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Abstract— Scalability concerns of QoS implemen-
tations have stipulated service architectures where
QoS is not provisioned separately to each flow, but
instead to aggregates of flows. This paper determines
stochastic bounds for the service experienced by a sin-
gle flow when resources are managed for aggregates
of flows and when the scheduling algorithms used in
the network are not known. Using a recently devel-
oped statistical network calculus, per-flow bounds can
be calculated for backlog, delay, and the burstiness
of output traffic.

Index Terms— Statistical Multiplexing, Quality-of-
Service, Admission Control, Network Calculus.

I. I NTRODUCTION

Concerns about the scalability of Quality-of-
Service architectures which offer service guarantees
to individual network flows have led to the develop-
ment of network services, in which service guaran-
tees are provisioned to collections (‘aggregates’) of
flows and where the network core does not perform
any per-flow operations. The services defined in
the Differentiated Services (DiffServ) architecture
fall into this category. If at all, per-flow operations
are performed only at the network entrance, for
example, by regulating the amount of traffic from
a flow that can enter the network.

Scenarios where core switches do not perform
per-flow operations, and where the switch treats
flows from an aggregate in a uniform fashion are
sometimes referred to as ‘aggregate scheduling’.
Some deterministic bounds for aggregate schedul-
ing at a single node are summarized in [5]. The gen-
eral problem of stability with aggregate scheduling,
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that is, finiteness of delays and backlog, in a net-
work where per-flow regulation is only performed
at the network edge has been studied in [2], [17]
and under a broader set of assumptions in [4]. The
authors of [8] derive bounds on the utilization such
that end-to-end delay bounds in a network with
FIFO scheduling are finite, when the total number
of flows in the network is known and when leaky-
bucket regulators control the traffic from each flow
at the network entrance. These bounds are extended
to deadline-based scheduling algorithms in [20].

We are interested in computing statistical lower
bounds on the service given to a flow in a net-
work with aggregate provisioning, but where the
scheduling algorithms at the nodes are unknown.
We assume that traffic is regulated at the entrance
by per-flow conditioning algorithms, and that there
is no per-flow processing of traffic after it has en-
tered the network. Service is provisioned at network
nodes to aggregates of flows, however, we assume
no information is available on how the provisioned
capacity is distributed to the flows. Particularly, we
only assume that each node is workconserving and
we do not assume that the scheduling algorithms of
the nodes are known. When calculating the service
experienced by a single flow we therefore need
to assume that the flow has lower priority than
any other flow in the network. Thus, the service
given to a single flow is computed from the service
allocated to the aggregate that is left unused by the
other flows. In a deterministic worst-case setting,
the unused capacity that is available to a single flow
will be small. However, by considering statistical
multiplexing of flows, we observe that even under
these pessimistic assumptions the lower bound on
the service given to a single flow is considerable,
especially if the number of flows is large. The
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statistical service seen by an individual flow is
much higher than the aggregate service divided by
the number of flows.

The results in this paper can be used for veri-
fication of service level agreements with network
service providers. If a network customer can mea-
sure its aggregate input to the network and the
throughput of only a single flow, the customer can
determine if the network service provider has pro-
visioned the resources specified in the agreement.
If the service seen by the single measured flow is
worse than the statistical lower bound paper, the
network service provider is likely to have under-
provisioned network resources.

We derive our results within the context of
a recently developed statistical network calculus.
Statistically multiplexed arrivals from flows are
presented in terms ofeffective envelopes [3], which
are bounds on aggregate traffic that hold with high
probability. Service guarantees to the flow aggre-
gate are expressed in terms ofservice curves, which
provide deterministic lower bounds on service guar-
antees. The service of a single flow is presented in
terms of aneffective service curve, which provides
a lower bound on the service received by a single
flow that holds with high probability. Specifically,
we will be able to bound the service experienced by
a single flow in terms of an effective service curve
of the form

S�����j �
�
SC �HT �� � ��

C
�
�

where SC is the service provisioned to the flow
aggregate andHT �� � ��

C expresses a (strong) effective
envelope of the statistically multiplexed arrivals
from all flows in the aggregate. The parameters��
and�� are violation probabilities and are generally
small, e.g.,��� �� � ����.

If one is interested in statistical delay, backlog,
or loss bounds to the aggregate as a whole (as
opposed to lower bounds for a single flow), we
refer to the rich literature on multiplexed regulated
traffic e.g., [3], [11], [12], [14], [16], [18], [19].
However, generally, the results focus on the analysis
of a single node, and do not consider a multi-node
network.

The remaining sections of this paper are struc-
tured as follows. In Section II, we review needed
results from the statistical network calculus in terms

of effective service curves, as presented in [6].
In Section III we discuss the arrivals and service
provisioning of the flow aggregate. We extend the
notion of effective envelopes from [3] to heteroge-
neous arrivals. In Section IV we present an effective
service curve for a single flow at a node in which
service is allocated to an aggregate of flows. In
Section V, we discuss numerical examples for sin-
gle node and multi-node networks and evaluate the
service guarantees achievable with the constructed
effective service curves.

II. N ETWORK CALCULUS WITH STATISTICAL

SERVICE GUARANTEES

Consider the traffic arrivals from a flow to a
network node. The arrivals and departures, respec-
tively, of a flow in the time interval��� t� are
given in terms of random processesA�t� andD�t�
with non-negative increments, which are defined
over a joint probability space and which satisfy
D�t� � A�t� for all t � �. We assume a continuous
time model with fluid left-continuous traffic arrival
functions. Packetization delays and other effects of
discrete-sized packets, such as the non-preemption
of packet transmissions, are ignored. The backlog
of a flow at timet, denoted byB�t�, is given by
B�t� � A�t� �D�t�. The delay at timet, denoted
as W �t�, is the delay experienced by an arrival
which departs at timet, given byW �t� � inffd �
� j A�t � d� � D�t�g� We will use A�x� y� and
D�x� y� to denote the arrivals and departures in the
time interval �x� y�, with A�x� y� � A�y� � A�x�
andD�x� y� � D�y��D�x�. Moreover, we assume
that A�t� � D�t� � � for t � �. When analyzing
delays in a network we ignore processing and
propagation delays.

We make the following assumptions on the ar-
rival functions.

(A1) Regulated arrivals. The arrivalsA of a flow are
bounded by a functionA�, called thearrival
envelope,1 such thatA�t� ���A�t� � A����
for all t� � � �. We assume that arrival en-
velopes are subadditive, that is,A��x � y� �
A��x� �A��y�, for all x� y � �.

1 A function E is called anenvelope for a function f if
f�t� ��� f�� � � E�t� for all t� � � �.
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The assumption of an arrival envelope translates
into a requirement for per-flow traffic regulation
at the network ingress. For example, a peak-rate
constrained leaky bucket regulator enforces that
traffic from a flow adheres to the envelopeA��t� �
min�Pt� ���t� for a peak rate parameterP , an av-
erage rate parameter�, and a burstiness parameter
�.

Before we discuss the service guarantees we
introduce the convolution and deconvolution op-
erators. The convolution f � g of two func-
tions f and g, is defined as f � g�t� �
inf�����t� ff�t� �� � g���g � and the deconvolu-
tion f � g is defined as f � g�t� �
sup��� ff�t� ��� g���g.

Service guarantees to a flow at a network node
are given in terms of service curves [9]. Aminimum
service curve is a function S which specifies a
lower bound on the service given to a flow by
D�t� � A � S�t� ��t � � � A maximum service
curve for a flow is a functionS which specifies
an upper bound on the service byD�t� � A �
S�t� ��t � � � In this paper, when service is
allocated to flow aggregates we assume that the
service curves arestrict [5], in the sense that they
guarantee the minimum service whenever a flow
is backlogged, that is,D�t�� t�� � S�t� � t��
wheneverB�x� � � for eachx � �t�� t��.

To express probabilistic service guarantees, fol-
lowing [6], we define a(minimum) effective service
curve2 for an arrival processA, as a nonnegative
functionS� that satisfies for allt � �,

Pr
�
D�t� � A � S��t�� � �� � � (1)

Given an effective service curve at a node, one can
derive probabilistic bounds on backlog, delay, and
the output process for effective service curves [6].
Specifically, the functionA��S� is a probabilistic
bound for the departures on��� t�, in the sense that,
for all t� � � �,

Pr fD�t� t� �� � A� � S����g � �� � � (2)

Similarly, S� provides a backlog bound as

Pr fB�t� � A� � S����g � �� � � (3)

2Henceforth, following the literature, the term ‘service
curve’ refers to a minimum service curve, unless stated other-
wise.

Finally,

dmax � inf fd � � j �t � � 	 A��t� d� � S��t�g �
(4)

is a probabilistic delay bound that is violated with
probability at most�. By setting� � �, the above
bounds correspond to the bounds of the determin-
istic calculus from [1].

If a flow passes through several nodes, each node
guaranteeing an effective service curve, then the
service offered by all nodes as a whole can be
expressed as a convolution of the individual service
curves.

Theorem 1: Effective Network Service Curve
[6]. Consider a flow that passes throughH network
nodes in series. LetAh andDh denote the arrival
and departures at theh-th node, withA� � A,
Ah � Dh�� for h � 
� � � � �H and DH � D.
Assume that effective service curves are given by
nondecreasing functionsSh�� at each node (h �
�� � � � �H). Further, assume that there exists a num-
berT � � such that

Pr

�
Dh�t� � inf

x����T �

�
Ah�t� x� � Sh���x��

�

� �� � � (5)

for h � �� � � � �H. Then, for any choice ofa � �,3

Snet��� � S��� � � � � � SH�� � 	�H��	a (6)

is an effective network service curve, with violation
probability bounded by

�� � H�

�
� � �H���

T � a


a

�
� (7)

This theorem depends on a time scaleT . The time
scale can be established from a (deterministic or
probabilistic) bound on the length of a busy period
at a node, or from a priori backlog or delay bounds.
Another issue is that the given effective network
service curve deteriorates with the number of nodes
H. We refer to [6] (cf. Theorem 5), which discusses
when the assumption on the time scaleT can be
relaxed, and what the implications are of such a
relaxation.

3�� is the impulse function with �� �t� � � if t � � , and
�� �t� � � if t � � .
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III. STATISTICAL MULTIPLEXING OF FLOWS

The fact that bursty or variable-rate traffic
sources require less resources per flow when multi-
ple flows are multiplexed is widely exploited for ca-
pacity provisioning of network traffic. In this paper,
we express statistical multiplexing of flows using
the notion of effective envelopes from [3]. Effective
envelopes are functions that express probabilistic
upper bounds for the traffic from an aggregate of
flows. A desirable feature of effective envelopes as
compared with other methods that express statistical
multiplexing gain, e.g., effective bandwidth [7],
[13], is that effective envelopes are easily related
to the envelope functions used in the deterministic
network calculus.

Let us now consider a setC of flows at a node,
and letAj andDj , respectively, denote the arrival
and departure processes for each flowj � C.
We will refer to the set of flows as an aggregate
of flows. Let AC and DC denote the aggregate
arrivals and departures from the setC at a network
node, that is,AC�t� �

P
j�C Aj�t� andDC�t� �P

j�C Dj�t�.

A. Effective Envelopes for a Flow Aggregate

A deterministic arrival envelope for the aggregate
is simply given byA�C�t� �

P
j�C A

�
j �t�. However,

such an envelope is pessimistic, and generally over-
estimates the bandwidth requirements of the aggre-
gate. Therefore, we describe the traffic arrivals from
an aggregate with a probabilistic bound, namely the
effective envelope [3].

Given a setC of flows with arrival processAC ,
an effective envelope for AC is a functionG�C such
that
Pr
n
AC�t� t� �� � G�C���

o
� �� � �t� � �

A strong effective envelope for AC for intervals of
length
 is a subadditive functionH�� �

C such that for
each intervalI� of length
,

Pr
n
��t� t� � � � I� 	 AC��� � H�� �

C ���
o

� �� � � (8)
Thus, an effective envelope provides a stationary

bound for arrivals, which is violated with proba-
bility at most �. A strong effective envelope is, in
addition, a uniform bound for all subintervals in a

larger interval.4 Strong effective envelopes are used
in our construction of effective service curves for
a single flow with aggregate provisioning, and are
constructed from the effective envelope.

B. Constructing Effective Envelopes for Heteroge-
neous Traffic

To construct effective envelopes for an aggregate
of flows we consider an adversarial traffic model
[11], where arrivals of flows to the network can
individually exhibit a worst-case arrival pattern as
allowed by assumption (A1), but sources do not
conspire to construct a joint worst-case. In addition
to assumption (A1) from Section II, we assume that
the following hold for the arrival processes.

(A2) Stationarity.5 For all t � �� t� � � and for any
� � � and anyx � �, PrfAi�t� t��� � xg �
PrfAi�t

�� t� � �� � xg.
(A3) Independence. The arrivals from two flows

i� j � C, Ai andAj, are stochastically inde-
pendent.

We emphasize that these assumptions only hold
for the arrivals to the first node of a flow’s route
through the network. Since buffering and schedul-
ing distort traffic and introduce correlations be-
tween flows, assumptions (A1)–(A3) may not hold
after traffic has passed through a node. Therefore,
we assume that assumptions (A1)–(A3) only hold
at the network ingress.

The following construction extends the deriva-
tions in [3] to an aggregate of flows with heteroge-
neous arrival envelopes, and is based on an applica-
tion of the Chernoff bound [15]. By heterogeneity,
we mean that the arrival envelopesA�i of flows
can be different for each flow. The construction of
effective envelopesG�C for a setC of flows uses
the moment generating function ofAj , denoted
asMj�s� t� � E�eAj�����t	s�. As shown in [3], if
assumptions (A1)–(A3) hold, we obtainMj�s� t� �

4In [3], the effective envelope is calledlocal effective enve-
lope and the strong effective envelope is calledglobal effective
envelope.

5We only need the stationary boundE�Aj��� � � t�� � �i�
where�j �� lim���A�j �� ��� . This bound follows from (A1)
and (A2).
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M j�s� t�, where

M j�s� t� � � �
�j t

A�j �t�

	
esA

�

j �t	 � �


� (9)

With assumption (A3) and with the bound in
Eqn. (9), we obtain from the Chernoff bound that

PrfAC�t� � xg � e�xs
Y
j�C

M j�s� t� � (10)

Setting the right hand side equal to� and solving
for x gives

x �
�

s

�X
j�C

logM j�s� t�� log �
�
� (11)

For any choice ofs � �, Eqn. (11) is an effective
envelope for the arrivals fromC. We select the value
of the effective envelope att to be

G�C�t� � inf
s��

�

s

�X
j�C

logM j�s� t�� log �
�
� (12)

With this choice,G�C�t� � A�C�t� is always satisfied.
Since the derivative of the right hand side of
Eqn. (12) is increasing ins, there is at most one
minimum, which can be found by searching for
the zero of the derivative. Note the similarity of
Eqn. (12) to the effective bandwidth in [7], [13].

Given an effective envelopeG�C for a setC, we
can construct a strong effective envelopeH�� �

C .
Lemma 1: Given an effective envelopeG�C for

a setC of heterogeneous flows satisfying�A�� �
��A��. An upper bound for a strong effective
envelope for the arrivals inC is given by

H����

C �t� � G�C
	
�t� a



� � � t � 
 �

where� � � and a � ��� 
� are arbitrary parame-
ters, and

�� � � 	 

a

p
� � �p
� � �

�

The quality of the bound in the lemma for a given
value of t depends on the selection of the two
parametersa and �. To get the optimal bound
for a time scale neart�, one should choosea 
p
������t�. The largest subadditive function below

G�C
	
�t� a



is a strong effective envelope.

Proof: Fix a� � ��� 
� and�� � �, and set

�i � a�
�i� � �

�� � �

xi � �i�� � �i � a��
i
�

wherei � �� 
� � � � � n andn is the smallest number
with �n � 
. Consider the intervalsIij � �jxi� jxi�

�i��� for j � �� �� � � � � d ���i��
xi

e. If � � �i, then
every intervalIx � ��� 
� of length � is contained
in one of theIij . The total numberN of intervals
Iij is bounded by

N �
nX
i
�

l
� �i��

xi

m
� � (13)

�
�X
i
�




a�

�

�i�
�




a���� � ��
� (14)

It follows that

Prf��x� x� � � � ��� 
� 	

A�x� x� �� � G����� � �� � ���a��g
� Prf�i� j 	 A�jxi� jxi � �i��� � G���i���g(15)

� N� � (16)

Eqn. (15) holds since�i�� � � � �i implies

�i�� � ����i�� � ��� � ��ao (17)

� ���� � ��� � ��a� � (18)

Setting �� �
p
� and a� � ap

��� completes the
proof. �

In Figure 1 we to illustrate the multiplexing
gain captured by effective and strong effective
envelopes. We plot the effective envelope forN
identical flows with parameters as given in Sec-
tion V, normalized by the numberN of flows. The
results show that, asN grows large, the effective
envelope is close to the average traffic rate.

C. Service Provisioning and Busy Period Estimate

We assume that the service allocated to the
aggregate arrivals is given by deterministic service
curves. A lower bound of the service given to the
aggregate is expressed in terms of a strict minimum
service curveSC and an upper bound for the service
is given by a maximum service curveSC . We
do not make assumptions on a specific scheduling
algorithm at the node, as long as it can guarantee
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Fig. 1. Comparison of effective envelopes (dash-dotted lines)
and strong effective envelopes (solid lines) for Type-1 flow
from Section V fort � 	�� ms, � � 	���, and for number of
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curvesG�

C�jCj andH�� �
C

�jCj (jCj � N ). For constructingH�� �
C
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 sec, 	 � 	
�	 and t� � 	� ms.

a strict minimum service curve. For example, any
work-conserving scheduling algorithm that allo-
cates a constant rateK � � to the aggregate of
flows delivers a strict minimum service guarantee.
Generally, scheduling algorithms do not specify an
explicit maximum service curve. In these cases, a
maximum service curve of the aggregate can be
given asSC�t� � Ct, whereC is the output link
capacity of the node.

With the traffic characterizationA�C and the min-
imum service guaranteeSC we can derive bounds
on the busy period at a node. We define thebusy
period for a given time t as the maximal time
interval containingt during which the backlog from
the flows inC remains positive. The beginning of
the busy period for a timet is denoted byt with
t � supf� � t 	 B��� � �g. For a strict service
curveSC , the deterministic network calculus yields
that the number

T� � inf f� � � j A�C��� � SC���g (19)

provides an upper bound for the length of any busy
period [5] . Therefore, in any interval�t� t � T��,
the backlog must be zero at least once. Since the
boundT� can be conservative, the following lemma
can be used to find a less conservative estimate.

Lemma 2: Consider an aggregateC of flows with
given arrival and departure processesAC�t� and
DC�t�, a strict service curveSC�t�, andT� as given

in Eqn. (19), for allt � �. Let HT���
C be a strong

effective envelope for the arrivals on time intervals
of length T�, for some� � �. If there exists a
numberT � � T� such that

HT���
C �T �� � SC�T �� � (20)

thenT � is a probabilistic bound on the busy period,
in the sense that for allt � �,

Pr
�
t� t � T �

� � �� � � (21)

Proof: Fix t � �. By Eqn. (19) we havet�t � T�.
We compute

Prft� t � T �g
� Pr

�
BC�t� T �� � � and

DC�t� t� T �� � SC�T ��
�

(22)

� Pr
�
AC�t� t� T �� � HT���

C �T ��
�

(23)

� � � (24)

Eqn. (22) uses that the backlog is positive on the
entire interval�t� t�, and the definition of the strict
service curveSC . Eqn. (23) uses thatBC�t�T �� �
� implies AC�t� t � T �� � DC�t� t � T �� and the
assumption thatSC�T �� � HT���

C �T ��. Eqn. (24)
follows by applying the definition ofHT���

C to the
intervalIT� � �t�T�� t�, which contains the interval
�t� t�T �� by assumption. This proves the claim.�

The lemma allows us to replace a deterministic
bound on the busy period by a (possibly less pes-
simistic) probabilistic bound. A similar argument
can be used to improve a given probabilistic bound:
If in all assumptions of the lemma, the deterministic
boundT� is replaced by a probabilistic boundT�,
which satisfiesPr

�
t � t � T�

� � � � �� , then
we can construct another probabilistic boundT�,
with Pr

�
t � t � T�

� � � � ��� � ��� . We can
thus recursively define a sequence of probabilistic
boundsTn on the busy period satisfyingPr

�
t�t �

Tn
� � ��n� . Since the boundTn decreases with

n while the violation probabilityn� increases, one
needs to pick a ‘good’ value forn.

In Figure 2, we illustrate the busy period esti-
mates for a link with capacityC � ��� Mbps with
traffic according the Type-1 traffic described in Sec-
tion V. The figure shows the deterministic boundT�
according to Eqn. (19) and the probabilistic bound
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Fig. 2. Example 1: Busy period estimates with Type-1 flow
traffic from Section V for a link withC � 	�� Mbps. The
numberTn is a bound for the busy period with probability
	� n�.

T� � T � from Lemma 2 with� � ����. The figure
also includes a boundT� with probability � � 
�
obtained by a repeated application of Lemma 2.
The busy periods are evaluated forN � 
��� ���
flows. The graph indicates that a single application
of Lemma 2 significantly reduces the estimate on
the busy period, whereas successive iterations of the
lemma do not result in noticeable improvements.

The busy period bound can be applied in Theo-
rem 1 to give a bound on the range of the infimum
in Eqn. (5). Note, however, that the above busy pe-
riod bounds assume deterministic arrival envelopes,
and are directly applicable at the first node in the
network are available.

For strict service curvesSC , we can directly
provide busy period bounds when a priori bounds
on backlog or delays are available. Given a backlog
boundb� that satisfiesPr fB�t� � b�g � �� andT
such thatG��C �T � � b� � SC�T �, or given a delay
boundd� that satisfiesPr fD�t� � AC�t� d��g �
�� andT such thatG��C �T �d�� � SC�T �, then one
can obtain from the definition of the strict service
curve thatPr ft� t � Tg � �� � ��.

IV. EFFECTIVE SERVICE FOR AFLOW WITH

AGGREGATESERVICE

Given the aggregate of flows and given the ser-
vice provisioned to the aggregate as described in the
previous section, we now address the problem of
determining an effective service curve for a single

flow from the aggregate. The effective service curve
that we construct expresses the service as seen by
a single flow in terms of a probabilistic bound. The
basic idea for the effective service curve construc-
tion is a subtraction of the multiplexed arrivals of all
flows (including the flow that we are considering)
from the service allocation to the aggregate. Thus,
the effective service curve can be viewed in terms
of the leftover capacity that is not used by the
aggregate. The main result is that a probabilistic
lower bound for the service of a single flow from
the aggregate can be given by the effective service
curve.S�����

j �
�
SC �HT �� � ��

C
�
�

, where�� � ��
is the probability that the effective service curve is
violated,SC is the service curve for the aggregate,
HT �� � ��
C is a strong effective envelope for the aggre-

gate, andT �� is a probabilistic busy period bound.
This effective service curve will be obtained from
the following (more complex) theorem.

Theorem 2: Effective service curve for a single
flow in an aggregate of flows. Given a setC
of flows with a strict deterministic service curve
SC . Assume that the setC � fjg is allocated a
deterministic maximum service curveS�j. Assume
a probabilistic boundT �� on the busy period as
given in Lemma 2 and letHT �� � ��

�j denote a strong
effective envelope for the arrivals fromC � fjg
for time intervals of lengthT �� . Then the function
defined on the interval��� T �� � by

S�����j �
�
SC �HT �� � ��

�j � S�j
�
�

(25)

is an effective service curve for flowj � C, with
violation probability�� � ��. 6 More precisely,

Pr

�
Dj�t� � inf

x�T ��

�
Dj�t� x� � S�����j �x�

��

� �� ��� � ��� � (26)

Thus, a probabilistic service allocation for a single
flow can be obtained from the service allocation of
an aggregate by subtracting a probabilistic upper
bound on the departures from all other flows.

The function S�����j as defined in Eqn. (25)
need not be monotonic int. However, one can
makeS�����

j monotonic by replacing it with the
largest nondecreasing function belowS�����

j . If SC

6We use “�f ���t� � maxff�t�� �g”.
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is convex andHT �
� � ��
�j is concave, thenS�����

j is
always convex and nondecreasing.

Proof: Fix t � �. Then

Dj�t� t� � DC�t� t��D�j�t� t� (27)

� SC�t� t��A�j � S�t� �A�j�t� (28)

� SC�t� t�

� inf
x�t�t

�
A�j�t� t� x� � S�j�x�

�
�(29)

In Eqn. (27), we have used the definition of the ser-
vice curvesSC andS�j, and the fact thatD�j�t� �
A�j�t� by definition of t. In Eqn. (29), we have
expanded the convolution operator, restricted the
range of the infimum, and takenA�j under the
infimum. SinceDj�t� � Aj�t� andDj�t� t� � �,
this implies

Dj�t� � Aj�t� �
�
SC�t� t�

� inf
x�t�t

�
A�j�t� t� x� � S�j�x�

��
�
�(30)

Let S�����j �
�
SC � �HT �� ���

�j � S�j�
�
�

be the
function defined in the statement of the theorem.
Then

Pr
�
Dj�t� � inf

x�T ��

fAj�t� x� � S�����j �x�g�(31)

� Pr

�
Dj�t� � Aj�t� � S�����j �t� t�

and t� t � T ��

�
(32)

� Pr


�
�

�t� � �t� T �� � t� 	

A�j�t�� t� � HT �� ���
�j �t� t��

and t� t � T ��

��
� (33)

� �� ��� � ��� � (34)

as claimed. �

Since the given effective service curve for the ag-
gregate applies to all (workconserving) scheduling
algorithms, it is pessimistic for most, particularly,
FIFO. It is least conservative if flows in the set
C � fjg are transmitted with higher priority than
flow j.

There is a corresponding formulation of a per-
flow service curve in the deterministic calculus,
which can be found in [5], [10]. With the same
notation as in Theorem 2, we can write a determin-
istic per-flow service guarantee as

Sj �
h
SC �A��j � S�j

i
�

(35)

However, sinceA��j �
P

k�C�k �
j A
�
k is large and

does not exploit statistical multiplexing, the bounds
with such a service curve may not have practical
relevance. This is different when the left-over ca-
pacity of the aggregate is expressed as an ‘effective’
service curve.

The following corollary states the previously
mentioned simpler bound on the minimum effective
service to flowj. This bound does not assume that
a maximum service curve is available and estimates
HT �� � ��
�j by HT �� � ��

C .
Corollary 1: The conclusions of Theorem 2 hold

without change for

S�����j �
�
SC �HT �� � ��

C
�
�
�

Proof. The claim holds sinceHT �� � ��
C is a strong

effective envelope for the flows inC � fjg, and
since f � f � g follows by the definition of the
convolution operator. �

Thus, we have derived a lower bound on the
effective service to a flow even when information
is available only about the aggregate of flows. In
the next section, we will see that even with the
pessimistic lower bound of this section, we are able
to extract a significant amount of multiplexing gain.

V. EVALUATION

We now present numerical examples for the
effective service curve. We assume that individual
flows are regulated at the entrance to the network by
using a peak rate limited leaky bucket with arrival
envelopeA�j ��� � minfPj�� �j � �j�g for flow j,
wherePj � �j is the peak rate,�j is the average
rate, and�j is a burst size parameter. We consider
two types of flows with parameters as given in the
following table:7

Type Peak Rate Mean Rate Burst Size
Pj (Mbps) �j (Mbps) �j (bits)

Type 1 1.5 0.15 95400
Type 2 6.0 0.15 10345

In the following we useA�� andA�� to denote the
arrival envelope of a Type-1 and a Type-2 flow,
respectively. We assume that the arrivals satisfy

7The parameters are selected to be equal to those in [3], [11]
and other studies.
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assumptions (A1)–(A3), and we construct effective
envelopes as shown in Subsection III-B.

Service curves for the aggregate have a constant-
rate form. We setSC�t� � Nc t, wherec � � is
referred to as ‘per-flow capacity’ andN � jCj is
the number of flows. We assume that the maximum
service curve is given bySC�t� � C t, whereC is
the link capacity.

For the calculation of strong effective envelopes
and effective service curves we use the busy period
bounds from Subsection III-C. We use a busy
period bound ofT � 
 sec, which satisfies the
deterministic busy period bound in the sense of
Eqn. (19). We set� � ���� and t� � �� ms.8

For the construction of effective service curves
S�j , unless specifically stated otherwise, we apply
the simpler and more conservative bound from
Corollary 1.

We compare the results obtained with effective
service curves with the deterministic bound from
Eqn. (35), as well as to the following non-statistical
per-flow service provisioning schemes.
	 A peak rate allocation, where each flowj has

a service curve ofSj�t� � Pj t.
	 An average rate allocation, where each flow
j has a service curve ofSj�t� � �j t.

	 A deterministic per-flow allocation which de-
livers worst-case delay guarantees to each
flow. The resources allocated to a flow
are determined by the smallest (determin-
istic) constant-rate service curveSj�t� �

cj t that satisfies the delay boundd, i.e.,


cj � inf
n
c � � j �t � � 	 A�j�t� d� � c t

o
.

This allocation method assumes that the net-
work nodes perform per-flow scheduling oper-
ations.

A. Example 1: Effective Service Curves at a Single
Node

We consider an aggregate ofN flows, where
flows are either all Type-1 or all Type-2 flows.
The capacity allocated to the aggregate is set to
SC�t� � N
ci t, where 
c� � ������ for Type-1

8In our examples, the numerical computations for effective
envelopes are done in discrete intervals of length� � �

 ms,
and not in continuous time. This may introduce discretization
errors.
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Fig. 3. Example 1: Effective service curve vs. deterministic
per-flow allocation. Effective service curves are shown for
different values ofN , and are calculated for� � 	���.

flows, and
c� � ������ for Type-2 flows. If each
node runs a rate-based per-flow scheduling algo-
rithm, this bandwidth corresponds to a deterministic
per-flow allocation needed to meet a delay bound
of d � �� ms.

With this aggregate allocation we now construct
effective service curves for different values ofN
and for� � ����. The effective service curves are
S�j �t� � �N
cj t�HT��

�j �S�j�t��� according to The-

orem 2, andS�
j �t� � �N
cj t�HT��

C �t���, according
to Corollary 1. ForT we use a deterministic busy
period estimate according to Eqn. (19).

In Figures 3(a) and 3(b) we plot the effec-
tive service curvesS�

j for different values ofN ,
and compare them with the deterministic per-flow
allocation service curveSj�t� � 
cj t. Effective
service curves computed according to Corollary 1
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are included as solid lines, and effective service
curves computed according to Theorem 2 are shown
as dotted lines, and deterministic per-flow service
curvesSj�t� � 
c t are included as dashed lines.

We see that, for most values ofN , the statistical
lower bound on the service as given by the effective
service curve is larger than service curves obtained
from a deterministic per-flow allocation. Using the
network calculus from Section II, larger effective
service curves result in smaller delay bounds.

To explain the noticeable change of slope of the
curve forN � �� at t 
 �� ms in Figure 3(a), we
note that at���P��� 
 ��ms, the arrival envelope
of Type-1 flows changes fromPt to � � � t.

The results from Theorem 2 and Corollary 1 can
be distinguished only for small values ofN . Since
the effective service curves with Corollary 1 are
easier to compute and do not require a maximum
service curve for the aggregate, from now on, we
will compute only the simpler effective service
curve from Corollary 1.

B. Example 2: Using Lower Bounds on Service for
Provisioning

We consider the same single node network as in
Example 1. However, rather than assuming that the
aggregate provisioning is given (as in Example 1),
we use the effective service curve from Corollary 1
to determine how many flows can be provisioned
on a link to meet a required service guarantee.

In this example, we determine how many flows
can be put on a link with capacityC such that
a probabilistic delay bound in Eqn. (4) does not
exceedd � �� ms. Using the lower bound on
the service given by the effective service curve,
we find the largestN such thatS�

j �t� � �C t �
HT��
C �t��� assures via Eqn. (4) a delay boundd with

probability �� �.
In Figures 4(a) and 4(b), we show the number of

flows that can receive the probabilistic delay bound
of d � �� ms as a function of the network capac-
ity. The figures include plots of effective service
curves with� � ����� ����� ����. We also include
results for an average rate allocation (which does
not satisfy the delay bound), and the results for a
deterministic per flow allocation, which isSj�t� 

������ t for Type-1 flows andSj�t� 
 ������ t for
Type-2 flows.
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Fig. 4. Example 2: Number of flows admitted on a link
with capacityC to satisfy a delay bound ofd � 	� ms with
probability 	� �.

For smallC, the number of flows is too small
to extract multiplexing gain, and, consequently, the
effective service curve constructed from Corollary 1
is inferior to a per-flow deterministic service curve
allocation. On the other hand, whenC grows large,
the number of flows that can be admitted with
the effective service curves are close to that of an
average rate allocation.

C. Example 3: Multiple Nodes with Cross Traffic

We consider a network with two nodes, as shown
in Figure 5, and determine the network service
curve for a flow in this network. There areN� flows
from Type-1 flows that pass through both nodes.
We refer to these flows as ‘through flows’. At each
node there areN� cross flows from Type-2. We set
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Node 1 Node 2

N2 flows
(Type 2)

N2 flows
(Type 2)

N2 flows N2 flows

N1 flows
(Type 1)

N1 flows N1 flows

Fig. 5. Example 3: A network with two nodes and with cross
traffic. The cross-traffic consists ofN� Type-2 flows at the first
node and at the second node.

the number of through and cross flows to be equal
at each node (N� � N�).

We assume that the service guarantee for the
aggregate ofN� � N� flows at the first node is
SC�t� � �N�
c� �N�
c� t, where where
c� � ������
and
c� � ������ as in Example 1. Recall that this
bandwidth guarantees a deterministic delay bound
of d � �� ms for a rate-based scheduling algorithm
with per-flow rate allocation.

With this aggregate allocation we now construct
effective service curves for different values ofN�

and for� � ����. The effective service curves for
a Type-1 through flow at the first node and second
node, respectively, are denoted byS���

� and S���
� ,

and are given bySh���t� � ��N�
c� � N�
c� t �
Hh�T��
C �t��� (h � �� 
) according to Corollary 1,

whereHh�T��
C is the strong effective envelope of

the aggregate of all flows at theh-th node. In the
effective service curve, sinceT is a deterministic
bound, the violation probability of the busy period
is zero.S���

� andS���
� , and are given by Once we

have the effective service curve for each node, we
can calculate the network service curveSnet��

� �
S���
� �S���

� , and determine probabilistic delay bounds
from Eqn. (4).

The calculation ofH��T��
C is straightforward as

described in Subsection III-B. The calculation of
H��T��
C at the second node, however, requires some

thought. Note that, for the through flows, we cannot
assume that the arrivals at the second node are
independent. Therefore, we need to consider the
entire set ofN� through flows as a group. At the
first node, the group ofN� Type-1 flows obtains
an effective service curve ofS�� �

N�
�t� � ��N�
c� �

N�
c� t � H��T� �
N�

�t���, where the subscripts (in a
slight abuse of notation) indicate the set of flows,
and whereH��T� �

N�
is a strong effective envelope

for the Type-2 flows at the first node, which is
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different values ofN�, and are calculated for� � 	���.
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Fig. 7. Example 3: Achieved delay bounds with the effective
service curve.

constructed as described in Subsection III-B. With
the statistical bound in Eqn. (2) we can construct
an effective envelope for the Type-1 departures
from the first node byA�N�

� S�� �
N�

. This effective
envelope can be turned into a strong envelope via
Lemma 1. Let us call this envelopeH��T��

N�
. The

strong effective envelope for the Type-2 flows at
the second node, denoted byH��T� �

N�
, is same as

H��T� �
N�

. Finally, the sumH��T���
C � H��T� �

N�
�H��T� �

N�

gives us a strong effective envelope for all arrivals
at the second node. As a last issue, we need to
ensure thatT is selected so that it is greater than the
busy period at each node. Here, we use a worst-case
estimate (using the deterministic network calculus)
to provide us with such a bound.

In Figure 6, we plot the resulting effective net-
work service curves forN�� N� � ���� ����� �����
flows. A comparison shows that forN� � ���, the
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statistical lower bound of the service to a single
through flow offers more service than a determin-
istic per-flow allocation. Thus, when the number
of flows is large, the aggregate provisioning will
result in lower, albeit statistical, delay bounds. This
point is emphasized in Figure 7, where we plot the
statistical delay bounds achieved with the network
service curve by applying Eqn. (4) as a function of
the number of flowsN�. If N� � ���, the delay
bounds offered by our statistical lower bound on
the service are better than a deterministic per-flow
allocation.

VI. CONCLUSION

We have presented a method to compute statis-
tical lower bounds on the service given to a single
flow in a network in which service is provisioned to
aggregates of flows. The lower bounds assume that
the service allocated to the aggregate workconserv-
ing, but does not assume that the scheduling algo-
rithms in the network are known. The derivations
were done in the context of a statistical network
calculus that expresses the lower bound of the
service given to a flow in terms of an effective
service curve. By describing the service at each
node with an effective service curve, the service
given by the network as a whole is simply expressed
as a concatenation of the per-node service curves.
Thus, we were able to derive probabilistic end-to-
end guarantees. A limitation of the calculus is that it
assumes that bounds on the busy period, or a priori
bounds on backlog or delay are available. We have
shown how such bounds can be derived.
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