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Deterministic Delay Bounds for VBR Video in

Packet�Switching Networks� Fundamental Limits

and Practical Tradeo�s

Dallas E� Wrege� Edward W� Knightly� Hui Zhang� and J�org Liebeherr

Abstract�Compressed digital video is one of the most im�
portant tra�c types in future integrated services networks�
However� a network service that supports delay�sensitive
video imposes many problems since compressed video sources
are variable bit rate �VBR� with a high degree of burstiness�
In this paper� we consider a network service that can pro�
vide deterministic guarantees on the minimum throughput
and the maximum delay of VBR video tra�c� A common
belief is that due to the burstiness of VBR tra�c� such a
service will not be e�cient and will necessarily result in
low network utilization� We investigate the fundamental
limits and tradeo�s in providing deterministic performance
guarantees to video and use a set of 	
 to �
 minute long
MPEG�compressed video traces for evaluation� Contrary
to conventional wisdom� we are able to show that� in many
cases� a deterministic service can be provided to video tra�c
while maintaining a reasonable level of network utilization�
We �rst consider an ideal network environment that em�
ploys the most accurate deterministic� time�invariant video
tra�c characterizations� the optimal Earliest�Deadline�First
packet schedulers� and exact admission control conditions�
The utilization achievable in this situation provides the fun�
damental limits of a deterministic service� We then inves�
tigate the utilization limits in a network environment that
takes into account practical constraints� such as the need for
simple and e�cient policing mechanisms� packet scheduling
algorithms� and admission control tests�

� Introduction

Future packet�switching integrated services networks must
support applications with diverse tra�c characteristics and
performance requirements� Of the many tra�c classes in
integrated services networks� delay�sensitive Variable Bit
Rate �VBR� video tra�c poses a unique challenge� Since
the required service is delay�sensitive� the network must
support a resource reservation scheme �	
 that allocates
network resources for each VBR video stream� However�
the burstiness of VBR video tra�c makes it di�cult to de�
termine the amount of resources required� On one hand� if
resources are reserved according to the average rates of the
VBR video sources� unacceptable delays or packet losses
may result when the sources are transmitting near their
peak rates� On the other hand� if resource reservations are
based on sources� peak rates� the network may be under�
utilized most of the time�

D� E� Wrege and J� Liebeherr are with the Department of Computer
Science� University of Virginia� Charlottesville� VA ������ Their research
is supported in part by the National Science Foundation under Grant No�
NCR�������	�
E� W� Knightly is with the Department of Electrical Engineering and

Computer Sciences� University of California at Berkeley� Berkeley� CA
�	
��� His research is supported in part by Sandia National Laboratories�
H� Zhang is with the School of Computer Science� Carnegie Mellon

University� Pittsburgh� PA ������

In this study� we investigate utilization limits achiev�
able in packet�switching networks with deterministic ser�
vice guarantees to delay�sensitive VBR video tra�c� A
deterministic service ensures that no packets are dropped
or delayed beyond their guaranteed delay bound� Such
a service requires admission control tests to determine if
the network has su�cient resources to support a new con�
nection without degrading the service of existing connec�
tions �	� �
� The tests for a new connection are based on
a characterization of the expected tra�c for the new con�
nection� If accepting or admitting the new connection may
result in violations of service guarantees for any existing
connection� the connection is not established� For admit�
ted connections� the network performs tra�c policing� that
is� it ensures that the admitted connections adhere to the
tra�c characterization given to the network for the admis�
sion control tests� If a connection�s tra�c is policed by the
network� the tra�c in excess of its speci
ed characteriza�
tion may not be permitted to enter the network�

A key challenge of incorporating VBR video tra�c into
networks with service guarantees lies in the di�culty of

nding an appropriate tra�c characterization that cap�
tures the dynamics of the source� A rich set of literature
exists on characterizing VBR video tra�c by a stochas�
tic process using models such as Markov�modulated� Auto
Regressive� TES� and Self�similar �see ��� ��
 and the ref�
erences therein�� While such stochastic models of a source
have the advantage that they may be used to potentially
achieve higher network utilization by exploiting the statis�
tical properties of the sources� they have several important
disadvantages� First� it is di�cult to implement a policing
mechanism that enforces a stochastic tra�c characteriza�
tion� Moreover� most stochastic models for characterizing
video tra�c are either not powerful enough to capture the
burstiness and the timely correlations of a video source�
or they are too complex for practical implementation ���
�
Finally� since stochastic approaches to VBR tra�c charac�
terization provide only statistical guarantees� they cannot
be applied to deterministic network services ��� �� ��
�

For such reasons� in this work we consider only determin�
istic tra�c models that characterize VBR tra�c in terms
of a worst�case description� It is a common belief that such
a worst�case approach necessitates allocation of network re�
sources according to sources� peak rates�� necessarily lead�
ing to low network utilization for bursty tra�c� However�

�For VBR video� we consider the stream
s peak rate to be the size of
the largest video frame divided by the inter�frame time�



several recent works show that this conventional wisdom
is not correct and that peak�rate allocation is not required
even for providing deterministic service ��� �� �� ��
�

In this study� we analyze the fundamental limits in pro�
viding deterministic performance guarantees to VBR video�
Such a study has become feasible with a set of recently
developed tight� i�e�� necessary and su�cient� admission
control tests for networks that employ Earliest�Deadline�
First and Static Priority scheduling disciplines ��
� We
present an optimal characterization of VBR video tra�c for
a deterministic service using what we term empirical en�
velopes� Empirical envelopes represent the most accurate�
time�invariant� deterministic characterization of a tra�c
source� Using this optimal characterization� together with
Earliest�Deadline�First packet scheduling and the exact ad�
mission control tests from ��
� we provide insights into the
highest achievable utilization for VBR video sources�

We also investigate the fundamental tradeo�s that must
be considered for practical networking environments� For
example� a realistic tra�c characterization must be easily
policeable by the network� Furthermore� the tra�c char�
acterization should be concise so that the tra�c of each
source can be described with a small number of parame�
ters� We study the impact of selecting easily policeable and
concise tra�c characterizations on the utilization limits of
the deterministic service� We also investigate the impact
of selecting simpler packet schedulers� such as Static Prior�
ity and First�Come�First�Served� on the achievable network
utilization� Finally� for the Static Priority packet sched�
uler we demonstrate the degree to which the accuracy of
the admission control tests in�uences the utilization of a
deterministic service�

The remainder of the paper is structured as follows�
In x�� we describe the network components necessary to
o�er a service with deterministic delay bounds� In x�� we
devise a method to generate an optimal tra�c characteri�
zation� the empirical envelope� for VBR video sources� We
present an algorithm that allows us to approximate the em�
pirical envelope by an easily policeable deterministic tra�c
model� In x	� we use traces of MPEG�encoded VBR video
tra�c to empirically evaluate the limits of the deterministic
approach as well as the abovementioned tradeo�s�

� Components of a Deterministic

Network Service

For a network to provide deterministic performance guar�
antees on throughput� delay� delay�jitter� and loss� it must
be able to tightly control certain resources� The utilization
of network resources are in�uenced by three components�
��� the tra�c model used for the characterization of the
worst�case tra�c from a connection� ��� the scheduling dis�
cipline at the network multiplexers� and ��� the accuracy
of the admission control tests� In this section� we review
the tradeo�s involved in the selection of these components
and their impact on a deterministic network service�

��� Deterministic Tra�c Models

A tra�c model for a deterministic service has several fun�
damental requirements� First� the model must be a worst�
case characterization of the source to provide an absolute
upper bound on a source�s packet arrivals� Second� the
model must be parameterized so that a source can e��
ciently specify its tra�c characterization to the network�
Next� the model should characterize the tra�c as accu�
rately as possible so that the admission control algorithms
do not over�estimate the resources required by the connec�
tion� Finally� the model must be policeable so that the
network can enforce a source�s tra�c characterization�

A worst�case representation of a tra�c source may be
described as follows� If the actual tra�c of a connection
is given by a function A such that A��� � � t
 denotes the
tra�c arrivals in the time interval ��� ��t
� an upper bound
on A can be given by a function A� if for all times � � �
and all interval lengths t � � the following holds ��� �
�

A��� � � t
 � A��t� ���

We refer to a function A��t� that satis
es the property
in ��� as a tra�c constraint function� Note that a tra�c
constraint function provides a time�invariant bound on A�
so that a source is bounded for every interval of length t�

In practice� a source speci
es its tra�c characterization
with a parameterized model� The parameterized determin�
istic tra�c model de
nes a tra�c constraint function that
bounds the source� For example� in the �xmin� xave� I� s�
model �	
� xmin is the minimum packet inter�arrival time�
xave is the maximumaverage packet inter�arrival time over
any time interval of length I� and s is the maximumpacket
size� This worst�case parameterization of a source has
an associated tra�c constraint function given in Table ��
The ��� �� model ��
 describes tra�c in terms of a rate
factor � and a burstiness factor � such that during any
time interval of length t� the tra�c from a connection
is less than � � �t� In this study� we consider a ���� ���
model� which can be viewed as an extension to the ��� ��
model� The ���� ��� model maintains a number n of ��� ��
pairs� where the amount of tra�c in a time interval t is
restricted to minif�i � �itg� A more general deterministic
tra�c model called the Deterministic Bounding Interval
Dependent or D�BIND model ��
 characterizes tra�c by a
family of rate�interval pairs f�Rj� Ij�jj � �� �� � � � � ng� The
D�BIND model de
nes an n segment piece�wise linear traf�

c constraint function as given in Table �� The ���� ��� model
may be viewed as a special case of the D�BIND model be�
cause it de
nes an n segment piece�wise linear concave traf�

c constraint function�

Table � depicts the tra�c constraint functions A� for
the aforementioned deterministic tra�c models� Since de�
terministic tra�c models have associated tra�c constraint
functions� the admission control tests may be expressed in
terms of A�� A requirement on A� for the admission con�
trol tests is subadditivity� i�e�� for all t� � � and all t� � �
we have A��t� � t�� � A��t�� �A��t�� ��� �
�

Since the selection of the tra�c model determines the
shape of a tra�c constraint function� from the perspective



Tra�c Model Tra�c Constraint Function

��� �� A��t� � � � �t

���� ��� A��t� � min��i�nf�i � �itg

�xmin� xave� I� s� A��t� � b t
I
c � I�s

xave
�min

�
d� t

I
� b t

I
c� � I

xmin
e� I

xave

�
� s

D�BIND A��t� �

�
tR� for all t � I��
Ij��Ij�Rj�� �Rj� � t�RjIj � Rj��Ij���

Ij � Ij��
for all Ij�� � t � Ij�

Table �� Tra�c Models and Tra�c Constraint Functions�

of achievable network utilization� the model should have
a tra�c constraint function that is as tight as possible so
that the admission control algorithms do not over�estimate
the resources required by the connection� While in general�
a model with more parameters can achieve a more accurate
tra�c constraint function� the additional parameterization
causes an increase in the complexity of policing the tra�c
model� Thus� the selection of an appropriate tra�c model
for a deterministic service must 
nd a compromise between
the high accuracy preferred by the admission control tests
and the simplicity required for the implementation of tra�c
policers� The policing mechanisms must verify in real�time
whether the tra�c transmitted on an established connec�
tion adheres to a speci
ed set of parameters of a determin�
istic tra�c model� To ensure that the policing mechanisms
can monitor and control tra�c at high data rates� the com�
plexity of the tra�c model is limited� In ��
� it was shown
that a tra�c model with a piece�wise linear concave tra�c
constraint function can be policed by a 
xed number of
leaky buckets� Since a leaky bucket can be implemented
with a counter and a single timer ���
� concavity of the
���� ��� model�s tra�c constraint functions ensures a simple
implementation of the tra�c policer�

��� Packet Scheduling

In a connection�oriented packet�switched network� packets
froma particular connection traverse the network on a 
xed
path of switches and links� Each switch has a packet sched�
uler for each outgoing link� Since the packet scheduler can
transmit only one packet at a time� it maintains a queue
containing all packets waiting for transmission� Here we
consider the following well�known scheduling disciplines at
a packet scheduler for a set N of connections� First�Come�
First�Served �FCFS�� Static Priority �SP�� and Earliest�
Deadline�First �EDF�� Each of these disciplines has been
investigated for use in bounded delay services ��� 	� �� ��
�

First�Come�First�Served schedulers transmit all packets
in the order of their arrival� Since the maximumdelay in a
FCFS scheduler is the same for all connections j � N � all
connections have an identical delay bound d�

In a Static Priority packet scheduler such as in ���
� each
connection j � N is assigned a priority p with � � p � P �
where a lower index indicates a higher priority� Cp is the
set of connections with priority p� and all connections in
Cp have the same delay bound dp� with dp � dq for p � q�

SP schedulers maintain one FCFS queue for each prior�
ity level� always selecting the 
rst packet in the highest�
priority FCFS queue for transmission�

With Earliest�Deadline�First scheduling �	
� each connec�
tion j � N is assigned a delay bound dj� where the de�
lay bound may be di�erent for each connection� An EDF
scheduler selects packets for transmission in increasing or�
der of packet deadlines� where packet deadlines are calcu�
lated as the sum of the arrival time and the delay bound
of a packet�

The selection of a particular scheduling discipline for a
packet scheduler involves a tradeo� between the need to
support a large number of connections with diverse delay
requirements and the need for simplicity in the scheduling
operations� For example� while a FCFS scheduler can be
easily implemented� it can e�ectively support only one de�
lay bound for all connections� On the other extreme� while
an EDF scheduler can support a di�erent delay bound
for each connection� the scheduling operations of EDF are
complex since they involve a search operation for the packet
with the shortest deadline� EDF scheduling is shown to be
optimal in ��
 in the sense that if any packet scheduling
method can meet a set of connections� delay constraints�
so can EDF�

��� Admission Control Tests

While the number of admission control tests can be large�
including tests for availability of transmission capacity� CPU
power� bu�er space� etc�� the most crucial admission test in
a network with a deterministic service is the delay bound
test� The delay bound test veri
es that� for all connec�
tions� the delay of each packet is less than its required de�
lay bound� Most other admission control tests� including
those that verify throughput and delay�jitter guarantees�
can be directly derived from the delay bound test�

Note that there is a tradeo� between the accuracy and
the complexity of admission control tests� A less accurate
admission control algorithm may be less computationally
expensive� however� it may reject a connection even though
the acceptance of the connection will not a�ect the QoS�
therefore result in a lower utilization of the network�

Tables � and � present conditions that must be satis
ed
to pass delay bound tests for FCFS� SP� and EDF packet
schedulers� In the tables� the link speed is normalized to ��
sk denotes the maximum packet size for connection k� and



Delay Bound Test Condition

FCFS Exact d �
X
j�N

A�j �t�� t� max
k�N

sk for all t � 	�

SP Exact �� � dp � smin
p such that


t� � �
X
j�Cp

A�j �t� �

p��X
q��

X
j�Cq

A�j �t� ��� smin
p �max

r�p
sr for all p� t � 	�

EDF Exact t �
X
j�N

A�j �t� dj� � max
dk�t

sk for all t � d��

Table �� Exact delay bound tests for FCFS� SP� and EDF packet schedulers�

Delay Bound Test Condition

SP Su�cient � t �
X
j�Cp

A�j �t� dp� �

p��X
q��

X
j�Cq

A�j �t� � max
r�p

sr for all p� t � dp�

SP Su�cient � dp �

pX
q��

X
j�Cq

A�j �dp� � max
r�p

sr for all p�

Table �� Su�cient delay bound tests for an SP packet scheduler�

smin
p denotes the minimum packet size for any connection
with priority p� Table � shows the necessary and su�cient
delay bound tests ��Exact Tests�� for each scheduler� For�
mal derivations of these tests can be found in ��� �
� Since
the exact admission test for an SP scheduler is computa�
tionally very complex� Table � presents less accurate tests
��Su�cient Tests�� that require less computation ��� ��
�
Note that each test is formulated in terms of A� so that it
can be applied to the tra�c models discussed in x����

As an example� we present an informal derivation of the
delay bound test for the FCFS packet scheduler� Recall
that the FCFS packet scheduler can o�er only one delay
bound d to all connections� Thus� a delay bound test for
FCFS simply veri
es that the maximum waiting time of
any packet never exceeds d� If the scheduler is never idle in
the time interval ��� t
� then the maximumwaiting time of a
packet that arrives at time t is determined by the maximum
backlog in the transmission queue �

P
j�N Aj��� t
� t� and

the largest remaining transmission time of any packet that
is in transmission at time t �maxk�N sk�� Since Aj��� t
 �
A�j �t� by Equation ���� we are guaranteed not to have a
deadline violation at time t� d if and only if the following
holds at time t� d �

P
j�N A�j �t��t�maxk�N sk� Applying

the argument to all times t � � yields the delay bound test
given in Table �� As alluded to above� other admission
control tests can be directly derived from this bound on
queueing delay d� For example� if the bu�er space that is
available for each connection connection j is at least A�j �d��
then packets will never be dropped due to bu�er over�ows�

The above delay bound at a single server can be ex�
tended across multiple servers to obtain an end�to�end de�
lay bound� Depending on the class of service disciplines
considered� various techniques may be applied� Several
examples are as follows� First� end�to�end delay bounds
for the class of work�conserving service disciplines are de�

rived in ��
� This is achieved by calculating a bound on
the transformation of a stream�s constraint function A��t�
as it traverses each consecutive hop� An end�to�end de�
lay bound can then be calculated by summing the local�
per�hop delay bounds� Second� for a class of service dis�
ciplines called rate�controlled service disciplines ���
� e�g��
Rate�Controlled Static Priority ���
 and a rate�controlled
variation of EDF �	
� a stream�s original constraint function
A��t� is restored at each hop along the path via a rate con�
troller� This prevents the tra�c constraint function from
becoming �burstier� as the stream traverses multiple hops�
as occurs in ��
� Finally� ���
 utilizes properties speci
c
to the Generalized Processor Sharing �GPS� service disci�
pline� which allows the derivation of tight end�to�end delay
bounds for networks of GPS servers with leaky bucket con�
strained sources�

� Deterministic Characterizations

of VBR Video Tra�c

Here we present the optimal characterization of VBR video
tra�c for a deterministic service using empirical envelopes�
We then show how tra�c models such as the ���� ��� model
can be viewed in terms of the empirical envelope and we
present an algorithm for deriving the ���� ��� parameters
from the envelope�

In this paper� we use traces of video compressed with
the MPEG compression algorithm as examples of VBR
video tra�c� Figure � shows a typical segment of a trace
of MPEG compressed video obtained from a recorded se�
quence of advertisements� An MPEG coder generates three
types of frames� I frames that use intraframe compres�
sion� and P and B frames that are transmitted between I
frames that use interframe compression� While P frames



�predicted frames� are coded based on only past frames�
B frames �bidirectional frames� are coded based on both a
past and a future reference frame� Thus� I frames exploit
spatial locality� while P and B frames exploit temporal lo�
cality� More details of the MPEG algorithm may be found
in ��
� The behavior of the coder is clearly visible from the
dynamics of the trace� Speci
cally� the frame pattern �in
this case IBBPBB� can be seen since the I frames tend to
be the largest� B the smallest� and P in between�
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Figure �� Tra�c of an MPEG video stream�

��� The Empirical Envelope

As described in x���� each deterministic tra�c model has
an associated tra�c constraint function A��t� that pro�
vides an upper bound on the source�s arrivals in any in�
terval of length t� The empirical envelope presented next
provides the most accurate tra�c constraint function for a
given video trace which allows evaluation of the maximum
achievable utilization for a deterministic service to VBR
video� For any scheduling discipline� using the exact ad�
mission control tests with the empirical envelope results in
the highest network utilization achievable in a determinis�
tic service� Although the empirical envelope will be shown
to lack important practical properties such as the ability to
be e�ciently speci
ed or policed� it does provide an opti�
mal benchmark for evaluating deterministic tra�c models�
Toward this end� the empirical envelope E� is de
ned as
the most accurate tra�c constraint function for an arrival
function A as ��
�

E��t� � max
���

A��� � � t
 �t 	 � ���

Equation ��� indicates that E��t� is a time�invariant� tight
bound on arrivals in any interval of length t� Note that the
tightness of E� implies that any tra�c constraint function
A� for an arbitrary tra�c model satis
es A��t� � E��t� for
all t� Since the admission control tests in Tables � and �
are based on the tra�c constraint functions A�� using the
most accurate or minimum constraint function E� in these
tests results in the highest achievable network utilization�
That is� from the tests of Tables � and �� it follows that the
tightest delay conditions are obtained if A� is selected such

that A� � E�� Thus� the empirical envelope can be used
as a benchmark for comparing deterministic tra�c models�

The empirical envelope for a given video trace may be
obtained in the following manner� For the traces analyzed
in this paper� the inter�frame time T is 
xed and each
video frame is fragmented into 	� byte ATM cells which
are transmitted at equally�spaced intervals over the frame
time T � If the sequence of frame sizes of video source j

is given by ff�� f�� � � � � fNg� and if the transmission of this
sequence starts at time �� the arrival function A which
describes the cumulative number of cell arrivals up to time
t is given as follows�

A��� t
 �

b t
T cX
i��

fi �

�
t

T
�

�
t

T

��
fd t

T e
� � � t � N � T ���

The 
rst term on the right�hand side of equation ��� de�
notes the number of cells from frames that are fully trans�
mitted at time t� and the second term gives the number of
transmitted cells from the frame that is being transmitted
at time t� The empirical envelope may then be constructed
by combining Equations ��� and ����

Alternatively� E� can be obtained directly from the se�
quence of frames ff�� f�� � � � � fNg by 
rst calculating�

E��i � T � � max
��k�N�i

k�iX
j�k

fj for i � �� �� � � � � N �	�

The values of the empirical envelope at times that are not
multiples of the frame time are then obtained by spacing
the cells or packets in E���i��� �T ��E��i �T � evenly over
the frame time �i � T� �i � �� � T 
� Figure � illustrates the
arrival function A and the empirical envelope E� for the
MPEG video trace shown in Figure ��
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Figure �� The accumulated tra�c A��� t
 of the MPEG
stream from Figure � and its empirical envelope E��t��

��� Obtaining Model Parameters from the
Empirical Envelope

Here we present an algorithm that uses the empirical en�
velope to construct a tra�c constraint function A��t� that



conforms to the ���� ��� tra�c model� Recall from x��� that
the ���� ��� tra�c model is de
ned by a set of parameter pairs
f ��i� �i� j i � �� �� � � �n g with a tra�c constraint function
given by A��t� � minif�i��itg� Note that this tra�c con�
straint function A��t� is guaranteed to be concave and can
thus be policed with an n�level leaky bucket ��� �
� The al�
gorithm� shown in Figure �� assumes that the values of the
empirical envelope are available up to some time limit � � It
determines the number of ��i� �i� pairs that are needed to
approximate the envelope and selects the parameter values
for each ��i� �i� pair�

The parameter selection by the algorithm proceeds as
follows� For the given time � � a parameter pair ��i� �i�
and a new time value � � � � � � are selected such that
E��� � � �i � �i�� E

��t� � �i � �it for all � � t � � �
and E��� �� � �i � �i�

�� This procedure is repeated with
a newly calculated time value � � as long as � � is positive�
From Equation ��� and the discussions above� it can be
seen that the algorithm constructs A� that is a piece�wise
linear concave upper approximation to E��

Input
 An empirical envelope E� and a time � �
Output
 A set of leaky bucket parameters�
�� Procedure Find Parameters �E�� ��

� n � 	
�� While � 	 	 Do
�� n � n� �

�� �n � max
��t��

n
�

� � t
��E��t�� tE�����

o
�� �n �

E����� �n

�
�� Output ��n� �n�
�� � � minf t j �n � �n t � E��t�g
�� End While
�	� End Procedure

Figure �� An algorithm to determine ���� ��� parameters�

Figure 	 illustrates the operations of the algorithmwith a
simple example that results in the calculation of two ��i� �i�
pairs� Figure 	�a� depicts the selection of parameters for
the pair ���� ��� as calculated in the 
rst iteration of the al�
gorithm with the given empirical envelope E� and interval
��� t�
� The parameters �� and �� and the new time value
t� are chosen such that the curve �� � ��t is never below
the empirical envelope and is identical to the envelope at
times t� and t�� Also shown in Figure 	�a� is the selection
of time t� which determines the starting time for the next
iteration of the algorithm�

Figure 	�b� illustrates the determination of the second
pair ���� ��� which is done analogously to the selection of
���� ��� in Figure 	�a�� The algorithm terminates after the
calculation of the second pair of parameters since t� � ��
The 
nal result is shown in Figure 	�c� where we show
the tra�c constraint function produced by the algorithm
as a bold curve� In this example� two parameter pairs
���� ��� and ���� ��� determine the tra�c constraint func�
tion� A��t� � minf�� � ��t� �� � ��tg�

Finally� as an illustrative example to emphasize the po�
tential simplicity of approximating E� for VBR video� we
note as in ��
 that for MPEG video sources� one possi�
ble concise and simple�to�obtain parameterization of A� is

to use knowledge of the frame pattern along with a pa�
rameterization of the largest sized I frame� B frame� and
P frame� With this alternative �worst�case� characteriza�
tion� a pessimistic approximation to E� is easily obtained
by constructing A� as a transmission of the largest I frame�
followed by � transmissions of the largest B frame and so
on� In essence� any A� that is a subadditive upper ap�
proximation to E� can be used as a tra�c constraint func�
tion� while� as described in x���� the shape of A� a�ects
its policeability� and� as explored in the next section� the
tightness of A� a�ects the achievable network utilization�

� Evaluation of Design Choices for

Deterministic Services

In this section� we use several traces of MPEG�compressed
video to empirically evaluate the fundamental limits and
tradeo�s of deterministic services as described in the pre�
vious sections� First� the theoretical limits on the e�ciency
of a deterministic network service are illustrated by com�
bining the tightest tra�c constraint function E�� with an
exact admission control test for the best packet scheduler�
EDF� With these utilization limits as a benchmark� we ex�
plore the achievable utilization of networks that use more
practical tra�c models� packet schedulers� and admission
control tests� In all experiments� we consider a single mul�
tiplexer that operates at 	� Mbps� corresponding to the
transmission rate of a T� line� As described in Section ����
end�to�end delay bounds may be calculated as an accumu�
lation of the local delay bounds investigated below� While
there is not a consensus on the exact range of acceptable
delay bounds for interactive applications� some discussion
of this is found in ���
�

In our experiments� we use traces of two MPEG�� com�
pressed video sequences that were encoded with constant
quality using the Berkeley MPEG�encoder ���
� The 
rst
trace is a ���minute sequence taken from the entertainment

lm �Jurassic Park� which we refer to as Movie� Movie is
digitized to ��	 by ��� pixels and compressed at �	 frames
per second with frame pattern IBBPBBPBBPBB� The sec�
ond trace� referred to as Lecture� is a ���minute sequence
showing a videotaped lecture where the camera zooms in
and out� and pans between the speaker and her transparen�
cies� The Lecture sequence is digitized to ��� by ��� pixels
and compressed at �� frames per second using the frame
pattern IBBPBB� These video sequences were selected be�
cause they have very di�erent characteristics in terms of
resolution� frame pattern� and frequency of scene changes�

��� Maximum Achievable Utilization of a
Deterministic Service

In the 
rst experiment� we show the maximum link uti�
lization that can be achieved for a deterministic service
using the exact admission control test for an EDF sched�
uler from Table � and empirical envelopes E� as tra�c
constraint functions� Note that this scenario corresponds
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Figure 	� Parameter selection by the algorithm in Figure ��

to using the tightest tra�c constraint function in combina�
tion with the most accurate admission control test for the
best packet scheduler� Here we consider the case of homo�
geneous sources with identical delay requirements�� Het�
erogeneous sources �combinations of the Movie and Lecture
sequences� with heterogeneous delay bounds are considered
in x	���	���

Figures ��a� and ��b� illustrate the maximum number
of Lecture and Movie connections� respectively� that can
be admitted for a deterministic service� In each graph�
the number of connections that can be simultaneously sup�
ported is plotted as a function of the delay bound of those
connections� Both 
gures also include two reference cases�
referred to as Peak Rate and Average Rate�

	 The Peak Rate plot shows the maximum number of
connections that can be accepted if admission control
tests are based on peak rate allocation� The peak
rate is assumed to be the ratio of the largest video
frame and the inter�frame time� More formally� the
peak rate �peak of a sequence of frames with sizes
ff�� f�� � � � � fNg and with 
xed inter�frame time T is
given by�

�peak �
max��j�N fj

T

	 The Average Rate of a video sequence is determined
by the average tra�c rate over the length of the video
sequence� Denoting the average rate by �avg we ob�
tain�

�avg �

PN

j�� fj

N � T
If the video sequences are repeated inde
nitely� an al�
location based on average rates ensures that all packet
delays are 
nite�

The general trend of these curves is that as the delay
bound increases� more connections can be established� One
important observation is that a reasonable network utiliza�
tion for deterministic service can be achieved even when
the delay bound is fairly small� In the case of Lecture �Fig�
ure ��a��� an average utilization of ����� can be achieved
with a delay bound of �� msec� Note that these utilizations
are considerably higher than the ����� utilization achieved

�Note that EDF� SP� and FCFS produce the same schedule when all
connections have the same local delay bound�

with a peak rate allocation scheme� Recall from Subsection
x��� that we can bound the maximum bu�er requirements
of a connection with delay bound d and tra�c constraint
function A� by A��d�� With this bound� the per�stream
bu�er requirements of the lecture sequence with a delay
bound of �� msec are given by ��� kilobytes per connec�
tion� This corresponds to �	� cells per connection or �����
cells for all �� connections�

Figure ��b� shows that the achievable utilization for a
given delay bound is considerably lower for the Movie se�
quence than for the Lecture sequence� Since both sequences
are encoded with the same software tool ���
� the di�erence
in utilization results from the di�erent frame pattern used
for the Movie sequence and its additional motion and scene
changes� Regardless� admission control tests that use the
empirical envelope still provide an improvement over the
����� utilization achievable with admission control tests
that use a peak�rate allocation scheme�

��� Tradeo�s in Number of Tra�c Param�
eters

Here we explore the utilization tradeo�s in a deterministic
service when using a practical deterministic tra�c model
rather than the empirical envelope� With the exact admis�
sion control test for an EDF scheduler� we use the ���� ���
model to characterize the tra�c and the empirical envelope
E� as a benchmark to compare the utilization achieved for
various numbers of ��i� �i� pairs�

Figures ��a� and ��b� depict the respective number of
homogeneous Lecture and Movie connections that can be
supported as a function of delay bound for various num�
bers of ��i� �i� pairs� When a number j of ��i� �i� pairs is
speci
ed� the j pairs used are the those with the smallest
values of �i� e�g�� the single pair ���� ��� would be the one
with the smallest value of �i�

The 
rst observation fromFigure � is that as more ��i� �i�
pairs are used� more connections can be accepted� The rea�
son for this is that a tra�c constraint function A� de
ned
with more parameters can better approximate E�� allow�
ing the acceptance of more connections� However� it should
also be noted that the bene
t of adding additional ��i� �i�
pairs decays quickly� Figure ��a� shows that a characteri�
zation of Lecture that uses two ��i� �i� pairs results in the
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Figure �� Fundamental limits of a deterministic network service�

N
um

be
r o

f C
on

ne
ct

io
ns

0

20

40

60

80

100

A
ve

ra
ge

 U
til

iz
at

io
n

Delay Bound (milliseconds)
0 50 100 150 200 250 300 350 400 450 500

    Pair1 (�,�)

2 (�,�)
3 (�,�)

4 (�,�)

    Pairs
    Pairs

    Pairs

    PairsEnvelope / 6 (�,�) 5 (�,�)Pairs

0.2

0.4

0.6

0.8

�a� Lecture

    Pair1 (�,�)

2 (�,�)    Pairs

    Pairs6 (�,�)

7 (�,�)    Pairs
Envelope / Pairs8 (�,�)

0

10

20

30

40

50

60

0.1

0.2

0.3

0.4

N
um

be
r o

f C
on

ne
ct

io
ns

A
ve

ra
ge

 U
til

iz
at

io
n

0 50 100 150 200 250 300 350 400 450 500
Delay Bound (milliseconds)

    Pairs3/4/5 (�,�)

�b� Movie

Figure �� A comparison of di�erent tra�c constraint functions�

same network utilization as the empirical envelope func�
tion when the delay bound is less than �� msec� With six
pairs� the same network utilization as for the empirical en�
velope can be achieved for almost all values of the delay
bound� i�e�� a seventh pair introduces no additional bene�

t� Since the ���� ��� model�s A� forms a concave piece�wise
linear upper bound of E�� one may not expect that it can
ever achieve the same utilization as the empirical envelope�
The reason that it does in this case is that the advantage of
considering a non�concave constraint function is only ap�
parent with heterogeneous sources� Further discussion of
this concavity issue may be found in ��
� which allows a
non�concave constraint function with the D�BIND model�

��� Tradeo�s in Packet Scheduling

In this section� we compare the performance of the three
di�erent packet schedulers discussed in x���� namely EDF�
SP and FCFS� We use the exact admission control tests
from Table � with empirical envelopes as tra�c constraint
functions� and consider two types of connections� those
carrying the Movie sequence and those carrying the Lecture
sequence� All connections of the same type have identical
delay requirements�

For each of these schedulers� Figure � shows the maxi�
mum number of Lecture and Movie connections that can

be simultaneously supported by the network� Each curve
in the 
gures corresponds to a pair of delay bounds for the
Lecture and Movie connection types� Thus� the relative
performance of the scheduling disciplines can be evaluated
by comparing the contours of each plot� For reference pur�
poses� we include the peak rate allocation curve�

By comparing Figure ��a� and �b�� it can be seen that the
contour plots are similar� Thus� for our experiment that
requires only a limited number of di�erent delay bounds�
an SP scheduler can support connections almost as well
as an EDF scheduler� Alternatively� Figure ��c� shows the
advantages of EDF and SP disciplines over the FCFS disci�
pline� since FCFS disciplines can� in e�ect� guarantee only
a single delay bound� the number of Movie connections is
limited by the tighter delay bound of the Lecture tra�c�

��� Tradeo�s in Admission Tests

This experiment illustrates the impact of the accuracy of
admission control tests on the utilization limits for the SP
scheduler� Using the empirical envelope E� for tra�c con�
straint functions� we consider the following admission con�
trol tests for the SP scheduler� �SP Exact� from Table ��
and �SP Su�cient �� and �SP Su�cient �� from Table ��
These admission control tests vary in their computational
complexity� If there are P priority levels and the constraint
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Figure �� A comparison of packet schedulers�

function is E� as derived from a frame sequence of length
N � then the computational complexities of the admission
control tests are as follows� the test SP Exact has com�
plexity O�PNdP �� the test SP Su�cient � has complex�
ity O�PN �� and the test SP Su�cient � has complexity
O�P �� If the constraint function is based on a parameter�
ized tra�c model rather than E�� these complexities may
be considerably reduced ��
�
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Figure �� A comparison of admission control tests�

Figure � depicts the number of Lecture and Movie con�
nections that can be simultaneously supported for each
of the three admission control tests for the case in which
dMovie � ��� msec and dLect � ��� msec� For reference
purposes� we depict several average utilization values ex�
pressed in terms of percentage of capacity� In this exper�
iment� the admission control test SP Su�cient � achieves
a utilization that is almost as high as the slightly more
complex admission control test SP Exact� However� with
a simpler admission control test such as SP Su�cient ��
the achievable utilization is substantially lower� Since the
admission test SP Su�cient � achieves a utilization very
close to that of SP Exact� it may be worthwhile to explore
su�cient conditions for admissions tests�

��	 Summary of Tradeo�s

In the previous three experiments� we analyzed the trade�
o�s involved in selecting network components in isolation�
Here we evaluate the utilization of a system that simultane�
ously considers choices for the tra�c constraint functions�
packet schedulers� and admission control tests� In partic�
ular� we select a Tradeo� case� which uses SP scheduling�
the SP Su�cient � admission control tests from Table ��
and a tra�c characterization consisting of � ��� �� pairs�

The Tradeo� case is compared to two reference cases�
The 
rst reference case� referred to as Best�Possible� is an
upper bound and represents the case of EDF scheduling�
exact admission control tests� and the empirical envelope
for the source characterization� The second reference case�



referred to as Peak Rate� is based on the peak rate alloca�
tion as used in the previous examples�
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Figure �� Achievable utilization with all tradeo�s�

Figure � depicts the maximumnumber of admissible con�
nections for the three cases� For all cases� we set the delay
bound for the Lecture connections to �� msec and the delay
bound of the Movie connections to �� msec�

The 
gure demonstrates that reasonable network utiliza�
tions of ��� to 	�� can be achieved for deterministic ser�
vice to VBR video even when taking into account practi�
cal considerations such as the need for simple schedulers�
policing mechanisms� tra�c models� and admission control
tests� Moreover� these utilizations are considerably above
the ��� utilization that is on the average achievable with
a peak rate allocation scheme�

� Conclusions

Providing deterministic guarantees requires the network to
allocate resources according to the worst�case scenario� A
common belief is that this requires a peak�rate resource al�
location scheme that would signi
cantly under�utilize the
network when sources have high peak�to�average�rate ra�
tios� However� previous work has shown that a determin�
istic service does not require a peak�rate allocation scheme
even when deterministic performance guarantees are pro�
vided to bursty tra�c ��� ��
� Yet� to assess the applica�
bility of the deterministic approach to VBR video� several
important questions must be answered� For example� how
high is the achievable utilization for real VBR video traf�

c when deterministic services are provided What are the
factors that a�ect the network utilization when determinis�
tic services are provided What are the tradeo�s between
the achievable network utilization and other network de�
sign goals 

In order to address the above issues� we have studied
the fundamental limits in achievable network utilization
for deterministic service� We identi
ed the main factors

that in�uence the utilization of a network with determin�
istic services as ��� the deterministic tra�c model used to
characterize the source tra�c� ��� the packet scheduling
disciplines at the network switches� and ��� the accuracy
of the admission control tests� The highest possible uti�
lization is achieved for deterministic service in the �best
possible� case with ��� empirical envelopes to character�
ize sources� ��� EDF scheduling disciplines at the network
multiplexers� and ��� necessary and su�cient conditions
for admission control tests� We quanti
ed the limits of
a deterministic service to VBR video by using traces of
MPEG compressed video in the scenario above and found
that considerable gains over a peak rate allocation scheme
are possible�

Because this best possible scenario has limitations in its
applicability to practical networks� we investigated funda�
mental tradeo�s for deterministic service� These trade�
o�s include ��� considering a simple�to�police n level leaky
bucket ���� ��� tra�c model with various values of n� ��� con�
sidering scheduling disciplines such as Static Priority and
FCFS that do not require the sorted priority queue that
EDF requires� and ��� considering fast admission control
tests that employ su�cient schedulibility conditions rather
than necessary and su�cient� Using the MPEG traces� we
have shown the degree to which these factors impact the
e�ciency of a deterministic service to VBR video� Our ex�
periments indicate that even in environments that consider
the above tradeo�s� achievable utilizations are considerably
above those obtained with a peak rate allocation scheme
with average utilizations typically in the range of ��� to
	�� for multiplexer delay bounds in the range of �� to ��
msec�

As a 
nal note� although it is tempting to draw conclu�
sions such as �a concave constraint function with several
linear segments is accurate enough to characterize VBR
video� or �SP schedulers perform almost as well as EDF��
we would like to caution readers to notice that our exper�
iments are based on only two video traces� Connections
with more diverse tra�c characteristics and performance
requirements are needed to further explore these issues�
We leave further investigation of this to future work�
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