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Abstract—A fundamental problem for the delay and backlog
analysis across multi-hop paths in wireless networks is how to
account for the random properties of the wireless channel. Since
the usual statistical models for radio signals in a propagation
environment do not lend themselves easily to a description of
the available service rate, the performance analysis of wireless
networks has resorted to higher-layer abstractions, e.g., using
Markov chain models. In this work, we propose a network
calculus that can incorporate common statistical models of fading
channels and obtain statistical bounds on delay and backlog
across multiple nodes. We conduct the analysis in a transfer
domain, which we refer to as the SNR domain, where the service
process at a link is characterized by the instantaneous signal-
to-noise ratio at the receiver. We discover that, in the transfer
domain, the network model is governed by a dioid algebra, which
we refer to as (min, x) algebra. Using this algebra we derive the
desired delay and backlog bounds. An application of the analysis
is demonstrated for a simple multi-hop network with Rayleigh
fading channels.

I. INTRODUCTION

Network-layer performance analysis seeks to provide es-
timates on the delays experienced by traffic traversing the
elements of a network, as well as the corresponding buffer
requirements. For wireless networks, a question of interest is
how the stochastic properties of wireless channels impact delay
and backlog performance. Wireless channels are characterized
by rapid variations of the channel quality caused by the
mobility and location of communicating devices. This is due
to fading, which is the deviation in the attenuation experienced
by the transmitted signal when traversing a wireless channel.
The term fading channel is used to refer to a channel that
experiences such effects. In this paper we explore the network-
layer performance of a multi-hop network where each link is
represented by a fading channel.

We model the wireless network by tandem queues with
variable capacity servers, where each server expresses the
random capacity of a fading channel. We ignore the impact
of coding by assuming that transmission rates over the fading
channels are equal to their information-theoretic capacity limit,
C, which is expressed as a function of the instantaneous
signal-to-noise ratio (SNR) at the receiver, 7, by C(vy) =
Wlog(1 + 7), where W is the channel bandwidth (in Hz).
Numerous models are available to describe the gain of fading
channels depending on the type of fading (slow or fast),
and the environment (e.g., urban or rural). The instantaneous,
information-theoretic channel capacity of a fading channel can
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be represented as the logarithm of -y by (see Chp. 14.2 in [20])
Cly) = clog (9(7)) M

where c is a constant and the function g(+y) is used to character-
ize the fading channel. We are interested in finding bounds on
the end-to-end delay and on buffer requirements for a cascade
of fading channels, with store-and-forward processing at each
channel.

The analysis in this paper takes a system-theoretic stochas-
tic network calculus approach [15], which describes the net-
work properties using a (min, +) dioid algebra. Arrival and
departure processes at a network element are described by
bivariate stochastic processes A(7,t) and D(7,t), respectively,
denoting the cumulative arrivals and departures in the time in-
terval [7,t). A network element is characterized by the service
process S(7,t), denoting the available service in [r,t). The
input-output relationship at the network element is governed
by

D(0,t) > A% 5(0,1), 2)
where the (min,+)convolution operator ‘x’ is defined as
f*g(r,t) = infr<u<i{f(7,u) + g(u, t)}. If network traffic
passes through a tandem of N network elements with service
processes S1,59,...,Sn, the service of the network as a
whole can be expressed by the convolution Sy % So % ... % Sy.

Methodologies for network-layer performance analysis of
wireless networks with fading channels include queueing
theory [7], [13], [16], effective bandwidth [12], [18], [24]-
[26] and, more recently, network calculus [5], [9], [10], [14],
[19], [23]. A detailed discussion of these works is given in
[1]. The stochastic properties of fading channels present a
formidable challenge for a network-layer analysis since the
service processes corresponding to the channel capacity of
common fading channel models such as Rician, Rayleigh, or
Nakagami-m, require to take a logarithm of their distributions.
To avoid this complexity, researchers often turn to higher-layer
abstractions to model fading channels. Widely used abstraction
are the two-state Gilbert-Elliott model and its extensions to
finite-state Markov channels (FSMC) [21]. FSMC models sim-
plify the analysis to a degree that the network model becomes
tractable, at least at a single node. Extensions to multi-hop
settings encounter a rapidly growing state space. As of today,
no general multihop analysis is available for fading channel
models, such as Rician, Rayleigh, or Nakagami-m. We note
that there is also a literature on physical-layer performance
metrics of fading in multi-hop wireless relay network with



independent, non-regenerative relays, so-called amplify-and-
forward networks, e.g., [2], [11], [22]. Different from the
store-and-forward architecture considered in a network-layer
analysis, such networks do not involve buffers at intermediate
nodes.

In this paper, we pursue a novel approach to the analysis
of multi-hop wireless networks. We develop a calculus for
wireless networks that can be applied to fading channel models
from the wireless communication literature to provide network-
layer performance bounds. We view the network-layer model
with arrival, departure and service processes as residing in
a bit domain, where traffic is measured in bits, and service
availability is measured in bits per second. We view the fading
channel models used in wireless communications as residing
in an alternate domain, which we call the SNR domain, where
channel properties are expressed in terms of the distribution
of the signal-to-noise ratio at the receiver. We then derive a
method to compute performance bounds from these traffic and
service characterizations.

A key observation in our work is that service elements
in the SNR domain obey the laws of a dioid algebra. We
devise a suitable dioid, referred to as (min, x) algebra, where
the minimum takes the role of the standard addition, and
the second operation is the usual multiplication, and use it
for analysis in the SNR domain. In this domain multi-hop
descriptions of fading channels become tractable. In particular,
we find that a cascade of fading channels can be expressed in
terms of a convolution in the new algebra of the constituting
channels. The key to our analysis is that we derive performance
bounds entirely in the SNR domain. Observing that the bit
and SNR domains are linked by the exponential function, we
transfer arrival and departure processes from the bit to the
SNR domain. Then, we derive backlog and delay bounds in
the transfer domain using the (min, x) algebra. The results
are mapped back to the original bit domain to finally give
us the desired performance bounds. Our derivations in the
SNR domain require the computation of products and quotients
of random variables. Here, we take advantage of the Mellin
transform to facilitate otherwise cumbersome calculations.
Then, the computational problem is reduced to finding the
Mellin transform for service and traffic processes.

The main contribution of this paper is the development of
a framework for studying the impact of channel gain models
on the network-layer performance of wireless networks. For
the purposes of this paper, the SNR domain is used solely
as a transfer domain that enables us to solve an otherwise
intractable mathematical problem. On the other hand, the
ability to map quantities that appear in network-layer models
and concepts found in a physical-layer analysis may prove
useful in a broader context, e.g., for studying cross-layer
performance issues in wireless communications. Moreover, the
(min, x) algebra and the Mellin transform form a tool set
that can be applied more generally in wireless communications
for studying the channel gain of cascades of fading channels.
As the first paper on the (min, X) network calculus algebra,
our paper only considers simple network scenarios and makes
numerous convenient assumptions (which are made explicit
in Sec. II). There is room for significant future work on
extensions of the model and a relaxation of the presented
assumptions.
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Fig. 1. Tandem network model.

The remainder of the paper is organized as follows. We
describe the system model in Sec. II, where we also motivate
the use of the SNR domain. In Sec. III we present the
(min, x) algebra and derive performance bounds. In Sec. IV
we apply the analysis to a cascade of Rayleigh channels, and
present numerical examples. We discuss brief conclusions in
Sec. V.

II. NETWORK MODEL IN THE BIT AND SNR DOMAINS

We consider a wireless N-node tandem network as shown
in Fig. 1, where each node is modeled by a server with an in-
finite buffer. We are interested in the performance experienced
by a (through) flow that traverses the entire network and may
encounter cross traffic at each node. (Page limits prevent a
discussion of cross-traffic in this paper. We refer to [1] for the
analysis of a network with cross traffic.) One can think of the
cross-traffic at a node as the aggregate of all traffic traversing
the node that does not belong to the through flow. The service
given to the through flow at a node is a random process, which
is governed by the instantaneous channel capacity as well as
the cross traffic at the node. We consider a fluid-flow traffic
model where the flow is infinitely divisible. We will work in
a discrete-time domain 7 = {¢; : t; = i At,i € Z}, where Z
is the set of integers and At is length of the time unit. Setting
At =1 allows us to replace t; by i, which we interpret as the
index of a time slot. We assume that the system is started with
empty queues at time ¢ = 0.

Different nodes and different traffic flows will be distin-
guished by subscripts. The cumulative arrivals to, the service
offered by, and the departures from the node are represented
by random processes A,, S,, and D,, that will be described
more precisely below, with A,, = D,,_1 forn=1,... , N—1.
We denote by A = A; and D = Dy, respectively, the arrivals
to and the departures from the tandem network. Throughout,
we assume that arrival and service processes satisfy stationary
bounds.

A. Traffic and Service in the Bit Domain

Consider for the moment a single node. Dropping sub-
scripts, we write

t—1 t—1
A(r,t) = Zai, and D(7,t) = Zdi’

for the cumulative arrivals and departures, respectively, at the
node in the time interval [7,t), where a; denotes the arrivals
and d; the departures in the i-th time slot. Due to causality,
we have D(0,t) < A(0,t). The processes lie in the set F of
bivariate functions f(7,t) that are increasing in their second
argument and satisfy f(¢,¢) = 0 for all ¢t. The backlog at time
t > 0 is given by

B(t) = A(0,t) — D(0,t) , 3)



and the delay at the node is given by
W(t) =inf {u>0: A(0,¢t) < D(0,t+u)} . “4)

The service of the node in the time interval [r,t) is given
by a random process S(7,t), such that Eq. (2) holds for every
arrival process A and the corresponding departure process D.
This service description with bivariate functions is referred to
as dynamic server. Initially defined for non-random service [4],
dynamic servers have been extended to random processes in

(31, [8].

The above model is a typical network-layer model, where
traffic and service are measured in bits. We thus refer to this
model of arrivals, departures, and service as residing in a bit
domain.

The network calculus exploits that networks that satisfy the
input-output relation of Eq. (2) with equality can be viewed
as linear systems in a (min,+)dioid algebra [17]. In the
(RU{+0o0}, min, +) dioid, the minimum and addition take the
place of the standard addition and multiplication operations.
The network calculus is based on the fact that (F, min, ) is
again a dioid [3]. Note that the min-plus convolution, which
provides the second operation in the dioid, is not commutative
in F.

B. Service Model for Fading Channels

To compute a service model for a wireless channel, we
assume that the channel state information is sampled at
equal time intervals At. With At = 1, let 7; denote the
instantaneous signal-to-noise ratio observed at the receiver in
the i-th sampling epoch. Then, ; is a nonnegative random
variable that has the probability distribution of the underlying
fading model. We assume that the random variables ; are
independent and identically distributed. This assumption is
justified when At is longer than the channel coherence time.
Otherwise, the assumption will result in optimistic bounds.
We emphasize that the network calculus in this paper applies
to settings without independence, however, the derivation of
performance bounds will proceed differently. Using Eq. (1),
the instantaneous service offered by the channel in the ¢-th slot
is given by log g(7;), and the corresponding service process is
given by

t—1
S(r,t) =Y logg(v), (5)

where we have chosen units such that the constant in Eq. (1)
takes the value ¢ = 1.

The service description in Eq. (5) requires us to work
with the logarithm of fading distributions, which presents a
non-trivial technical difficulty via the usual network calculus
or queueing theory. On the other hand, observe that the
exponential S(7,t) = 57! is described more simply by

str.0) = [To) - ©

This motivates the development of a system model that allows
us to exploit the more tractable service representation in
Eq. (6). In this alternative model, arrivals, departures, and
service reside in a different domain, where we can work
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Fig. 2.

Transfer Domain of Network Model.

directly with the distribution functions of the fading channel
gain and the corresponding SNR at the receiver.

C. Network Model in the SNR Domain

We now proceed by mapping the network model from
Fig. 1 into a transfer domain, which we refer to as SNR
domain. We will seek to derive performance bounds in the
transfer domain, and then map the results to the bit domain
to obtain network-layer bounds for backlog and delays. The
relationship of the network models in bit domain and SNR
domain is illustrated in Fig. 2.

In the previous subsection, we constructed the service
process for a wireless link in the SNR domain in Eq. (6) as

S(r,t) =51,

By analogy, we describe the arrivals and departures in the SNR
domain by

AT ) 2eAT)  and  D(r,t) 2P0
Throughout this paper, we use calligraphic upper-case letters
to represent processes that characterize traffic or service as a
function of the instantaneous SNR in the sense of Eq. (6).
Due to the monotonicity of the exponential function, D(0, t)
and A(0,t) are increasing in ¢, and satisfy the causality
property D(0,t) < .A(0,t). The backlog process is accordingly
described by

B(t)2eB® = A(t)/D(t).

Since time is not affected by this transformation, the delay is
given by
W) EW(t) = inf{u>0: A{t) <Dt +uw)}. ()

To interpret these processes in the transfer domain, let

’Ya,iég_l(e‘“) be the instantaneous channel SNR required
to transmit a; in a single time slot, assuming transmission at
the rate of the capacity limit. The arrival process in the SNR
domain can then be expressed in terms of these variables as

t—1
A(r,t) = [T 9(vai) - ®)

Here, we are treating channel quality expressed in terms of
the instantaneous SNR as a commodity. An arrival in a time
unit represents a workload, where -, ; expresses the amount of
resources that will be consumed by the workload. The backlog



can similarly be expressed in terms of the instantaneous SNR

as
t+tp—1

B(t) = H 9(v)

with the interpretation that a node with backlog B(t) at time ¢
requires full use of the channel capacity for 75 time units to
clear the backlog.

Most importantly, the concept of the dynamic server trans-
lates to the SNR domain. In a network system, the service
process in the bit domain satisfies Eq. (2) if and only if the
process S(7,t) = e5(™) in the SNR domain satisfies

DO,0) = inf {A(0,1)- S(u.0)} ©)

We refer to a network element that satisfies Eq. (9) for any
sample path as dynamic SNR server. In this general setting, we
do not require that S takes the form in Eq. (6), in particular,
S(r,t) = S(7,u) - S(u, t) does not need to hold.

Traffic aggregation in the SNR domain is expressed in
terms of a product. When M flows have arrivals at a node
with arrival processes denoted by A,k =1,..., M, then the
total arrival, A4, are given for any 0 < 7 < ¢ by

If we let A; and A,g, denote the corresponding processes in
the SNR domain, we see that

M
Aage(r,) = [ [ Ax(7,1) .
k=1

With the above definitions, the usual network description
by a (min, +) dioid algebra in the bit domain can be expressed
in the SNR domain by a dioid algebra on F where the second
operator is a multiplication. This enables the development of
the (min, x) network calculus in Sec. IIl. We observe that
the exponential function defines a one-to-one correspondence
between arrival and departure processes in the bit and SNR
domains. The physical arrival, departure, service, and backlog
processes can be recovered from their counterparts in the SNR
domain by taking a logarithm (see Fig. 2).

III. STOCHASTIC (min, x) NETWORK CALCULUS

This section contains our main contribution: an analytical
framework for statistical end-to-end performance bounds for
a network, where service is expressed in terms of fading
distributions residing in the SNR domain.

By an SNR process we mean a bivariate process X (7,t)
taking values in R* that is increasing in the second argument,
with X'(¢,t) = 1 for all ¢. The space of SNR processes will be
denoted by F . For any pair of SNR processes X (7,t) and
Y(1,t), set

XYt 2 inf {X(rw) Y}, A0
and X, )
A u,
X0 V(r0) S sup {y(w) I (11)

Di(1,t) = As(7,t)
A(T,t) D(T, t)

Fig. 3. Tandem of dynamic SNR servers.

We refer to ‘®’ and ‘@’ as the (min, x) convolution and
(min, x) deconvolution operators, respectively.

The arrival, departure, and service processes constructed
in the previous section are SNR processes. With the
(min, x) convolution, we can express the defining property
of a dynamic SNR server from Eq. (9) as

D(0,t) > A® 8(0,1t) (12)

for every pair of SNR arrival and departure processes .A(T,t)
and D(7,1).

We note that, in fact, for any system description in the
bit domain by the (R U {400}, min, +) and the (F, min, )
dioid algebras there exists a corresponding characterization
in the SNR domain using the (Rt U {+oc}, min, x) and
(F*,min, ®) dioids.

A. Server Concatenation and Performance Bounds

The existing network calculus in the bit domain allows
for the concatenation of tandem service elements using the
(min, +) convolution (see page 1). As an immediate conse-
quence, single node performance bounds are extended to a
multi-hop setting. We now establish the corresponding result in
the (min, x) network calculus. Specifically, the concatenation
of dynamic SNR servers is again a dynamic SNR server. We
will prove the result for a tandem network of two nodes, as
shown in Fig. 3.

Lemma 1. Ler Si(7,t) and S2(7,t) be two dynamic SNR
servers in tandem as shown in Fig. 3. Then, the service offered

by the tandem of nodes is given by the dynamic SNR server
Snet (T, 1) with

Snct (7_7 t) == Sl X 82 (T, t) .

Proof: Using Eq. (9), the departure process D(0,t) can
be written as

DO1) > inf {As(0,u) Sa(u,1)}
> it {inf {A(0,7) Si(ru)} Sa(u,0)}
= inf {A0.7) - inf (8i(r.u)- S 1)}}
= b {A(0,7)- (8 9 8)(r. 1)} .

The extension to networks with more than two nodes
follows by iteratively applying Lemma 1. Hence, the dynamic
network SNR server with N nodes in tandem is given by

Shet(T,1) =81 @S @ -+ @ Sn (7, 1) . (13)
Performance bounds in the (min, x) network calculus are

computed with the (min, x) deconvolution operator. This is
analogous to the role of the (min,+) deconvolution in the



(min, +) network calculus. The bounds are expressed in the
following lemma.

Lemma 2. Given a system with SNR arrival process A(T,t)
and dynamic SNR server S(T,1).
e  OUTPUT BURSTINESS. The SNR departure process is
bounded by D(t,t) < A2 S(7,t).
e BACKLOG BOUND. The SNR backlog process is
bounded by B(t) < Ao S(t,t).

e DELAY BOUND. The delay process is bounded by
W(t) ginf{dZO:A@S(Hd,t) < 1}.

Proof: For the output bound, we fix 7 and ¢ with 0 <
7 < t and derive

_ D(o,t) _ A(0,t)
Pt = .7 = Do)
A(0, )
: oiggf{A(O,u) S(u,r)}
AW
a ogugr{s(u,ﬂ ’

where we used the inequality D(0,7) > A ® S(0,7) in the
second line.

For any fixed sample path, fix an arbitrary ¢ > 0. The
bound on the backlog is derived by

A0, 1)

B(t) =

A(u,t)
= s {50}

)

where we used D(0,t) > A® S(0,t) in the second step.

Recall that the delay is invariant under the transform of
domains, that is, W(t) = W(t). By definition of the delay in
Eq. (7), a delay bound w satisfies

A(0,t) < 1}
D0,t +w) —

. A(0,¢)
mf{wzogi‘iﬁt{A(au)-g(i,Hw)} <1
(u,t

mf{w >0: oiﬂt{m} < 1}. (14)

W(t) inf {w >0:

IN

where we used the inequality D(0,¢ + w) > A® S(0,t + w)
in the second line. ]

With an algebraic description for network performance
bounds in the SNR domain in hand, we now turn to the
problem of computing the bounds.

B. The Mellin Transform in the SNR domain

The concise (and familiar) expressions from the previous
section for the network service and performance bounds in the
SNR domain hide the difficulty of computing the expressions.
In fact, all expressions of the (min, x) network calculus

contain products or quotients of random variables. The Mellin
transform [6] facilitates such computations, particularly when
the arrival and service processes are independent.

The Mellin transform of a nonnegative random variable X
is defined by

Mx(s) = E[ X571 (15)

for any complex number s for which the expectation on the
right hand side exists.

We will exploit that the Mellin transform of a product of
two independent random variables X and Y equals the product
of their Mellin transforms,

Mx.y(s) = Mx(s) - My (s). (16)

Similarly, the Mellin transform of the quotient of independent
random variables is given by

Mx/y(s) ZM)((S) 'My(Q—s). (17)

We will evaluate the Mellin transform only for real-valued
s, where it is always well-defined (though it may take the value
+00). When s > 1, the Mellin transform is order-preserving,
i.e., for any pair of random variables X, Y with Pr(X >Y) =
0 we have M x (s) < My (s) for all s. When s < 1, the order
is reversed. Hence bounds on the distribution of a random
variable X generally imply bounds on its Mellin transform.

A more subtle question is how to obtain bounds on the
distribution of a random variable from its Mellin transform.
Here, the complex inversion formula is not helpful. Instead,
we will use the moment bound

Pr(X >a)<a*Mx(1+5s) (18)

for all @ > 0 and s > 0. For bivariate random processes
X(7,t), we will write Mx (s, T,1) é/\/l/\g(ﬂt)(s).

In our calculus, we work with the Mellin transform of
(min, x) convolutions and deconvolutions, which not only
involves products and quotients, but also requires to compute
infimums and supremums. The computation of the exact Mellin
transform for these operations is generally not feasible. We
therefore resort to bounds, as specified in the next lemma.

Lemma 3. Let X(7,t) and Y(T,t) be two independent non-
negative bivariate random processes. For s < 1, the Mellin
transform of the (min, x) convolution X ® Y(7,t) is bounded
by

t
Mxgy(s,7,t) < Z Mx(s,7,u) - My(s,u,t).  (19)

U=T

For s > 1, the Mellin transform of the (min, X ) deconvolution
X @ Y(1,t) is bounded by

Maoy(s,7,t) <O Max(s,u,t) - My(2—s,u,7). (20)

u=0

Proof: Note that the function f(z) = z°~! is increasing
for s > 1 and decreasing for s < 1. For s < 1, the convolution



is estimated by

Mxgy(s,7,t) = E{( T%Iifgt{X(T’ u) 'y(uvt)})s_l]

sup {(X(r,u)" ™" - (V(u, )}

T<u<t

<> E[(X(r,u)* ] - E[(V(u,1)* ]

:E[

In the last line, we have used the non-negativity of X and Y
and the union bound to replace the supremum with a sum, and
their independence to evaluate the expectation of the products.
Eq. (19) follows by inserting the definition of the Mellin
transform. The deconvolution is similarly estimated for s > 1
by

Mo (o,70) = B ( sup{(un /0]

u<t

sup {(¥(n.0))" ™" V(7)) 7]

0<u<rt

< 3 B[(¥w )] [0 1)

u=0

:E[

and Eq. (20) follows from the definition of the Mellin trans-
form. [ |

As an application of Lemmas 1 and 3, we compute a bound
on the Mellin transform of the service process for a cascade of
fading channels. We make the idealizing assumption that the
channels are independent.

Corollary 1. Consider a cascade of N independent, identi-
cally distributed fading channels, where the service process for
each channel is given by Eq. (6), with i.i.d. random variables
vi- Let Spet (T, t) denote the SNR service process for the entire
cascade. Then, the Mellin transform for this process satisfies

N-1 +t—7') . (Mg('y)(s)>t_T

t—T1

MS,,et (577-7 t) < (
for all s < 1.

Proof: We use the server concatenation formula in
Eq. (13) to represent the service of the cascade as Spet(7,t) =
S1 08 ®...0Sy(r,t). By Lemma 3, its Mellin transform
satisfies for s < 1

N
Ms, (s,mt) < Y [ Ms(s,un-1,un), D)

U,y...,UN—1 n=1

where the sum runs over all sequences ug < u; < -+ < uy
with vy = 7 and uy = t. The assumptions on the service
processes of the individual channels imply that each product
evaluates to the same function

N

N
[ M6 ta1.0) = TT (M )
n=1

= (Mg(v)(5)>t_T )

where v is a random variable that has the same distribution as
the ;. Since the number of summands in Eq. (21) is given by

(N _tl_tt_T), the claim follows. [ ]

C. Performance Bounds for the Bit Domain

We next obtain network-level performance bounds for the
bit domain. This involves a transformation from the SNR
domain to the bit domain via the relationship in Fig. 2,
which provides the translation of the abstract metrics D and B
into processes D and B, which, along with W, are concrete
measures for traffic burstiness, buffer requirements, and delay.

Theorem 1. Given a system where arrivals are described by
a bivariate process A(T,t), and the available service is given
by a dynamic server S(r,t). Let A(t,t) and S(7,t) be the
corresponding SNR processes. Fix € > 0 and define, for s > 0,

min(7,t)
M(s,7t) = Y Mua(l+s,u,t) Ms(l—s,u,7).

u=0
Then, we have the following probabilistic performance bounds.

e OUTPUT BURSTINESS: Pr(D(7,t) > d°) < ¢, where

€ — 3 1 .
de(r,t) = g%{g(log M(s,T,t) — logs)}7

e BACKLOG: Pr(B(t) > b°) < ¢, where

1
“ = inf {~ (logM ~loge) }
b inf S(og (s,t,t) —loge) ¢
e DELAY: Pr(W(t) > w®) < e, where w® is the smallest
number satisfying

inf {M(s,t+w5,t)} <e.
5>0

Proof: For the bound on the distribution of the output
burstiness, we start from the inequality D(7,t) < A® S(T,t).
It follows from the moment bound and Lemma 3 that, for any
choice of d > 0 and all s >0

Pr(D(r,t) > d) = Pr(D(t) > e?)

< Pr(Ao S(r,t) > )

< (e) " Mags(1+s,7.t)
= e *IM(s, 7,1).

To obtain the claim, we set the right hand side equal to e,
solve for d, and optimize over the value of s > 0 to obtain
d®(7,t). The proof of the backlog bound proceeds in the same
way, starting from the inequality B(t) < A(0,t)/D(0,t).

The delay bound is slightly more subtle. Fix ¢ > 0. Using
Lemma 2 and the moment bound with a = 1, we obtain that

PrOV(t) > w) < Pr(A@ S(t+w,t) > 1)
< Mags(s + 1t +w,t)

for every s > 0. By Lemma 3, the Mellin transform
Maps(s + 1,t + w,t) satisfies a bound that agrees with
the function M(s,t + w,t), except that the upper limit in
the summation that defines M(s,t + w,¢) would have to be
replaced by 7 = ¢t + w. To obtain a sharper estimate, we use
instead Eq. (14) from the proof of Lemma 2. The resulting
bound is that

Z(t)é sup {78./4(%25) }

o<u<t LS(u,t 4+ w)



satisfies

PrOV(E) > w) < Pr(Z(t) > 1)
SMzp(s+1)
< M(s,t+w,t), (22)

where we have used that the supremum in the definition of
Z extends only up to u = t, and then repeated the proof of
Eq. (20). The claim follows by optimizing over s. ]

Corresponding bounds as in Theorem 1 can be obtained
using the (min,+)algebra and the network calculus with
moment-generating functions [8]. The significance of Theo-
rem 1 is that it permits the application of the network calculus,
where traffic is characterized in the bit domain, and service
is naturally expressed in the SNR domain. This will become
evident in the next section, where the theorem gives us concise
bounds for delays and backlog of multi-hop networks with
Rayleigh fading channels.

IV. NETWORK PERFORMANCE OF RAYLEIGH CHANNELS

We now apply the techniques developed in the two previous
sections to a network of Rayleigh channels. Consider the
dynamic SNR server description for a Rayleigh fading channel,
as constructed in Sec. II.B. We use Eq. (6), with the function

9(7) given by
g(y) =1+~=1+7[n] (23)

where 7 is the average SNR of the channel and || is the fading
gain. For Rayleigh fading, |h| is a Rayleigh random variable
with probability density f(z) = 2ze~" . In a physical system,
4 = P,/o?, where P, and o2 are the received signal power
and the (additive white Gaussian) noise power at the receiver,
respectively. Then, |h|? is exponentially distributed, and the
Mellin transform of g(v) is given by

M) (s) = /T3 (s,571)

where T'(s,y) = fyoo 2 le®dx is the upper incomplete
Gamma function. Using the assumption that the ~y; are inde-
pendent and identically distributed, we obtain for the Mellin
transform of the dynamic server

t—T1

Ms(s.mt) = (/77 Tsh) . @

For the arrival process, we use a characterization due
to Chang [3], where the moment-generating function of the
cumulative arrival process in the bit domain is bounded by

% log Ble** ("] < p(s) - (t = 7) + o (s)

for some s > 0. In general, p(s) and o(s) are nonnegative
increasing functions of s that may become infinite when s is
large. This traffic class, referred to as (o(s), p(s))-bounded
arrivals, is broad enough to include Markov-modulated arrival
processes. The corresponding class of SNR arrival processes
is defined by the condition that

M(s,7,t) < els=1)(p(s—1)-(t=7)+0o(s—-1)) (25)

for some s > 1.

A. Performance Bounds of Rayleigh Fading Channels

We consider the transmission of (o (s), p(s))-bounded ar-
rivals on a Rayleigh fading channel. To obtain single-hop
performance bounds, we apply Theorem 1 with the expressions
for the Mellin transforms of the SNR service and arrival
processes from Egs. (24) and (25). For the function M(s, 7, t)
from the statement of the theorem, we compute for s > 0

M(s,7,t) < e (=)o)

oo

X Z (es'p(s)el/ﬁ’_)’fsr(l —5,77") )“ ’

u=[T—t]4

2 V(s)

where |7 — t]; is the maximum of 7 — ¢ and 0. The sum
converges when V(s) < 1, which can be interpreted as a
stability condition. Inserting the result into Theorem 1, we
obtain for the output burstiness the probabilistic bound

d®(7,t) = inf{p(s)(t —7)+o(s)

5>0
(log(1-V(s)) + loge) } :

1
s
The backlog bound is obtained by setting 7 = ¢,

b = ;1;% {a(s) - %(log(l —V(s)) + loge)} :

The delay bound is the smallest number w® such that

inf

es-(—p(s)ws+o(s))
s>0{

—ve V@) f<e

We also derive end-to-end bounds for a cascade of N
Rayleigh channels with (o(s), p(s))-bounded arrivals, using
the same parameters as before. Let Syet(7,t) be the service
process for the entire cascade. By Corollary 1, its Mellin
transform satisfies for 0 <7 <t and s <1

N-1+t- = t—7
M‘Snct(‘S?T? t) < ( + T) . (el/’Y,?é—lr(S’,V—l)) -

t—T1

We will use again Theorem 1. For 0 < 7 < ¢ and s > 0, we
compute

5-(p()(t=7) 0 (s)
(I=V(s)N 7

Mnet(sa T, t) S

where V(s) is as defined above, and where we applied the
combinatorial identity

— L (N-1+uw\ 1
Yo (V) e @

u=0

for any N > 1 and for 0 < = < 1. Inserting Myt (s, 7, ¢) into
Theorem 1 gives for the end-to-end output bound, denoted by
dt (7, 1), the value

net

Qe 1) = inf {p(s)(t = 7) + ()

>0
—%(Nlog(l—V(s)) + logs)} :



Note that for N = 1, this bound agrees with the previous
bound for a single node. In the same way, we derive the
probabilistic end-to-end backlog bound

1
bl o = 11;1; {a(s) - g(N log(1 —V{(s)) + logs)} . @27
For the delay bound, we estimate for w > 0

Muet (s, t + w, t)
o0
< es=pwta(s)) Z (N -1+ u) (V(s)*

u

u=w

es(—p(s)u+a(s))
B
T A=V

so long as V(s) < 1. Here, the first term in the minimum is
obtained by extending the summation down to v = 0, and the
second term results from the inequality

(N—l—i—u) < W (N—l—i—u—w)

U U —w

for v > w. In both cases, the resulting sum can be evaluated
with Eq. (26). The delay bound w® is determined according
to Theorem 1 by setting the right hand side of Eq. (28) equal
to e, solving for w, and minimizing over s. Because of the

complexity of the bound in Eq. (28), the last two steps can
only be performed numerically.

~min {1, (V(s))wwN_l} , (28)

It is apparent that the complexity of computing end-to-
end bounds is no different than bounds for a single channel.
More importantly, we observe that the end-to-end bounds
scale linearly in the number of nodes N. Relaxing the strong
independence assumptions on the channel properties would
give different scaling properties.

B. Numerical Examples

We next present numerical results, where we assume cas-
cades of Rayleigh channels with a transmission bandwidth of
W = 20 kHz. For traffic, we use (c(s), p(s))-bounded arrivals
with default values o(s) = 50 kb and p(s) = 30 kbps, i.e., the
bounds on rate and bursts are deterministic. Hence, the only
source of randomness in the examples is the randomness of
the channels. We use a violation probability of ¢ = 1074,

In Fig. 4 we show the end-to-end backlog for a cascade
of N Rayleigh channels, as a function of the average SNR of
each channel. Even though the backlog bounds increase only
linearly in the number of nodes, it cannot be assumed that the
backlog is equally distributed across the nodes. Therefore the
per-node requirements — at least for the last node of the cascade
— must satisfy the end-to-end bounds. When the SNR of the
nodes is sufficiently high, the backlog remains low even for a
large number of hops. We observe that the channel becomes
saturated for ¥ = 5 dB. When the number of channels is small,
the backlog increases sharply in the vicinity of ¥ = 5 dB, but
remains low everywhere else.

In Fig. 5 we present, for a fixed average SNR of ¥ =
20 dB, how the end-to-end backlog increases as a function
of the transmission rate, for different network sizes. Here, the
maximum achievable rate that does not result in a ‘blow-up’
of the backlog decreases as the number of nodes is increased.
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—— 30 nodes
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—&- 100 nodes|
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o

15 20 25 30 35 40
Average channel SNR (dB)

Fig. 4. End-to-end backlog bound (bf,) vs. average channel SNR (%) for
multihop Rayleigh fading channels with e = 10~%, (o(s), p(s))-bounded
traffic with o(s) = 50 kb and p(s) = 30 kbps, and W = 20 kHz.
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Fig. 5. End-to-end backlog bound (b5, ) vs. arrival rate (p(s)) for multi-hop
Rayleigh fading channels with e = 104, (o (s), p(s))-bounded traffic with
o(s) = 50 kb, 5 = 20 dB, and W = 20 kHz.
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Fig. 6. Loss probability (e(b)) vs. average channel SNR (%) for multi-hop
Rayleigh fading channels for N = 1,10 and 20, with buffer size 200 kb,
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Fig. 7. Delay bound violation probability (¢(w)) vs. end-to-end delays for
multi-hop Rayleigh fading channels for N = 1,10, ¥ = 5,10,15,20 dB,
(o(s), p(s)) bounded traffic with o(s) = 50 kb and p(s) = 20 kbps and
W = 20 kHz.



Information as given in Figs. 4 and 5 could assist the planning
of a multi-hop wireless network where predefined QoS bounds
are desired for a given transmission rate. Since the average
SNR depends largely on the path loss, which, in turn, is a
function of the transmission radius, the graphs could help with
determining the maximum distance between nodes to support
a desired transmission rate and QoS.

Suppose that buffer sizes are set to satisfy the end-to-
end backlog. For a fixed buffer size by,.x, We can then use
the probability Pr(Bpet(t) > bmax) as an estimate of the
probability of dropped traffic, and refer to it as the /loss
probability. In Fig. 6, we show the loss probability as a
function of the average channel SNR for a fixed value of
bmax = 200 kb, for traffic with a rate of p(s) = 20 and
30 kbps, and for N = 1,10, and 20 nodes. The figure
shows that the minimum SNR needed to support a given loss
probability is very sensitive to the number of network nodes.

In Fig. 7, we show the violation probability for given end-
to-end delay bounds, where we compare the delays at a single
node (N = 1) with a multi-hop network (/N = 10) for different
average channel SNR values, using Egs. (22) and (28). The
traffic parameters are o(s) = 50 kb and p(s) = 20 kbps.
The figure illustrates that for sufficiently large SNR values,
low delays are achieved even when traffic traverses 10 links.
When the SNR is decreased, we can observe how the delay
performance deteriorates in the multi-hop scenario.

V. CONCLUSION

We have developed a novel network calculus that can
incorporate fading channel distributions, without the need for
secondary models, such as FSMC. We use the calculus to
compute statistical bounds on delay and backlog of multi-hop
wireless networks with fading channels. We took a fresh point
of view, where the descriptions of the arrivals and the fading
channels reside in different domains, referred to as bit domain
and SNR domain. We found that by mapping arrival pro-
cesses to the SNR domain, an end-to-end analysis with fading
channels becomes tractable. We discovered that arrivals and
service in the SNR domain obey the laws of a (min, x) dioid
algebra. The analytical framework developed in this paper
appears suitable to study a broad class of fading channels
and their impact on the network-layer performance in wireless
networks. Even though we computed numerical examples for
simple networks and strong independence assumptions for the
fading channels, our (min, x) network calculus is applicable
to networks where these assumptions are relaxed. Generalizing
our framework and obtaining a more profound understanding
of the dioid algebra and computational methods in the SNR
domain is the subject of future research.
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