Livny	 On Being Optimistic about Real�Time Constraints	

Proc� of
th SIGACT�SIGMOD�SIGART Symposium on Principles of Database Systems	

April	 ����

���� J�R� Haritsa	 M�J� Carey and M� Livny	 Earliest Deadline Scheduling for Real�Time Database

Systems	 Proceedings of the Real�Time Systems Symposium	 pp� �������	 December ���

���� J�R� Haritsa	 M�J� Carey and M� Livny	 Data Access Scheduling in Firm Real�Time Database

Systems	 The Journal of Real�Time Systems	 Vol� �	 No� �	 pp� ������	 ����

�

���� J� Huang	 J�A� Stankovic	 D� Towsley and K� Ramamritham	 Experimental Evaluation of

Real�Time Transaction Processing	 Real�Time Systems Symposium	 pp� �����	 December

����

���� J� Huang	 J�A� Stankovic	 K� Ramamritham and D� Towsley	 Experimental Evaluation of Real�

Time Optimistic Concurrency Control Schemes	 Proceedings of the 	�th Conference on Very

Large Databases	 pp� �����	 September ���

���� J� Huang	 J�A� Stankovic	 K� Ramamritham	 D� Towsley and B� Purimetla	 On Using Priority

Inheritance in Real�Time Databases	 Special Issue of Real�Time Systems Journal	 Vol� ��

No� �	 September ����

���� M� Humphrey and J� Stankovic	 CAISARTS� A Tool for Real�Time Scheduling Assistance	

IEEE Real�Time Technology and Applications Symposium	 June ����

���� B� Kao and H� Garcia Molina	 Subtask Deadline Assignment for Complex Distributed Soft

Real�Time Tasks	 Technical Report STAN�CS�
��	
		 Stanford University	 Oct� ����

���� J� E� Kirkwood	 Sybase Architecture and Administration	 Prentice�Hall	 ����

��� G� Koch and K� Loney	 Oracle� The Complete Reference	 Mc Graw�Hill	 ����

���� T� Kuo and A� K� Mok	 SSP� a Semantics�Based Protocol for Real�Time Data Access	 IEEE

	th Real�Time Systems Symposium 	 December ����

���� T� Kuo and A� K� Mok	 Real�Time Data Semantics and Similarity�Based Concurrency Control	

IEEE Transactions on Knowledge and Data Engineering	 ����

���� A� A� Lazar	 S� Bhonsle	 and K� S� Lim	 A Binding Architecture for Multimedia Networks	

In Proceedings of COST���� Conference on Multimedia Transport and Teleservices	 Vienna	

Austria	 ����

���� C� Lee	 R� Rajkumar	 and C� Mercer	 Experiences with Processor Reservation and Dynamic

QoS in Real�Time Mach	 In Proceedings of Multimedia Japan	 March ����

���� M� J� Lewis and A� Grimshaw	 The Core Legion Object Model	 In Proceedings of the Fifth

IEEE International Symposium on High Performance Distributed Computing	 August ����

���� J� Liebeherr	 D� E� Wrege	 and D� Ferrari	 Exact Admission Control in Networks with Bounded

Delay Services	 IEEE�ACM Transactions on Networking	 Vol� �	 No� �	 pp� ������	 December

����

���� Y� Lin and S�H� Son	 Concurrency Control in Real�Time Databases by Dynamic Adjustment of

Serialization Order	 Proceedings of the Real�Time Systems Symposium	 pp� ����	 December

����

���� M� Livny	 DeNet Users Guide	 version ��	 Dept� Comp� Science	 Univ� of Wisconsin	 Madison	

WI ����

�

���� H� W� Lockhart	 OSF DCE Guide to Developing Distributed Applications	 McGraw�Hill	 New

York	 ����

��� E� McKenzie and R� Snodgrass	 Evaluation of Relational Algebras Incorporating the Time

Dimension in Databases	 ACM Computing Surveys� Vol� ��	 No� �	 pp� ������	 December

���

���� D� Niehaus	 K� Ramamritham	 J� Stankovic	 G� Wallace	 C� Weems	 W� Burleson	 and J�

Ko	 The Spring Scheduling CO�Processor� Design	 Use and Performance	 Real�Time Systems

Symposium	 Dec� ����

���� H� Pang	 M�J� Carey and M� Livny	 Multiclass Query Scheduling in Real�Time Database

Systems	 IEEE Transactions on Knowledge and Data Engineering	 Vol� �	 No� �	 August ����

���� B� Purimetla	 R� M� Sivasankaran	 J�Stankovic and K� Ramamritham	 Network Services

Databases � A Distributed Active Real�Time Database �DARTDB� Applications	 IEEE Work�

shop on Parallel and Distributed Real�time Systems	 April ����

���� K� Ramamritham	 Real�Time Databases	 Distributed and Parallel Databases �����	 pp� ���

���	 ����

���� K� Ramamritham	 Where Do Deadlines Come from and Where Do They Go Journal of

Database Management	 Spring	 ����

���� K� Ramamritham	 J� Stankovic and P� Shiah	 E�cient Scheduling Algorithms for Real�Time

Multiprocessor Systems	 IEEE Transactions on Parallel and Distributed Systems	 ���������	

April ����

���� K� Ramamritham	 J� Stankovic and W� Zhao	 Distributed Scheduling of Tasks with Deadlines

and Resource Requirements	 IEEE Transactions on Computers	 ����������	 August ����

���� S� Shenker	 C� Partridge	 and R� Guerin	 Speci�cation of Guaranteed Quality of Service	 IETF	

Integrated Services WG	 Internet Draft	 August ����

���� R�M� Sivasankaran	 J�A� Stankovic	 D� Towsley	 B� Purimetla and K� Ramamritham	 Priority

Assignment in Real�Time Active Databases	 The International Journal on Very Large Data

Bases	 Vol� �	 No� 	 January ����

��� R� M� Sivasankaran	 K� Ramamritham	 J� A� Stankovic	 and D� Towsley	 Data Placement	 Log�

ging and Recovery in Real�Time Active Databases	 Workshop on Active Real�Time Database

Systems� Sweden	 June ����

���� X� Song and J� W� S� Liu	 How Well Can Data Temporal Consistency be Maintained IEEE

Symposium on Computer�Aided Control Systems Design	 ����

���� X� Song	 Data Temporal Consistency in Hard Real�Time Systems	 Technical Report No�

UIUCDCS�R�������	 ����

�

���� X� Song and J� W� S� Liu	 Maintaining Temporal Consistency� Pessimistic vs� Optimistic

Concurrency Control	 IEEE Transactions on Knowledge and Data Engineering	 Vol� �	 No� �	

pp� �������	 October ����

���� J� Stankovic and K� Ramamritham	 The Spring Kernel� A New Paradigm for Hard Real�Time

Operating Systems	 IEEE Software	 ����������	 May ���

���� J� Stankovic	 K� Ramamritham	 and D� Towsley	 Scheduling in Real�Time Transaction Sys�

tems	 in Foundations of Real�Time Computing� Scheduling and Resource Management	 edited

by Andre van Tilborg and Gary Koob	 Kluwer Academic Publishers	 pp� �����	 ���

���� J� Stankovic	 SpringNet� A Scalable Architecture For High Performance	 Predictable	 Dis�

tributed	 Real�Time Computing	 Univ� of Massachusetts	 Technical Report	 ����	 October

���

���� J� Stankovic	 and K� Ramamritham	 Advances in Hard Real�Time Systems	 IEEE Computer

Society Press	 Washington	 DC	 September ����

���� J� Stankovic and K� Ramamritham	 Re�ective Real�Time Operating Systems	 Principles of

Real�Time Systems	 Sang Son	 editor	 Prentice Hall	 ����

���� J� Stankovic	 Strategic Directions� Real�Time and Embedded Systems	 ACM Computing Sur�

veys	 Vol� ��	 No� �	 December ����

��� J� Stankovic	 S� Son	 and J� Liebeherr	 BeeHive� Global Multimedia Database Support for

Dependable	 Real�Time Applications	 Proceedings ARTDB�
�	 to appear�

���� H� Tokuda	 T� Nakajima and P� Rao	 Real�Time Mach� Towards a Predictable Real�Time

System	 Proc� Usenix Mach Workshop	 October ����

���� F� Travostino and E� Menze III	 The CORDS Book	 OSF Research Institute	 September ����

���� S� Vinoski� CORBA� Integrating Diverse Applications Within Distributed Heterogeneous En�

vironments	 IEEE Communications Magazine	 ����	 February ����

���� G� Wiederhold	 Mediators in the Architecture of Future Information Systems	 IEEE Computer	

Vol� ��	 No� �	 March ���	 pp� ������

���� D� E� Wrege	 E� W� Knightly	 H� Zhang	 and J� Liebeherr	 Deterministic Delay Bounds

for VBR Video in Packet�Switching Networks� Fundamental Limits and Practical Tradeo�s	

IEEE�ACM Transactions on Networking	 ������������	 June ����

���� M� Xiong	 J� Stankovic	 K� Ramamritham	 D� Towsley and R� M� Sivasankaran	 Maintaining

Temporal Consistency� Issues and Algorithms	 The First International Workshop on Real�

Time Databases	 March	 ����

���� M� Xiong	 R� Sivasankaran	 J� Stankovic	 K� Ramamritham and D� Towsley	 Scheduling Trans�

actions with Temporal Constraints� Exploiting Data Semantics	 Real�Time Systems Sympo�

sium	 December ����

�

���� J� A� Zinky	 D� E� Bakken	 and R� Schantz	 Overview of Quality of Service for Objects	 In

Proceedings of the Fifth IEEE Dual Use Conference	 May ����

�

