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Abstract— Scalability concerns of QoS implemen- that is, finiteness of delays and backlog, in a net-
tations have stipulated service architectures where work where per-flow regulation is only performed
QoS is not provisioned separately to each flow, but at the network edge has been studied in [2], [17]
instead to aggregates of flows. This paper determines 54 under a broader set of assumptions in [4]. The
stochastic bounds for the service experienced by asin-authors of [8] derive bounds on the utilization such
gle flow when resources are managed for aggregatesthat end-to-end delav bounds in a network with
of flows and when the scheduling algorithms used in . y_ X
the network are not known. Using a recently devel- FIFO schedullng are fln_lte, when the total number
oped statistical network calculus, per-flow bounds can Of flows in the network is known and when leaky-

be calculated for backlog, delay, and the burstiness bucket regulators control the traffic from each flow

of output traffic. at the network entrance. These bounds are extended
Index Terms— Statistical Multiplexing, Quality-of- to deadline-based scheduling algorithms in [20].
Service, Admission Control, Network Calculus. We are interested in computing statistical lower
bounds on the service given to a flow in a net-
|. INTRODUCTION work with aggregate provisioning, but where the

Concerns about the scalability of Quamy_ofscheduling algorithms at the nodes are unknown.
Service architectures which offer service guarante¥4 assume that traffic is regulated at the entrance
to individual network flows have led to the developby Per-flow conditioning algorithms, and that there
ment of network services, in which service guarars N0 per-flow processing of traffic after it has en-
tees are provisioned to collections (‘aggregates’) tgred the network. Service is provisioned at network
flows and where the network core does not perforiPdes to aggregates of flows, however, we assume
any per-flow operations. The services defined P information is available on how the provisioned
the Differentiated Services (DiffServ) architecturapacity is distributed to the flows. Particularly, we
fall into this category. If at all, per-flow operation®nly assume that each node is workconserving and
are performed only at the network entrance, fo¥e do not assume that the scheduling algorithms of
example, by regulating the amount of traffic fronthe nodes are known. When calculating the service
a flow that can enter the network. experienced by a single flow we therefore need

Scenarios where core switches do not perfortR assume that the flow has lower priority than
per-flow operations, and where the switch trea@y other flow in the network. Thus, the service
flows from an aggregate in a uniform fashion argiven to a single flow is computed from the service
sometimes referred to as ‘aggregate schedulingilocated to the aggregate that is left unused by the
Some deterministic bounds for aggregate sched@ther flows. In a deterministic worst-case setting,
ing at a single node are summarized in [5]. The geHle unused capacity that is available to a single flow

eral problem of stability with aggregate schedulingVill be small. However, by considering statistical
multiplexing of flows, we observe that even under
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statistical service seen by an individual flow isf effective service curves, as presented in [6].
much higher than the aggregate service divided ly Section Il we discuss the arrivals and service
the number of flows. provisioning of the flow aggregate. We extend the

The results in this paper can be used for vemotion of effective envelopes from [3] to heteroge-
fication of service level agreements with networkeous arrivals. In Section IV we present an effective
service providers. If a network customer can meaervice curve for a single flow at a node in which
sure its aggregate input to the network and theervice is allocated to an aggregate of flows. In
throughput of only a single flow, the customer caBection V, we discuss humerical examples for sin-
determine if the network service provider has pragle node and multi-node networks and evaluate the
visioned the resources specified in the agreemesérvice guarantees achievable with the constructed
If the service seen by the single measured flow é&ffective service curves.
worse than the statistical lower bound paper, the
network service provider is likely to have under-
provisioned network resources.

We derive our results within the context of
a recently developed statistical network calculus. Consider the traffic arrivals from a flow to a
Statistically multiplexed arrivals from flows arenetwork node. The arrivals and departures, respec-
presented in terms affective envelopes [3], which tively, of a flow in the time intervall0,¢) are
are bounds on aggregate traffic that hold with higliven in terms of random processést) and D(t)
probability. Service guarantees to the flow aggrevith non-negative increments, which are defined
gate are expressed in termssefvice curves, which over a joint probability space and which satisfy
provide deterministic lower bounds on service guaR(¢) < A(¢) for all ¢ > 0. We assume a continuous
antees. The service of a single flow is presented fime model with fluid left-continuous traffic arrival
terms of aneffective service curve, which provides functions. Packetization delays and other effects of
a lower bound on the service received by a singtliscrete-sized packets, such as the non-preemption
flow that holds with high probability. Specifically,of packet transmissions, are ignored. The backlog
we will be able to bound the service experienced lyf a flow at timet, denoted byB(t), is given by
a single flow in terms of an effective service curvé(t) = A(t) — D(¢t). The delay at timeg, denoted

II. NETWORK CALCULUS WITH STATISTICAL
SERVICE GUARANTEES

of the form as W (t), is the delay experienced by an arrival
sate _ g ,HTsl,gz] which departs at time, given byW (¢) = inf{d >
J = [Se—He + 0| A(t —d) < D(t)}. We will use A(z,y) and

where S is the service provisioned to the flowD(z,y) to denote the arrivals and departures in the
aggregate an‘c‘altg“’g2 expresses a (strong) effectivdime interval [z,y), with A(z,y) = A(y) — A(x)
envelope of the statistically multiplexed arrival@ndD(z,y) = D(y)— D(x). Moreover, we assume
from all flows in the aggregate. The parameters that A(¢) = D(t) = 0 for t < 0. When analyzing
ande, are violation probabilities and are generallglelays in a network we ignore processing and
small, e.g.£1,62 = 1079, propagation delays.

If one is interested in statistical delay, backlog, We make the following assumptions on the ar-
or loss bounds to the aggregate as a whole (agal functions.
opposed to lower bounds for a single flow), W&1) Regulated arrivals. The arrivalsA of a flow are
refer to the rich literature on multiplexed regulated ~ pounded by a functiont*, called thearrival
traffic e.g., [3], [11], [12], [14], [16], [18], [19]. envelope,! such thatA(t +7) — A(t) < A*(7)
However, generally, the results focus on the analysis oy all +.+ > 0. We assume that arrival en-
of a single node, and do not consider a multi-node velopes’are_subadditive, that id} (z + y) <
network. A*(z) + A*(y), for all z,y > 0.

The remaining sections of this paper are struc-
tured as follows. In Section II, we review needed 1  fynction £ is called anenvelope for a function f if
results from the statistical network calculus in termgt + 7) — f(r) < E(t) for all t,7 > 0.



The assumption of an arrival envelope translat&snally,

into a requirement for per-flow traffic regulation

at the network ingress. For example, a peak-raf@uz = inf{d > 0|Vt >0: A*(t —d) < S°(t)} ,
constrained leaky bucket regulator enforces that (4)
traffic from a flow adheres to the envelogé(t) =
min(Pt, o+ pt) for a peak rate parametét, an av-

r r ram n rstin ram .
erage rate parametgr and a burstiness para eteEounds correspond to the bounds of the determin-

g. .

Before we discuss the service guarantees v'vsé[IC calculus from [1].
introduce the convolution and deconvolution op- Ifaflow_passes through sever.al nodes, each node
erators. Thecomvolution f % g of two func- guaranteeing an effective service curve, then the
tons f and g, is defined asf = g(t) = service offered by all n_odes as a \_Nhole can .be
inf, o {f(t—7)+g(r)}, and the decorvolu- expressed as a convolution of the individual service

tion f @ g is defined asf @ g(t) = curves. _ _ _
sup,o {f(t+7) — g(7)}. Theorem 1. Effective Network Service Curve

Service guarantees to a flow at a network nod&- Consider a flow tgat Passes througnetwork
are given in terms of service curves [9].rFAnimum nodes in series. Let" and D* denote the arrival

H 1 _
service curve is a function S which specifies a ar:ld dep%ttijrfes at the-th node, W('jth‘zlq =4
lower bound on the service given to a flow b =D or h = 2"",’H and D7 = .D'
D(t) > A*S(t) ,vt > 0 . A maximum service Assume that effective service curves are given by

- , = . _ . . h, _
curve for a flow is a functionS which specifies NOndecreasing function§™* at each noder( =
an upper bound on the service y() < A x 1,..., H). Further, assume that there exists a num-

5(t) ,¥¢ > 0 . In this paper, when service isP€ 7 = 0 such that

allocated to flow aggregates we assume that the {

is a probabilistic delay bound that is violated with
robability at most. By settinge = 0, the above

service curves ardrict [5], in the sense that they Pr

D"(t) > inf ]{Ah(t —z)+ Sh’g(x)}}

guarantee the minimum service whenever a flow :f[ii ‘ 5)
is backlogged, that isD(t1,t2) > S(ta — t1) -
wheneverB(z) > 0 for eachz € (t1,t2). for h=1,..., H. Then, for any choice of > 0,3
To express probabilistic service guarantees, fol-
lowing [6], we define aminimum) effective service S =8 xS kg, (6)
curve? for an arrival processi, as a nonnegative
function S¢ that satisfies for alt > 0, is an effective network service curve, with violation
probability bounded by
Pr{D(t) > AxS*(t)} >1—¢. (1)
Given an effective service curve at a node, one can e < He(l+ (H—I)T ra (7)

. - 2
derive probabilistic bounds on backlog, delay, an?lhis theorem depends on a timeascﬂleThe time

the o.u.tput process fqr effective_service CUrves [G;Cale can be established from a (deterministic or
Specifically, the functiomd* o S isa probabilistic probabilistic) bound on the length of a busy period
Eounl(lj for the departures 46, ¢], in the sense that, at a node, or from a priori backlog or delay bounds.
orall ¢, >0, Another issue is that the given effective network
Pr{D(t,t+7)>A*08(r)}>1—¢c. (2 service curve deteriorates with the number of nodes
H. We refer to [6] (cf. Theorem 5), which discusses
when the assumption on the time scdlecan be
Pr{B(t) < A* @8 (0)}>1—=¢. (3) relaxed, and what the implications are of such a
relaxation.

2Henceforth, following the literature, the term ‘service
curve’ refers to a minimum service curve, unless stated other3§, is the impulse function with 6, (¢t) = oo if ¢ > 7, and
wise. o-(t)y=0ift <.

Similarly, §¢ provides a backlog bound as



[1l. STATISTICAL MULTIPLEXING OF FLOWS larger intervalt Strong effective envelopes are used

. . in our construction of effectiv rvi rves for
The fact that bursty or variable-rate traffic our construction of efiective service curves 1o

. f? single flow with aggregate provisioning, and are
sources require less resources per flow when mulii- .
constructed from the effective envelope.

ple flows are multiplexed is widely exploited for ca-
pacity provisioning of network traffic. In this paper,

we express statistical multiplexing of flows usin _ _

the notion of effective envelopes from [3]. Effective®: Constructing Effective Envelopes for Heteroge-

envelopes are functions that express probabilistigous Traffic

upper bounds for the traffic from an aggregate of 1 constryct effective envelopes for an aggregate
flows. A desirable feature of effective envelopes &% fiows we consider an adversarial traffic model
compared with other methods that express statistitfﬂ] where arrivals of flows to the network can

multiplexing gain, e.g., effective bandwidth [7];niviqually exhibit a worst-case arrival pattern as
[13], is that effectlve_envelopes_ are easily re,la_‘teﬁlowed by assumption (A1), but sources do not
to the envelope functions used in the deterministi,gpire to construct a joint worst-case. In addition
network calculus. to assumption (A1) from Section Il, we assume that

Let us now consider a set of flows at a nod_e, the following hold for the arrival processes.
and letA; and D;, respectively, denote the arrival

and departure processes for each flgwe ¢. (A2) Stationarity.” For all ¢ > 0,# > 0 and for any
We will refer to the set of flows as an aggregate 7 > 0and anyz >0, Pr{A;(t,t+7) <z} =
of flows. Let Ac and D, denote the aggregate Pri{A(t',t' +7) < z}.
arrivals and departures from the gkat a network (A3) Independence. The arrivals from two flows
node, that iS,Ac(t) _ Z]’GC A]'(t) and Dc(t) _ 1,] € C, A; and Aj, are stochastlcally inde-
S ee Dj(b). pendent.
We emphasize that these assumptions only hold
for the arrivals to the first node of a flow's route
through the network. Since buffering and schedul-
A deterministic arrival envelope for the aggregatiag distort traffic and introduce correlations be-
is simply given byAz(t) = >, Aj(t). However, tween flows, assumptions (A1)—(A3) may not hold
such an envelope is pessimistic, and generally oveiter traffic has passed through a node. Therefore,
estimates the bandwidth requirements of the aggme assume that assumptions (A1)—(A3) only hold
gate. Therefore, we describe the traffic arrivals frolt the network ingress.
an aggregate with a probabilistic bound, namely the The following construction extends the deriva-
effective envelope [3]. tions in [3] to an aggregate of flows with heteroge-
Given a setC of flows with arrival processA¢, neous arrival envelopes, and is based on an applica-
an effective envelope for A¢ is a functionGg such tion of the Chernoff bound [15]. By heterogeneity,
that we mean that the arrival envelopet of flows
PrqAc(t,t +7) <Gi(r)p >1—¢ Vt, 1. can be different for each flow. The construction of
A strong effective envelope for Ac for intervals of effective envelopegj; for a setC of flows uses
length{ is a subadditive functioﬂif}’g such that for the moment generating function of;, denoted
each intervall, of length¢, as M;(s,t) = E[e4(n7+8s]. As shown in [3], if
assumptions (A1)—(A3) hold, we obtaiv; (s, t) <

A. Effective Envelopes for a Flow Aggregate

Pr{V[t,t—i— 7| CIp: Ae(r) < 7'[?8(7')}

>1—¢. (8)  “In[3], the effective envelope is callddcal effective enve-
Thus, an effective envelope provides a stationaP?Pe and the strong effective envelope is callgtdbal effective

. . . . . ehvelope.
bound for arrivals, which is violated with proba *We only need the stationary bourid[A; (r, 7 + £)] < pir

biIit)_/ at moste. A strong effective enyelope is,. iN\wherep; := lim, o A (r)/r. This bound follows from (A1)
addition, a uniform bound for all subintervals in and (A2).



M (s, t), where Proof: Fix ag € (0,¢) andvyp > 1, and set

Vi _ pjt ( sA%(t) ) -1
M;(s,t) = 1+ e\ —1) . (9 T = a
]( ) A; (t) ( ) 7 0,}/0 1 |
R . = )
With assumption (A3) and with the bound in i = Tl T 7= A%
Eqgn. (9), we obtain from the Chernoff bound thatvherei = 1,2,... ,n andn is the smallest number
with 7,, > £. Consider the intervalg; = [jz;, jz;+
N ‘Z—Ti+1
Tiy1] for j = 0,1,... [ If 7 < 7, then
every intervall, C [0,/] of lengthr is contained
Setting the right hand side equal ¢oand solving in one of thel;;. The total numberV of intervals

Pr{dc(t) >z} <e ™ [[ Mj(s,t) .  (10)
jec

for z gives I;; is bounded by
1 — n .
T = —(ZlogMj(s,t) —loge) . (11) N < Z [M1 +1 (13)
§ 4 : g
jec =1
For any choice ofs > 0, Egn. (11) is an effective < G 1 _ ¢ (14)
envelope for the arrivals frofi. We select the value T S a ap(yo—1)
of the effective envelope dtto be
It follows that
5 . 1 ar
Ge(t) = inf — (3 logM;(s,t) —loge) . (12) Pr{3z,z+7]C[0,4] :
jec

Az, +7) > G5(75 + (1 +70)a0)}
With this choiceGé (t) < Az (t) is always satisfied. < Pr{3i,j : A(jz;, jo; + 7ip1) > G5 (7i41) (15)
Since the derivative of the right hand side of

. S . < Ne¢ . (16)
Eqn. (12) is increasing i, there is at most one
minimum, which can be found by searching foEqn. (15) holds since; ; < 7 < ; implies
the zero of the derivative. Note the similarity of

) — A2
Eqgn. (12) to the effective bandwidth in [7], [13]. T = W (o +Dao,  (17)
Given an effective envelopg; for a setC, we < M7+ (v +1ag - (18)
can COI‘]S'[I’LIJCt a strong effect_ive enveldﬁ!ég. Settingyy = /7 andag = ﬁ completes the
Lemma 1. Given an effective envelopg; for proof. O
a setC of heterogeneous flows satisfyifgll) —  |n Figure 1 we to illustrate the multiplexing
—(A3). An upper bound for a strong effectivegain captured by effective and strong effective
envelope for the arrivals ig is given by envelopes. We plot the effective envelope i
L . identical flows with parameters as given in Sec-
He (1) < Ge <7t + a) ’ O<t=<t, tion V, normalized by the numbe¥ of flows. The

results show that, ad grows large, the effective

wherey > 1 anda € (0,¢) are arbitrary parame- ) .
envelope is close to the average traffic rate.

ters, and

e <e. ¢ ﬁ + i . C. Service Provisioning and Busy Period Estimate
a Y —

We assume that the service allocated to the

aggregate arrivals is given by deterministic service

The quality of the bound in the 'e”?ma for a 9VEILirves. A lower bound of the service given to the
value of ¢ depends on the selection of the twq

. aggregate is expressed in terms of a strict minimum
parameterse and v. To get the optimal bound ggreg b

for a time scale neat* one should choose ~ service curvese and an upper bound for the service
" ’ Iy >0~ s given by a maximum service curvBc. We
v7(y—1)t". The largest subadditive function beIOWdo not make assumptions on a specific scheduling

gt +a) is a strong effective envelope. algorithm at the node, as long as it can guarantee



T ‘ ‘ in Egn. (19), for allt > 0. Let %50@ be a strong

’ Peak Rate . . . .

col- ,“— (Deterministic Envelope) | effective envelope for the arrivals on time intervals
of length Ty, for somee < 1. If there exists a

numberT® < T, such that
HO(T°) < Se(T°) (20)

thenT*® is a probabilistic bound on the busy period,
in the sense that for all > 0,

301

Amount of Traffic Per Flow (kbits)
3
T

Prit—t<T°} > 1—c¢. (21)

101

: ‘ ‘ Proof: Fix ¢t > 0. By Eqn. (19) we have—t < Ty.
0 20 40 60 80 100 We Compute

Time Interval (ms)

Fig. 1. Comparison of effective envelopes (dash-dotted lines)

and strong effective envelopes (solid lines) for Type-1 flow Pr{t—t > T}

from Section V fort < 100 ms, e = 10~°, and for number of R .

flows N = 100, 1000, 10000. The curves show the norm[alized < PT{BC (t+7°) >0 and

curvesGe/|C| andHg °/|C| (/C| = N). For constructingi, ©, e e

we usel = 2 sec, v = 1.01 and¢* = 10 ms. Dc@’i +T ) = SC(T )} (22)
< Pr{dc(t,t +T°) > Hooo(T5)}  (23)

a strict minimum service curve. For example, any <e. (24)

work-conserving scheduling algorithm that allo- hat th Klog i " h
cates a constant rat& > 0 to the aggregate of EdN- (22) uses that the backlog is positive on the

flows delivers a strict minimum service guarante€Ntire interval(, ¢), and the definition of the strict
1 €
Generally, scheduling algorithms do not specify aﬁe_rwclg Curvesc. Eqn.6(23) USEs tha?cgiJer) i
explicit maximum service curve. In these cases,oa'mp |es_ Ac(t,t + TE) > DC%} tT ) and the
maximum service curve of the aggregate can BESUMPtion thatic(T*) > ™" (T7). T'f(jn' (24)
given asS¢(t) = Ct, whereC is the output link follows by applying the definition of{,°" to the
capacity of the node. interval I, = [t—Tp, t], which contains the interval
With the traffic characterizatiod and the min- [t,¢+7) by assumption. This proves the claim.

imum service guarante§: we can derive bounds The lemma allows us to replace a deterministic
on the busy period at a node. We define Husy bound on the busy period by a (possibly less pes-
period for a given timet as the maximal time simistic) probabilistic bound. A similar argument
interval containing during which the backlog from can be used to improve a given probabilistic bound:
the flows inC remains positive. The beginning ofif in all assumptions of the lemma, the deterministic
the busy period for a time is denoted byt with  boundT, is replaced by a probabilistic bourid,
t = sup{r <t: B(r) = 0}. For a strict service which satisfiesPr{t —t< T1} > 1—¢,then
curve Sc, the deterministic network calculus yieldsve can construct another probabilistic boufig]
that the number with Pr{t —t <Tp} > 1— (g1 +¢e2) . We can
. X thus recursively define a sequence of probabilistic
To = inf{r > 0] Ac(r) < Se(r)} (19) boundsT,, on the busy period satisfyin@r{t—g <
provides an upper bound for the length of any busf,} > 1—ne . Since the bound, decreases with
period [5] . Therefore, in any intervdt,t — Tp], n while the violation probabilityne increases, one
the backlog must be zero at least once. Since theeds to pick a ‘good’ value fat.
boundTy can be conservative, the following lemma In Figure 2, we illustrate the busy period esti-
can be used to find a less conservative estimate mates for a link with capacit¢’ = 100 Mbps with
Lemma 2: Consider an aggregafeof flows with traffic according the Type-1 traffic described in Sec-
given arrival and departure processdg(t) and tion V. The figure shows the deterministic boufid
Dc(t), a strict service curvéc(t), andTy as given according to Eqn. (19) and the probabilistic bound



flow from the aggregate. The effective service curve
that we construct expresses the service as seen by
a single flow in terms of a probabilistic bound. The
basic idea for the effective service curve construc-
tion is a subtraction of the multiplexed arrivals of all
flows (including the flow that we are considering)
from the service allocation to the aggregate. Thus,
the effective service curve can be viewed in terms
of the leftover capacity that is not used by the
aggregate. The main result is that a probabilistic
. : : : : lower bound for the service of a single flow from
250 300 350 400 450 500 the aggregate can be given by the effective service
Number of Flows, N Curve.8;1+82 — [Sc _ Hg’f1,62]+’ Where€1 + £9
t':r:fllf-ﬁ?-froixasfgg';nlZVB%iyapﬁ;iE%V‘ﬁﬁgmfti% (‘]’Vijt‘szS;P‘“-T'ﬁeﬂo“l‘s the probability that the effective service curve is
numberT, is a bound for the busy period with grébabilityVI(%laalt?djSC is the SerVIC? curve for the aggregate,
1 — ne. H, '°* is a strong effective envelope for the aggre-
gate, andl’** is a probabilistic busy period bound.
T, = T¢ from Lemma 2 withe = 10~°. The figure This effective service curve will be obtained from

also includes a bound, with probability 1 — 2¢ the following (more complex) theorem.
obtained by a repeated application of Lemma 2. Theorem 2: Effective service curve for a single
The busy periods are evaluated f§r= 250 — 500 flow in an aggregate of flows. Given a setC
flows. The graph indicates that a single appncaﬁdp{ flows with a strict deterministic service curve
of Lemma 2 significantly reduces the estimate ofic. Assume that the sef — {j} is allocated a
the busy period, whereas successive iterations of f@terministic maximum service cung. ;. Assume
lemma do not result in noticeable improvements.2 probabilistic boundl™: on the busy period as
The busy period bound can be applied in Thediven in Lemma 2 and lek_;*** denote a strong
rem 1 to give a bound on the range of the infimur@ffective envelope for the arrivals from — {;}
in Eqn. (5). Note, however, that the above busy pg)r time intervals of lengti™:. Then the function
riod bounds assume deterministic arrival envelopeiefined on the intervg, 7=*] by
and are directly_applicable at the first node in the Seter =[5, — T e 5 4] (25)
network are available. I I +
For strict service curvesS;, we can directly is an effective service curve for ﬂOW e C, with
provide busy period bounds when a priori bound4olation probabilitye; + 2. ® More precisely,
on backlog or delays are available. Given a backlog ) e
boundb* that satisfiesPr {B(t) > b*} < e andT L7 {Di(t) = xi%fal{Di(t —z)+ 8 Z(m)}}
such thatGz*(T) + b* < S¢(T), or given a delay > 1 _EEI teg). (26)
boundd* that satisfiesPr {D(t) > Ac(t —d*)} <
e1 andT such thatG;? (T + d*) < S¢(T'), then one
can obtain from the definition of the strict servicd hus, a probabilistic service allocation for a single
curve thatPr {t —t > T} < &1 + €. flow can be obtained from the service allocation of
an aggregate by subtracting a probabilistic upper
bound on the departures from all other flows.
The function 851“2 as defined in Eqn. (25)
need not be monotonic in. However, one can
Given the aggregate of flows and given the semake S "2 monotonic by replacing it with the
vice provisioned to the aggregate as described in thggest nondecreasing function be|¢§§,1+62_ If Se
previous section, we now address the problem of
determining an effective service curve for a single ®*we use 1£].(t) = max{f(t),0}".

n

Busy Period Estimate, T_(sec.)

IV. EFFECTIVE SERVICE FOR AFLOW WITH
AGGREGATE SERVICE
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is convex andH is concave, ther§;*™** is However, sinced* ; = 37, ... Ay is large and

always convex and nondecreasing. does not exploit statistical multiplexing, the bounds
with such a service curve may not have practical
Proof: Fix ¢ > 0. Then relevance. This is different when the left-over ca-

pacity of the aggregate is expressed as an ‘effective’

D] (ta t) = DC (ta t) - D—] (ta t) (27) service curve.
> Se(t—t)—A ;jx5(t)+A (1) (28)  The following corollary states the previously
> Se(t—1) mentioned simpler bound on the minimum effective

— inf {A j(t,t—=z)+ 5 j(z)}(29) service to flow;. This bound does not assume that
a maximum service curve is available and estimates

In Eqn. (27), we have used the definition of the sef{’; *** by M5 .

vice curvesS¢ andS_;, and the fact thab_;(t) = Corollary 1: The conclusions of Theorem 2 hold

A_;(t) by definition oft. In Egn. (29), we have without change for

expanded the convolution operator, restricted the sevtes — [, _HTH,EZ]

range of the infimum, and taked_; under the J - e ¢ + -

infimum. SinceD;(t) = A;(t) and D;(t,t) > 0, Proof. The claim holds sincéqtgsl’g2 is a strong

this implies effective envelope for the flows i@ — {;}, and
since f > f * g follows by the definition of the
D;(t) > Ai(t) + [Se(t—1) convolution operator. O

—inf {A_;(t,t —2)+S_;(z .(30
wSH{ it ) il )}]+ (30) Thus, we have derived a lower bound on the

e1tes Tles |, & effective service to a flow even when information
Let & . [S.c @ (H_; ™ 55)], be the is available only about the aggregate of flows. In
function defined in the statement of tJEe theorenﬁ ny ) ggreg Sy
Then the next section, we will see that even with the
pessimistic lower bound of this section, we are able
Pr{D;(t) > i<1%f {Aj(t — =)+ S§1+52(m)}}(31) to extract a significant amount of multiplexing gain.
z<Te1

. > A €iteary
S Pr{ D;(t) = A;(t) + 87 (t — 1) } (32) V. EVALUATION

andt —t < T* .
Vio € [t — T, 1] - We_ now p_resent numerical examples_ f(_)r_ the
> Prid A (tot) < HT (4 1) (33) effective service curve. We assume that individual
andt — t < Té J floyvs are regulated _at _the entrance to the network by
== using a peak rate limited leaky bucket with arrival
> 1—(e1+e2), (34) envelopeA;(r) = min {P;7,0; + p;7} for flow j,
where P; > p; is the peak ratep; is the average

as claimed. i ) .
Since the given effective service curve for the ag@!€: ando; is a burst size parameter. We consider
o types of flows with parameters as given in the

gregate applies to all (workconserving) scheduli _ .
algorithms, it is pessimistic for most, particularly/0/loWing table:

FIFO. It is least conservative if flows in the set Type | Peak Rate| Mean Rate| Burst Size

C — {j} are transmitted with higher priority than P; (Mbps) | p; (Mbps) | o, (bits)

flow j. . _ Type 1| 15 0.15 95400
There is a corresponding formulation of a perf Type 2 6.0 0.15 10345

flow service curve in the deterministic calculus; : . .
which can be found in [5], [10]. With the samén the following we useAj and A3 to denote the

notation as in Theorem 2, we can write a determifival envelope of a Type-1 and a Type-2 flow,
istic per-flow service guarantee as respectively. We assume that the arrivals satisfy

Sj = [SC —A* % ?_j (35) "The parameters are selected to be equal to those in [3], [11]
J + and other studies.
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assumptions (A1)—(A3), and we construct effective
envelopes as shown in Subsection IlI-B. 0

Service curves for the aggregate have a constar o
rate form. We setS¢(t) = Nec t, whereec > 0 is
referred to as ‘per-flow capacity’ anl = |C| is
the number of flows. We assume that the maximur¢
service curve is given b§.(t) = C t, whereC is
the link capacity.

N.=.1.0000.

Peak Rate

Allocation
t & Iil\l«llyl\lnlrlii‘l.'

alue of the Service Curve (Mbit)

For the calculation of strong effective envelope<>10 Gamsnnnanns
and effective service curves we use the busy perio ¢ ,,**"" Flow Allocation_ _ _
bounds from Subsection IlI-C. We use a busy |/ .--==""""7 éﬁs‘r:aa?izfate
period bound ofT" = 2 sec, which satisfies the ©°, 20 80 8 100

Time (ms)
(a) Type-1 Flows.

T T

deterministic busy period bound in the sense o1
Eqgn. (19). We sety = 1.01 andt* = 10 ms.2
For the construction of effective service curve: ,
§:, unless specifically stated otherwise, we appl 10° N = 10000
the simpler and more conservative bound fron: :
Corollary 1.

We compare the results obtained with effectlw
service curves with the deterministic bound frorr~ ,
Eqn. (35), as well as to the following non- statlstlca%

210° ©

urve (Mbit)

-------

..... e

per-flow service provisioning schemes. 210° Peak Rate Allocation /]
S0 f s foF s Tk R AL
« A peak rate allocation, where each flow has >1072 ---------- Eﬁ,‘;j’;”ﬁg'j_;‘tfo;e_r‘__ / ]
a service curve of;(t) =P; t. Tl | L.oeememmmmmTTTTT /
]( ) . J Ly S Rl Average Rate Allocation
« An average rate allocation, where each flow ;g .2"" ‘ ‘ ‘
. . 0 20 40 60 80 100
j has a service curve &;(t) = p; t. Time (ms)
« A deterministic per-flow allocation which de- (b) Type-2 Flows.

livers worst-case delay guarantees to ea€lyg. 3. Example 1: Effective service curve vs. deterministic

flow. The resources allocated to a flowe" -flow allocation. Effective service curves are shown for
different values ofN, and are calculated far = 10°.

are determined by the smallest (determin-
istic) constant-rate service curvs;(t)

¢ t that satisfies the delay bound ie., flows, andés = 0.9016 for Type-2 flows. If each

S o node runs a rate-based per-flow scheduling algo-
¢ = infic=>0[Vt>0:A45(t—d)<c t}' rithm, this bandwidth corresponds to a deterministic

This allocation method assumes that the nely, 1,y aliocation needed to meet a delay bound
work nodes perform per-flow scheduling opergs ; — 10 /..

ations. With this aggregate allocation we now construct
effective service curves for different values f
A. Example 1: Effective Service Curvesat a Sngle  and fore = 109. The effective service curves are
Node S:(t) = [N¢; t—%fb?*E,j(t)]+ according to The-
We consider an aggregate of flows, where orem 2, andS:(t) = [N¢; t—?{g’g(t)]+, according
flows are either all Type-1 or all Type-2 flowsto Corollary 1. ForT we use a deterministic busy
The capacity allocated to the aggregate is set period estimate according to Eqn. (19).
Se(t) = N¢;t, whereé, = 1.3140 for Type-1  In Figures 3(a) and 3(b) we plot the effec-
" _ _ tive service curvesS: for different values ofN,
n our examples, the numerical computations for effectlvgnd compare them with the deterministic per-flow
envelopes are done in discrete intervals of lenfjte= 0.2 m . . . .
ddlocation service curves;(t) = ¢; t. Effective

and not in continuous time. This may introduce dlscretlzatl i )
errors. service curves computed according to Corollary 1
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are included as solid lines, and effective servict o'
curves computed according to Theorem 2 are show
as dotted lines, and deterministic per-flow servict
curvesS;(t) = ¢t are included as dashed lines.
We see that, for most values &f, the statistical
lower bound on the service as given by the effectiv@lozi
service curve is larger than service curves obtaines
from a deterministic per-flow allocation. Using the 5
network calculus from Section I, larger effective
service curves result in smaller delay bounds. ' oo
To explain the noticeable change of slope of the ; ; ,
curve forN =40 att ~ 70 ms in Figure 3(a), we 1’ - ,
note that at/(P—p) ~ 70 ms, the arrival envelope ' Server Capaciy, C (Mbps)
of Type-1 flows changes fromPt to o + p t. (a) Type-1 Flows.
The results from Theorem 2 and Corollary 1 car ** : : =
be distinguished only for small values &f. Since
the effective service curves with Corollary 1 are
easier to compute and do not require a maximur 10
service curve for the aggregate, from now on, we
will compute only the simpler effective service
curve from Corollary 1.

Average Rate Allocation

ws, N

3

™

Number of Flows,
(=
o

B. Example 2: Using Lower Bounds on Service for
Provisioning

-

[
o

We consider the same single node network as i Peak Rate Allocation
Example 1. However, rather than assuming that th 101"01" > 0
aggregate provisioning is given (as in Example 1), Server Capacity, C (Mbps)
we use the effective service curve from Corollary 1 (b) Type-2 Flows.

to determine how many flows can be provisionedd. 4. Example 2: Number of flows admitted on a link
on a link to meet a required service guarantee with capacityC' to satisfy a delay bound af = 10 ms with
. . " probability 1 — e.
In this example, we determine how many flow8 Y
can be put on a link with capacit¢’ such that

o : For small C, the number of flows is too small
a probabilistic delay bound in Eqn. (4) does n% extract multiplexing gain, and, consequently, the
exceedd = 10 ms. Using the lower bound on b g gam, ' 9 %

, : : . effective service curve constructed from Corollary 1
the service given by the effective service CUNVGS inferior to a per-flow deterministic service curve
we find the largestV such thatS;(t) = [C't — b

Te . _ allocation. On the other hand, whéhgrows large,
He (t)]_lir assures via Eqn. (4) a delay boundith the number of flows that can be admitted with
probat_)l iyl —e. the effective service curves are close to that of an

In Figures 4(a) and 4(b), we show the number

f :
flows that can receive the probabilistic delay bour%verage rate allocation.
of d = 10 ms as a function of the network capac- . . _
ity. The figures include plots of effective servicd> Example 3: Multiple Nodes with Cross Traffic
curves withe = 1072,107%,107°. We also include = We consider a network with two nodes, as shown
results for an average rate allocation (which doés Figure 5, and determine the network service
not satisfy the delay bound), and the results for @rve for a flow in this network. There afé flows
deterministic per flow allocation, which iS;(¢) ~ from Type-1 flows that pass through both nodes.
1.3140¢ for Type-1 flows andS;(t) ~ 0.9016¢ for We refer to these flows as ‘through flows’. At each
Type-2 flows. node there aréV, cross flows from Type-2. We set
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10 T T
N, flows N, flows

(Type 2) (Type 2) , : :
10" ¢ NGNS =110000

T Node 1 [ Node 2 T

N, flows % %
N, flows N, flows
(Type 1) N, flows N, flows

Fig. 5. Example 3: A network with two nodes and with cross
traffic. The cross-traffic consists &, Type-2 flows at the first
node and at the second node.

N1 N, = 1000

Peak Rate
Aliocation

Value of Service Curve (Mbit)

Determl nistic Per——— ]

= Flow Allocaugn_ ................ q
_______ ‘Average:Rate
-

Allocation ‘

§
the number of through and cross flows to be equa <! .-*"" l l
at each node; = N,) ° 2 * time ) % 100
We assume that the service guarantee for th% 6. Example 3: Network effective service curve for
aggregate ofN; + N, flows at the first node is different values ofiV;, and are calculated far=107°.

Sc(t) = (N1é1 + N2é) t, where whereé; = 1.3140 50
andés = 0.9016 as in Example 1. Recall that this ~ *5f
bandwidth guarantees a deterministic delay bount 4ot . Pone fom Ban: (39 \,
of d = 10 ms for a rate-based scheduling algorithm ~ asf =777\ 7777 7777nnmmmnmmemenmenmesesd
with per-flow rate allocation. 2 5l

With this aggregate allocation we now constructg .| Statistioal Delay Bound
effective service curves for different values 8§ % |
and fore = 10~°. The effective service curves for &
a Type-1 through flow at the first node and seconc
node, respectively, are denoted By and 57, top e A NG
and are given byS™e(t) = [(N1é1 + Naé)t — | Design Delay ]
H?’T’E(t)]+ (h = 1,2) according to Corollary 1, % e Iye w0
where ?—L’C"T’E is the strong effective envelope of Number of Through Flows, N,

the aggregate of all ﬂOWS_ at tl_feth node. I_n_th_e Fig. 7. Example 3: Achieved delay bounds with the effective
effective service curve, sinc€ is a deterministic service curve.

bound, the violation probability of the busy period
is zero.S, and 87, and are given by Once weconstructed as described in Subsection I11-B. With
have the effective service curve for each node, whe statistical bound in Egn. (2) we can construct

can calculate the network service cursée“ = an effective envelope for the Type-1 departures
S 526 and determine probabilistic delay boundfrom the first node byAy, © S1 °. This effective
from Eqn (4). envelope can be turned into a strong envelope via

The calculation ofH}"* is straightforward as Lemma 1. Let us call this envelopiy . The

described in Subsectlon [lI-B. The calculation o$trong effective envelope for the Type -2 flows at
HET‘g at the second node, however, requires sortiee second node, denoted bﬁVT ¢, is same as
thought. Note that, for the through flows, we canncﬂl 15 Finally, the surnH2 T2 _ H2 Te +7.¢2T €

assume that the arrivals at the second node @Oes us a strong effectlve envelope for all arnvals
independent. Therefore, we need to consider the the second node. As a last issue, we need to
entire set ofN; through flows as a group. At theensure thaf” is selected so that it is greater than the
first node, the group ofV; Type 1 flows obtains busy period at each node. Here, we use a worst-case
an effective service curve aSy°(t) = [(N1é1 + estimate (using the deterministic network calculus)
Noé)t — 7"11va *(t)]+, where the subscripts (in ato provide us with such a bound.

slight abuse of notation) indicate the set of flows, In Figure 6, we plot the resulting effective net-
and Where”H T s a strong effective envelopework service curves foiN;, N, = 100, 1000, 10000

for the Type- 2 flows at the first node, which idlows. A comparison shows that fay; > 100, the



statistical lower bound of the service to a singlgs]
through flow offers more service than a determin-
istic per-flow allocation. Thus, when the number,
of flows is large, the aggregate provisioning will
result in lower, albeit statistical, delay bounds. This
point is emphasized in Figure 7, where we plot the
statistical delay bounds achieved with the networif7
service curve by applying Egn. (4) as a function o
the number of flowsVy. If Ny > 100, the delay
bounds offered by our statistical lower bound o
the service are better than a deterministic per-flo
allocation.

(6]

8]

9]

VI. CONCLUSION
[10]
We have presented a method to compute statis-

tical lower bounds on the service given to a single
flow in a network in which service is provisioned g4l
aggregates of flows. The lower bounds assume that
the service allocated to the aggregate workconserv-
ing, but does not assume that the scheduling algo-
rithms in the network are known. The derivatiori
were done in the context of a statistical network
calculus that expresses the lower bound of thEs]
service given to a flow in terms of an effective
service curve. By describing the service at each
node with an effective service curve, the service
given by the network as a whole is simply expressetf]
as a concatenation of the per-node service curves.
Thus, we were able to derive probabilistic end-to-
end guarantees. A limitation of the calculus is that t5]
assumes that bounds on the busy period, or a priori
bounds on backlog or delay are available. We have
shown how such bounds can be derived.
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