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On Superlinear Scaling of Network Delays
Almut Burchard, Jörg Liebeherr, Florin Ciucu

Abstract— We investigate scaling properties of end-to-end delays in
packet networks for a flow that traverses a sequence of H nodes and that
experiences cross traffic at each node. When the traffic flow and the cross
traffic do not satisfy independence assumptions, we find that delay bounds
scale faster than linearly. More precisely, for exponentially bounded pack-
etized traffic we show that delays grow with Θ(H logH) in the number of
nodes on the network path.1 This superlinear scaling of delays is qualita-
tively different from the scaling behavior predicted by a worst-case analysis
or by a probabilistic analysis assuming independence of traffic arrivals at
network nodes.

I. INTRODUCTION

In this paper, we are concerned with the scaling behavior of
end-to-end delays in a packet network for a flow that traverses a
sequence of H nodes and that experiences cross traffic at each
node. The motivating question is whether end-to-end delays in
a network scale well, that is, grow linearly, with the length of
the network path, or if delays grow faster than linearly, possibly
blowing up when the network path grows large. An important
finding of this paper is that the linear scaling of delay predicted
by many analytical methods available for end-to-end analysis
does not hold, even under relatively general assumptions.

A recent study [11] presented a stochastic fluid-flow analysis
of a network where traffic arrivals conform to the Exponentially
Bounded Burstiness (EBB) model by Yaron and Sidi [29], which
coincides with the class of linear bounded envelope processes
introduced by Chang [10]. This class of models includes mul-
tiplexed regulated arrivals and many Markov-modulated pro-
cesses, but excludes long-range correlated or heavy-tailed traf-
fic. In [11], it is shown for a tandem network of H nodes with
EBB-compliant cross traffic at each node that the delay of the
through flow grows no more than O(H logH) with the number
of nodes. This scaling behavior differs markedly from the scal-
ing of bounds obtained with other analytical methods. For ex-
ample, product form queueing networks [3,21], where a network
path is modeled as a sequence of queueing systems with Poisson
arrivals and (for FIFO systems) exponentially distributed ser-
vice, predict a linear growth of delays. A strong assumption of
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1We use the big-Oh or Landau notation for the asymptotic comparison of func-
tions. For two sequences An and Bn, the notation An = O(Bn) means that
the ratio An

Bn
is bounded by a constant, whileAn = Ω(Bn) means that the ratio

Bn
An

is bounded. If both relations hold, we write An = Θ(Bn).

these models is that the transmission times of a packet at dif-
ferent nodes are independent, which corresponds to randomly
re-sampled the size of the packet at each traversed node. The
deterministic network calculus [5,10], which derives worst-case
bounds in a min-plus algebra, has shown that worst-case end-
to-end delays also grow linearly in the number of nodes. A lin-
ear growth of end-to-end delays also emerges from a stochastic
analysis of the network calculus, under the assumption that ser-
vice at nodes is statistically independent [10, 13], similar as is
assumed in product form queueing networks.

In light of the different scaling properties found by these
modeling approaches, the results in [11] raise two questions:
Under what assumptions on the network and the arrivals do
O(H logH) bounds hold? And are such bounds ever sharp?
The purpose of this paper is to answer both questions and shed
light on the mechanism for the growth of delays in stochastic
models for networks.

To address the first question we show that the O(H logH)
bound remains valid even if we replace the idealized fluid flow
traffic model from [11] with a traffic model that accounts for the
effects of packetization. We discover that the upper bound on
end-to-end delays holds in packet networks where the distribu-
tion of the size and number of packets arriving in a given time
interval has an exponentially bounded tail. This includes in par-
ticular the Poisson and related processes frequently studied in
queueing theory. In contrast with most of the queueing network
literature (and also [13]), we do not assume that service times of
a packet are independently re-sampled at each traversed node.

To address the second question, we show that theO(H logH)
bound on end-to-end delays cannot be improved upon. To
demonstrate this, we construct a network that satisfies the as-
sumptions for the O(H logH) upper bounds on delay and show
that typical delays grow with Θ(H logH). Concretely, we an-
alyze the delays of packets in a tandem network of H identical
nodes with no cross traffic, and obtain that the end-to-end delay
of packets is bounded from below by Ω(H logH). This lower
bound remains valid in more general networks where the flow
experiences cross traffic at each node.

The derivations for the scaling of the upper bounds are set
in the framework of the stochastic network calculus [19], which
extends the deterministic network calculus [5,10] for worst-case
analysis in networks to a probabilistic setting. In the stochastic
network calculus, traffic arrivals are characterized by statistical
arrival envelopes, and the service available to flows at network
nodes is expressed in terms of statistical service curves. Differ-
ent from the deterministic version, the stochastic network cal-
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culus can express statistical fluctuations of traffic and capture
the statistical multiplexing gain in packet networks. A key tech-
nique in the network calculus is to express the service of a flow
along a path as a composition of the service received at each
node on the path. More precisely, when the service at each node
on a path is described in terms of service curves, the service
curve for the entire path can be expressed by a min-plus alge-
bra convolution of the per-node service curves. This result was
established first in the context of the deterministic network cal-
culus [1]. Finding the corresponding composition result in the
stochastic setting turned out to be hard and, for a long time, was
limited to strong assumptions on the network or restrictions to
the definition of the service curve. Examples of the former can
be found in [23], where delays at each node are assumed to sat-
isfy a priori delay bounds, in [2], where it is assumed that a
node discards traffic that exceeds a threshold, and in [13], which
assumes that service at subsequent nodes is statistically inde-
pendent. Examples of the latter include [8], which assumes that
the statistical service description is made over time intervals,
and [17,18], which assumes sample path guarantees for service.
In [11], it was shown that a composition of per-node service
curves becomes feasible without such assumptions for a broad
class of traffic types, by accounting for a rate penalty at each
traversed node. This composition result enabled the derivation
of the O(H logH) bound for delays for fluid-flow traffic. We
will show that the same bounds hold when accounting for the
packetization of network traffic.

Our derivations of the Ω(H logH) lower bound take a queu-
ing theoretical approach. In particular, we consider a variant
of an M/M/1 tandem queueing network where the service times
of each packet are identical in each queue, i.e., the packet size
is not randomly re-sampled at each node. There exists a small
(and possibly not widely known) literature that has studied tan-
dem networks with identical service times with no cross traffic.
While obviously a niche group of models, they have proven use-
ful for studying scenarios where the independence assumption
on the service does not hold. Boxma [6] analyzed a tandem net-
work with two queues with Poisson arrivals and general service
times distributions, and derived the steady-state distribution at
the second node. Boxma showed that the (positive) correlations
between the waiting times at the two nodes are higher than in
a network where service times at nodes are independent. Calo
[9] showed that in G/G/1 tandem networks with identical ser-
vice times, the node delay of a packet is non-decreasing in the
number of nodes. For a network with Poisson arrivals and a
bimodal packet size distribution, he obtained the Laplace trans-
form for steady-state delays. Vinogradov has authored a series
of articles on tandem networks with identical service times and
no cross traffic. (Some of these papers are only available in
Russian language journals.) In [26], he presented an expres-
sion for the steady-state distribution of the end-to-end delay in a
tandem network with Poisson arrivals and general service time
distributions. In subsequent work [27, 28], he showed for expo-

nentially distributed service times, that the average per-node de-
lay grows logarithmically at downstream nodes, and hence the
average end-to-end delay behaves as Θ(H logH). This result
provided evidence that the scaling of a tandem networks with
identical service times differs from that of a network where ser-
vice times are independently re-sampled at each nodes. Vino-
gradov also found the asymptotic scaling behavior of the per-
node delay when the load factor approaches one. These re-
sults have been extended to general arrivals and to the transient
regime [14, 15, 20]. The exact expressions obtained by Vino-
gradov for the distribution of the end-to-end delay are not ex-
plicit and do not lend themselves well to numerical evaluation.
Even for a Poisson arrival process, finding the value of the tail
distribution function requires, for each w, to solve a transcen-
dental equation and then compute an integral of the solution.
Our derivations of a lower bound (in Theorem 3) add to the
above literature by giving explicit non-asymptotic lower bounds
that can be numerically evaluated for all values of H .

The significance of the Θ(H logH) scaling behavior of end-
to-end delays stems from the linear scaling predicted by other
network models, specifically networks with deterministic ar-
rival envelopes and service guarantees, and networks with inde-
pendent exponentially distributed interarrival and service times.
With respect to the Θ(H) bound when the service satisfies de-
terministic guarantees, this paper provides conclusive evidence
that, in general, delays scale differently than in the deterministic
network calculus. With respect to the Θ(H) scaling of delays in
product form queueing network models and stochastic network
calculus models with independent service, this paper shows that
dispensing with the assumption on independent service changes
the scaling behavior of network delays.

Since the observed scaling behavior extends to the entire dis-
tribution of the end-to-end delays, the question arises: What
makes delays at nodes downstream a long network path behave
fundamentally different than delays at a single node? Our anal-
ysis suggests that, on long network paths, end-to-end delays are
dominated by short-term congestion; Once a backlog is built up
it tends to perpetuate to the downstream nodes of the remain-
ing network path. The longer a path, the more this effect is
felt. The phenomenon is reminiscent of shock waves, which are
well known to appear in transportation systems [25] but have not
been studied in communication networks.

The remainder of this paper is structured as follows. In Sec-
tion II, we discuss the network model used in this paper. In
Section III, we derive the O(H logH) upper bound for a pack-
etized arrival model. In Section IV, we construct an example
of a network where delays grow with Ω(H logH), and inves-
tigate its scaling properties. In Section V, we give numerical
examples that compare the upper and lower bounds obtained in
this paper to simulation results. In Section VI, we present brief
conclusions.
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Fig. 1. A tandem network with cross traffic.

II. NETWORK MODEL

We consider a flow, referred to as through flow, traversing a
network with H nodes in series as shown in Fig. 1. Each node
represents a work-conserving output link with a fixed capacity.
Our analysis is valid for any link scheduling algorithm that is
‘locally FIFO’ in the sense that it preserves the order of arrivals
within a flow or flow class. We assume infinite sized buffers, that
is, there are no losses due to buffer overflows. At each node, the
through flow is multiplexed with cross traffic. However, we re-
quire that statistical bounds on cross traffic are available at each
node. Service at different nodes and arrivals from different flows
are not required to be statistically independent. We generally
assume that a stability condition holds at each node, that is, the
average arrival rate to a node does not exceed the service rate.
In principle, this model can be applied to rather general network
topologies, and flows are not prohibited from looping back on
themselves or interacting with each other repeatedly. However,
the model does not account for the impact that the through flow
has on cross traffic arrivals, e.g., multiplexing of through flow
and cross traffic at one node can increase the burstiness of cross
traffic at a downstream node.

Traffic arrivals at a node in the time interval [0, t) are modeled
by a non-decreasing, left-continuous process A(t) with A(t) =
0 for t ≤ 0. Departures from a node or a network are described
similarly, and will be denoted by D(t), with D(t) ≤ A(t). The
backlog is defined by B(t) = A(t) − D(t), and the delay is
defined by

W (t) = inf{w ≥ 0 : A(t) ≤ D(t+ w)} .

We will use subscripts to denote arrivals, departures, backlog,
and delay at a particular node on the path. The end-to-end de-
lay experienced by the flow along its path of H nodes will be
denoted by Wnet(t). As t → ∞, Wnet(t) converges in distri-
bution to the steady-state delay, denoted here by Wnet. We will
analyze the distribution of Wnet through its quantiles, defined
for 0 < z < 1 by

wnet(z) = inf
{
w ≥ 0 : P

(
Wnet ≤ w

)
≤ z
}
. (1)

We consider traffic that has exponentially bounded burstiness
(EBB) in the sense of Yaron and Sidi [29]. In general, we will
say that a random variable Y is exponentially bounded, if there
exist nonnegative constants θ and M such that

Pr
{
Y > y

}
≤Me−θy . (2)

An arrival process is EBB, if it satisfies for every 0 ≤ s < t and
all σ

Pr
{
A(t)−A(s) > r(t− s) + σ

}
≤Me−θσ , (3)

where the rate r, and parameters M and θ are nonnegative con-
stants.

EBB arrival processes are closely related to traffic character-
izations through moment-generating functions as in [10]. In
fact, if the arrival process A satisfies a bound on the moment-
generating function of the linear form

1
θ

logE
[
eθ(A(t)−A(s)

]
≤ r(θ)t+ σ(θ) ,

then A is an EBB arrival process with parameters r = r(θ)
and M = e−θσ(θ). The class of EBB arrival processes includes
many Markov-modulated traffic models, regulated traffic mod-
els, as well as packet processes commonly used in queueing
theory, however, it does not include self-similar or heavy-tailed
processes.

Arrivals may be either fluid-flow or packetized. If the arrivals
are generated by a process that produces a packet of size Pn > 0
at time Tn (n = 1, 2, . . . ), the arrival process is given by

A(t) =
∑

n:Tn<t

Pn ,

which is clearly non-decreasing and left-continuous. In this
case, we assume that packet sizes are exponentially bounded.

We will derive a lower bound for delays, which will prove
superlinear scaling of delays, for arrival processes A(t) given
by a compound Poisson process with intensity λ. Packet sizes
are independent and identically distributed with a distribution
given by Pr(P > σ) = e−µσ . The moment generating function
of this arrival process satisfies

1
θ

logE
[
eθ(A(t)−A(s))

]
=
λ(t− s)
µ− θ

for any θ < µ [22]. It follows from the Chernoff bound that the
process is an EBB arrival process, as defined in Eq. (3), where

r =
λ

µ− θ
, M = 1 .

We assume that the load factor satisfies

λ

µ
< C ,

and we choose θ < µ so that r < C.

III. THE O(H logH) UPPER BOUND

In this section we establish an O(H logH) upper bound on
end-to-end delays for the network from Fig. 1 for packetized
traffic. For simplicity of notation, we assume that the output
link at each node operates at the same constant rate C and that
cross traffic at each node satisfies the same EBB bound with

Pr
{
Ah(t)−Ah(s) > rc(t− s) + σ

}
≤Mce

−θcσ , (4)
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where Ah denotes the cross traffic arrivals to the h-th node. Ar-
rivals of the through flow at the first node also satisfy an EBB
bound with

Pr
{
A0(t)−A0(s) > r0(t− s) + σ

}
≤M0e

−θ0σ . (5)

We assume that the packet-size distribution of the through
flow satisfies

Pr(P > σ) ≤Mpe
−θpσ . (6)

We first express the EBB traffic model in the language of the
stochastic network calculus. A statistical envelope for an ar-
rival process A consists of a nonnegative, non-decreasing func-
tion G(t), which provides a bound on the arrivals in intervals of
length t, together with an error function ε(σ) [11, 30] that pro-
vides a bound on the probability that the envelope is violated on
a given interval, such that for all s < t and all σ,

Pr
{
A(t)−A(s) > G(t− s) + σ

}
≤ ε(σ) . (7)

Envelopes characterize the statistical properties of traffic. An
envelope for an aggregate of flows can capture statistical multi-
plexing [4]. The characterization of an EBB traffic flow satisfy-
ing Eq. (3) is equivalent to the statistical envelope

G(t) = rt , ε(σ) = Me−θσ . (8)

The network calculus uses the concept of service curves to
characterize service available to a flow at a network node. A
node offers a deterministic service curve S [12] if it satisfies for
all t ≥ 0 that

D(t) ≥ A ∗ S(t) , (9)

where
A ∗ f(t) = inf

s∈[0,t]

{
A(s) + f(t− s)

}
denotes the min-plus convolution operator. Thus, a service curve
offers a lower bound on the guaranteed service at a node. A sta-
tistical service curve [11] consists of a nonnegative nondecreas-
ing function S(t) and an error function ε(σ), such that for any
t ≥ 0,

Pr
{
D(t) < A ∗ [S − σ]+(t)

}
≤ ε(σ) , (10)

where [x]+ = max(x, 0) denotes the positive part of the num-
ber x. With a statistical service curve, the probability that the
deterministic guarantee from Eq. (9) is violated by more than σ
is bounded by ε(σ). To see that statistical service curves are a
generalization of the deterministic counterpart, note that Eq. (9)
is recovered by using an error function ε(σ) = 1 if σ ≤ 0 and
ε(σ) = 0 otherwise. We say that a node provides an EBB ser-
vice, if

S(t) = Rst , ε(σ) = Mse
−θsσ ,

for some nonnegative constants Rs, Ms and θs is a statistical
service curve.

The service available to a flow at a node is determined by the
capacity of the node, the cross traffic, the link scheduling al-
gorithms, and packetization. We express the available service

Fig. 2. A network node represented by a fluid server and a packetizer.

in terms of a service curve describing the link capacity that is
left unused by the cross traffic. Such a ‘leftover service’ char-
acterization assumes that cross traffic is transmitted with higher
priority than the through flow, yielding a conservative bound for
any work-conserving locally FIFO scheduling algorithms. In
previous work [11], we have, under the assumption of fluid flow
traffic, constructed a statistical service curve that characterizes
the leftover service at a node. If traffic is packetized, then a
packet cannot depart from the node until the entire packet has
been processed. This introduces additional dependencies and
delays.

A. Single Node Delays

We first derive a leftover service curve for packetized traffic
and obtain a single node delay bound. The results will be used
in the next subsection for an upper bound on end-to-end delays.

Denote the arrival and departure process of the through flow
at a node by A(t) and D(t), respectively. We represent the node
as the composition of a virtual fluid server and a packetizer, as
shown in Fig. 2. The fluid server experiences through flow ar-
rivals A(t) and cross traffic Ac(t). The output from the fluid
server passes through a packetizer that introduces a random de-
lay according to the packet size distribution. The following the-
orem provides a statistical service curve that accounts for cross
traffic as well as packetization.

Theorem 1 Consider a node with a fixed capacity C with a
work-conserving, locally FIFO scheduling algorithm. The ag-
gregate cross flow arrivals are characterized by any statistical
envelope Gc(t) with an error function εc(σ) that satisfies∫ ∞

0

εc(u) du <∞ .

The packet size of the through flow be given by a stationary ran-
dom variable P with

Pr{P > σ} ≤ εp(σ) .

Then, for any choice of δ > 0 and τ > 0,

S(t) = Ct− Gc(t+ τ)− δ(t+ τ)

is a service curve for the through flow, with error function

εs(σ) = inf
σc+σp=σ

{ 1
δτ

∫ ∞
σc

εc(u) du+
1

E[P ]

∫ ∞
σp

εp(u) du
}
.
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The error function of the service curve, εs(σ), depends on the
error function of the cross traffic, εc(σ), as well as the error
function for the packet size, εp(σ). Setting εp(σ) = 0 for all
σ > 0 recovers the result for fluid flow traffic from [11]. The
theorem requires to choose two parameters τ > 0 and δ > 0.
The parameter τ plays the role of a discretization time step, and
δ is used to enforce convergence in the estimates for the viola-
tion probability. In applications, the free parameters are chosen
to optimize the resulting bounds.

Proof: Refer to Fig. 2. If, at time t, the node is serving a
packet from the tagged flow, denote by Z̃(t) the portion of this
packet that has already been completed. We interpret

D̃(t) = D(t) + Z̃(t) (11)

as the output from the fluid server. By Theorem 3 of [11], we
have the following input-output relationship at the fluid server:

Pr
{
D̃(t) < A(t) ∗ [S(t)− σ]+

}
≤ 1
δτ

∫ ∞
σ

εc(u) du . (12)

The distribution of Z̃(t) is determined by the distribution of the
size of the packet that is being processed in (the packetizer of)
the node at time t. Denote the size of this packet by Z(t). The
probability density of this distribution is computed by weighting
the density of P with the packet size. In other words, if fP (y)
is the probability density of a random packet P , then the density
Z(t) is given by zfP (z)/E[P ]. By conditioning on the size of
Z(t), we compute

Pr
{
Z̃(t) > σ

}
=
∫ ∞

0

Pr
{
Z̃(t) > σ

∣∣Z(t) = z
}zfP (z)
E[P ]

dz

=
1

E[P ]

∫ ∞
σ

(z − σ)fP (z) dz

≤ 1
E[P ]

∫ ∞
σ

εp(z) dz . (13)

In the second line, we have used that Z̃(t) conditioned on
Z(t) = z is uniformly distributed on [0, z], and in the third
line, we have integrated by parts. The claim follows by inserting
Eqs. (12) and (13) into Eq. (11):

Pr
{
D(t) < A ∗ [S − (σc + σp)]+(t)

}
≤ Pr

{
D̃(t) < A ∗ [S − σc]+(t)

}
+ Pr

{
Z̃(t) > σp

}
.

The theorem enables us to derive a delay bound where packe-
tized traffic complies to the EBB model. The analysis proceeds
in three steps. First, we show that the leftover service curve for
EBB cross traffic and exponentially bounded packet sizes yields
an EBB service. Second, we show that EBB arrivals with an
EBB service yield delays with an exponential decay. Lastly, we
combine the results of the first two steps.

To begin, consider that aggregate arrivals from the cross traf-
fic satisfy Eq. (4) and that packets of the through flow satisfy
the exponential bound in Eq. (6). We use Theorem 1 with
Gc(t) = rct, εc(t) = Mce

−θcσ , δ = C − Rs − rc and
τ =

(
θc(C −Rs)

)−1
. This gives the service curve

S(t) = Rst− θ−1
c ,

with error function

εs(σ) =
( eθc(C −Rs)Mc

θs(C −Rs − rc)

)θs/θc ( Mp

θsE[P ]

)θs/θp
︸ ︷︷ ︸

=:Ms

e−θs(σ−θ
−1
c ) ,

(14)

where

θs =
(
θ−1
c + θ−1

p

)−1
. (15)

For the error function, we have used Lemma 1 from the ap-
pendix. Since S with ε(σ) is a statistical service curve if and
only if S − x with ε(σ+ x) is a statistical service curve, we can
replace σ with σ + θ−1

c to obtain the EBB service

S(t) = Rst , εs(σ) = Mse
−θsσ , (16)

where Rs < C − rc, and θs and Ms as in Eq. (14).

In the second step, we show that the delay distribution of an
EBB flow at a node offering an EBB service has an exponential
decay. We will apply the delay bound of Theorem 2 in [11],
which states for an arrival process A with a statistical envelope
as in Eq. (7), and a node offering a statistical service curve as in
Eq. (10), a probabilistic delay bound is given by

Pr
{
W (t) > w(σ)

}
≤ ε(σ) ,

where

w(σ) = inf
{
w : S(t−τ+w) ≥ G(t)+δt+σ , ∀t ≥ 0

}
, (17)

and

ε(σ) = inf
x+y=σ

{
εs(x) +

1
δτ

∫ ∞
x

εg(u) du
}
. (18)

The bound holds for any fixed choice of the two free parameters
τ > 0 and δ > 0. For an EBB traffic envelope (with parameters
r0, θ0,M0) at a node offering an EBB service (with parameters
Rs, θs,Ms) we set

θw =
(
θ−1
s + θ−1

0

)−1
, (19)

and choose δ = Rs − r0 and τ = (Rsθw)−1. If Rs > r0, we
can compute Eq. (17) as

w(σ) =
σ + θ−1

w

Rs
,
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For the violation probability, we evaluate Eq. (18) with Lemma 1
as

ε(σ) = inf
σs+σ0=σ

{
Mse

θsσs +
M0

δτθ0
e−θ0σ0

}
= e
(Msθs

θw

)θw/θs( RsM0

Rs − r0

)θw/θ0
︸ ︷︷ ︸

=:Mw

e−θwσ−1 . (20)

Replacing σ with Rsw + θ−1
w , we obtain the exponential bound

Pr
{
W (t) > w

}
≤Mwe

−θwRs w . (21)

In the third and final step of the single-node delay analysis, we
insert the service guarantee from Eq. (16) into the delay bound
of Eq. (21) and obtain values for the constants Rs, θw, and Mw.
We choose the service rate Rs to satisfy

r0 < Rs < C − rc .

Inserting the formula for θs from Eq. (15) into Eq. (19) yields

θw =
(
θ−1
c + θ−1

p + θ−1
0

)−1
. (22)

It remains to estimate the constantMw. Using the expression for
Ms from Eq. (14) in Eq. (20), and using Lemma 2 to estimate(eθc

θw

)θw/θc( θp
θw

)θw/θp
≤ e+ 1 ,

we obtain that Eq. (21) holds with

Mw ≤ e(e+1)M
( C

C−rc−Rs

)θw/θc( Rs
Rs−r0

)θw/θ0
, (23)

where

M = max
{
M0,Mc,

Mp

θpE[P ]

}
.

The free parameterRs can be eliminated from Eqs. (21) and (23)
with Lemma 3 from the appendix.

B. End-to-end Delays

We will use the single node delay results from the previous
subsection to derive a delay bound for the packetized through
flow in the network in Fig. 1. For this, we construct a statistical
service curve, referred to as network service curve, describing
the end-to-end service for the through flow along its entire path
in terms of the service curves at each node on the path. With
a network service curve available, we can compute end-to-end
performance measures such as end-to-end delay bounds using
single-node results.

We will show that, as long each node on the path offers an
EBB service, the network also offers an EBB service. For sim-
plicity, we take all per-node service curves to be identical.

Consider more generally a flow that on its path through the
network receives at the h-th node a statistical service curve

Sh(t) with error function εh(t). For given values of the pa-
rameters τ > 0 and δ > 0, set S̃h(t) = Sh(t− τ) so that for all
t ≥ 0 and all σ

Pr
{
D(t) < A ∗ [S̃h − σ]+(t)

}
≤ εh(σ)

Also set S̃h−δ(t) = S̃h(t)− δt.
With these definitions, Theorem 1 of [11] guarantees that, for

every choice of the free parameters τ > 0 and δ > 0, the func-
tion

Snet(t) = S̃1 ∗ S̃2
−δ . . . S̃

H
−(H−1)δ(t+ τ) (24)

is a network service curve for the flow that satisfies Eq. (10) with
error function

εnet(σ) = inf
σ1+···+σH=σ

{
εH(σH) +

H−1∑
h=1

1
δτ

∫ ∞
σh

εh(u) du
}
.

(25)
The network service curve is constructed by a min-plus convo-
lution of the per-node service curves, where at each successive
node, the service curve is degraded by an additional rate δ.

If each Sh provides an EBB service with the same parameters
Rs,Ms, θs, then

S̃h−(h−1)δ(t) = (Rs − (h− 1)δ)(t− τ)

is a latency-rate function. Using the min-plus algebra [10], the
convolution of these latency rate functions is again a latency-
rate function, with rate equal to the minimum of the rates (Rs−
(H − 1)δ) and latency equal to the sum of the latencies (Hτ ).
We choose Rnet < Rs, set

θnet =
θs
H
, (26)

and apply the theorem with δ = (Rs − Rnet)/(H − 1) and
τ = (HRsθnet)−1. Replacing H − 1 by H whenever it seems
convenient, we obtain the network service curve

Snet(t) = Rnett− θ−1
net

with error function

εnet(σ) ≤ H2eMs
Rs

Rs −Rnet︸ ︷︷ ︸
=:Mnet

e−θnetσ−1 . (27)

As in the computation of the EBB leftover service curve in
Eq. (16), we conclude that

Snet(t) = Rnett , εnet(σ) = Mnete
−θnetσ

provides an EBB network service, with parameters Rnet, θnet,
and Mnet as given above.

We can now combine the results from this section to establish
our first main result, an upper bound on the end-to-end delay of
packetized traffic of a through flow in a network, where through
and cross traffic satisfy EBB bounds.
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Theorem 2 Given a network as shown in Fig. 1 with H nodes
where each node has capacity C. Let the arrival process of the
through flow be characterized by Eqs. (5) and (6), and let the
cross traffic at each node satisfy Eq. (4). Set

γ =
θ−1
c

θ−1
c + θ−1

p

, M = max
{
M0,Mc,

Mp

θpE[P ]

}
.

Then, for every choice of Rnet such that

r0 < Rnet < C − rc ,

the end-to-end delays satisfy

Pr
{
Wnet(t) > w

}
≤Mwe

−Rnetθww , (28)

with parameters

θw =
(
H(θ−1

c + θ−1
p ) + θ−1

0

)−1
, (29)

Mw = e(e+1)H2M
( C

C−rc−Rnet

)(1+γ)(1−θw/θ0)
×

×
( Rnet
Rnet−r0

)θw/θ0
.

The parameter γ that appears in the theorem describes the rel-
ative impact of the cross traffic and the packet-size distribution
on the service available to the through flow at a node. In the ab-
sence of cross traffic, we have γ = 0, and if the through traffic
is fluid-flow, we have γ = 1. The free parameter Rnet can be
eliminated with the help of Lemma 3 from the appendix.

Proof: For the decay rate of the violation probability, we
compute

θw =
(
θ−1
net + θ−1

0

)−1

=
(
Hθ−1

s + θ−1
0

)−1
(30)

=
(
H(θ−1

c + θ−1
p ) + θ−1

0

)−1
.

Here, the first line used Eq. (19) with θnet in place of θs, the sec-
ond line used Eq. (26), and the last line used Eq. (15). Similarly,
we obtain for the multiplicative constant

Mw ≤
( H2eθnetRs
θw(Rs −Rnet

)θw/θnet( eθc(C −Rs)
θs(C −Rs − rc)

)Hθw/θc
×

×
(θp
θs

)Hθw/θp( eRnet
Rnet − r0

)θw/θ0
M . (31)

We have used Mw from Eq. (20) with θnet, Mnet and Rnet in
place of θs, Ms and Rs, then expressed Mnet in terms of Ms

with Eq. (27), and finally used Eq. (14) to determine Ms. To
keep the formulas manageable, we have not yet inserted the ex-
pressions we obtained for θnet and θs in Eq. (30).

We need to show that this expression for Mw is no larger
than the value given in the statement of the theorem. Since
θw/θnet < 1, we can replace the exponent of H by 2. We next
collect the terms that involve the exponential decay rates. By

Eq. (30) and Lemma 2,(θnet
θw

)θw/θnet(eθc
θs

)Hθw/θc(θp
θs

)Hθw/θp
=
( eθc
Hθw

)Hθw/θc( θp
Hθw

)Hθw/θp
≤ e+ 1 .

Furthermore, we choose

R = Rnet +
1

1 + γ
(C −Rnet − rc)

and apply the arithmetic-geometric mean inequality to estimate( Rs
Rs −Rnet

)θw/θnet( C −Rs
C −Rs − rc

)γθw/θnet
≤
( C

C −Rnet − rc

)(1+γ)θw/θnet
.

The theorem follows by inserting these estimates into Eq. (31).

Let us briefly turn to the question of performing a numerical
evaluation. To obtain a bound on the (1−ε)-quantile of the end-
to-end delay, we fix an acceptable violation probability ε with
0 < ε < 1. Typically, ε is very small, perhaps 10−6, but we
will occasionally also consider larger values, such as ε = 0.5.
Setting

Pr
{
Wnet(t) > w

}
= ε ,

and solving for w in Theorem 2 results in the bound

wnet(ε) ≤
1

θwRnet
log

Mw

ε
, (32)

which can then be minimized over the free parameter Rnet. Be-
cause of the dependence of Mnet on Rnet, the minimization
problem cannot be solved analytically. We thus propose the fol-
lowing iterative procedure. In the first step, we select the initial
value

R
(0)
net = r0 +

θw
θ0

(C − rc − r0) .

From this, we compute a preliminary boundw(0)
net on the quantile

wnet(ε), using Eq. (32) with R(0)
net in place of Rnet. To improve

this bound, we then compute

R
(1)
net = C − rc −

(1− θw/θ0)(C − rc − r0)

1 + (1 + γ)θw(C − rc − r0)w(0)
net

, (33)

using Eq. (51) from the appendix. We use this value in Eq. (32)
to obtain a new bound w(1)

net. The procedure can be iterated to
obtain choices ofRnet andwnet that are arbitrarily close to opti-
mal, but we find that a single iteration generally suffices for our
purposes.

C. Scaling of Upper Bounds

We next investigate the scaling behavior of end-to-end delays
as a function of the path length and we explore the tail of the
delay distribution. In the next section, the upper bounds will be
compared to the lower bounds, for the purpose of assessing the
quality of our derived bounds.
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C.1 Long Paths (H →∞)

We analyze how the quantiles of the end-to-end delay scale
with the number of nodes H . From Theorem 2, we obtain the
explicit bound

wnet(ε) ≤
1

θwRnet

{
2 logH + log

e(e+1)M
ε

+ (1 + γ)
(

1− θw
θ0

)
log
( C

C − rc −Rnet

)
+
θw
θ0

log
( Rnet
Rnet − r0

)}
. (34)

Since
θ−1
w = H

(
θ−1
c + θ−1

p

)
+ θ−1

0 ,

it is clear that
wnet(ε) = O(H logH) .

A closer inspection of Eq. (34) gives us explicit values for the
prefactor. For any choice ofRnet < C−rc that does not depend
on H , we obtain that

wnet(ε) ≤ 2
θ−1
c + θ−1

p

Rnet
H logH +O(H) .

It follows that

lim
H→∞

wnet(ε)
H logH

≤ 2
θ−1
c + θ−1

p

C − rc
. (35)

C.2 Large Delays (w →∞)

We study the tail behavior of the delay bounds for the single-
node and the multi-node case. By Lemma 3 from the appendix,
we can choose the free parameter Rs in the delay bound of
Eq. (21) to obtain for a single node

Pr
{
W (t) > w

}
≤ O(wθw/θc) e−θw(C−rc)w ,

where θw is given by Eq. (22). In particular, the exponential
decay rate satisfies

lim
w→∞

− 1
w

logPr
{
W (t) > w

}
≥ C − rc
θ−1
c + θ−1

p + θ−1
0

.

Likewise, we can choose the free parameter Rnet in Theo-
rem 2 to obtain for the end-to-end delay

Pr
{
W (t) > w

}
≤ O

(
w(1+γ)(1−θw/θ0)

)
e−θw(C−rc)w ,

where θw and γ are given by Theorem 2. Here, the exponential
decay rate satisfies

lim
w→∞

− 1
w

logPr
{
Wnet(t)>w

}
≥ C − rc
H(θ−1

c +θ−1
p ) +θ−1

0

. (36)

Note that, in both cases, the application of Lemma 3 provides
explicit expressions for the tail probability.

IV. THE Ω(H logH) LOWER BOUND

In this section we construct an example of a network that sat-
isfies the assumptions of Section II and prove that in this net-
work the end-to-end delay of packets is bounded from below by
Ω(H logH). The example consists of a tandem network withH
nodes, as shown in Fig. 1, where each node is a workconserving
FIFO server with an infinite buffer that operates at a constant
rate C. The network is traversed by a single flow without any
cross traffic at the nodes.

The arrivals from the flow to the first node are described by
a compound Poisson process [22], where packets arrive at times
T1, T2, . . . according to a Poisson process with rate λ, and the
size of each packet is independently exponentially distributed
with average 1/µ. The service time of any given packet is pro-
portional to its size and hence identical at each node. We assume
that the load factor ρ = λ/(µC) satisfies ρ < 1. This ensures
that the backlog process at each node is stable and the delay
distribution converges to a steady state.

A. Main Result

Theorem 3 Given a network with the assumptions stated
above. Let Wnet denote the steady-state end-to-end delay of
a packet along the path through the network. Then, for every
0 < z < 1,

Pr

{
Wnet ≤

H

µC
log
(

H

2b| log z|

)}
≤ z , (37)

where

b = inf
0<θ<ρ

1
θ

∣∣log
(
z(1− z)(1− θ/ρ)(1 + θ)

)∣∣ . (38)

An equivalent statement to the theorem is that the quantiles of
the delay satisfy

wnet(z) ≥
H

µC
log
(

H

2b| log z|

)
.

We can interpret the end-to-end delay of a packet as having two
components. The first is the pure processing time, with aver-
age H/(µC), which clearly grows linearly with the number of
nodes. The second contribution is the time the packet spends
waiting in the queues at nodes h = 1, . . . ,H . The theorem
implies that at downstream nodes the waiting time of a typical
packet dominates its processing time.

The lower bound in Eq. (37) holds for the entire distribution
of Wnet, including the mean delay. The lower bound remains
valid in more general networks with cross traffic and with nodes
of different capacities C1, . . . , CH , provided that the tail of the
packet size distribution of the through flow decays no faster than
exponentially, the inter-arrival distance has finite mean, and the
capacity of a positive fraction of the nodes does not exceed C.
The crucial assumption is that the processing time of a given
packet at any node is proportional to its size.
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Proof: Consider a scenario where the network is started at
time t = 0 with empty queues, and number the packets in order
of their arrival to the first node of the network by n = 1, 2, . . . .
Let Xn = Tn− Tn−1 denote the time between the arrival of the
(n− 1)-st and the n-th packet at the first node, and let Pn be the
size of the n-th packet.

For the purpose of the proof, we rescale the unit of traffic by
1/µ so that the average packet size is 1, and the unit of time
by 1/(µC) so that the rate of the server is 1. In these units, the
inter-arrival distancesXn are exponentially distributed with rate
ρ, and the packet lengths Pn are exponentially distributed with
rate 1.

Denote by Wnet,n the total delay experienced by the n-th
packet on its path through the network. The packet arrives to
the first node at time

Tn =
n∑
i=1

Xi ,

and departs from last node as soon as it and all prior packets
have been processed at all nodes, but certainly not before

sup
j=1,...,n

{ j∑
i=1

Xi +HPj +
n∑

i=j+1

Pi

}
.

Subtracting Tn from this expression, we obtain for the end-to-
end delay

Wnet,n = sup
j=1,...,n

{
HPj −

n∑
i=j+1

(Xi − Pi)
}
.

To derive a lower bound on the distribution of Wnet,n, we split
it into two pieces that will be estimated separately:

Wnet,n ≥ sup
j=1,...,n

{
HPj − b(n− j)

}
− sup
j=1,...,n

{ n∑
i=j+1

(Xi − Pi − b)
}
. (39)

Since the network is started with empty queues at time t = 0,
Wnet,n is stochastically increasing in n and its distribution
converges monotonically to the steady-state delay distribution
Wnet.

For the first supremum in Eq. (39), we use that the processing
times Pj are independent and identically distributed to compute

Pr
(

sup
j=1,...,n

{
HPj − b(n− j)

}
≤ w

)
=
n−1∏
j=0

{
1− Pr

(
Y >

w + bj

H

)}
,

where Y is a random variable with the same distribution as the
Pj . To estimate the product, we take logarithms and use that

log(1− x) ≤ −x to obtain

logPr
(

sup
j=1,...,n

{
HY − b(n− j)

}
≤ w

)
≤ −

n−1∑
j=0

Pr
(
Y >

w + bj

H

)
≤ −H

b

∫ (w+bn)/H

w/H

Pr
(
Y ≥ y

)
dy . (40)

In the last line, we have taken advantage of the fact that the terms
of the sum decrease with j to estimate the sum by an integral.
For the exponential distribution, the integral evaluates to

logPr
(

sup
j=1,...,n

{
HPj − b(n− j)

}
≤ w

)
≤ −H

b
e−w/H

(
1− e−nb/H

)
. (41)

Equating the right hand side to 2 log z and solving for w, we
obtain

Pr

(
sup

j=1,...,n

{
HPj − b(n−j)

}
≤ H log

H(1−e−nb/H)
2b| log z|

)
≤ z2 . (42)

Estimating the second supremum in Eq. (39) is a classical
problem for which many techniques are available. The sum has
the same distribution as a random walk consisting of n inde-
pendent steps. Since b > 1

ρ − 1 = E[Xn − Pn], the random
walk has a negative drift, it almost surely escapes to −∞, and
the supremum is bounded uniformly in n. To obtain an explicit
bound, we consider the Markov chain

Zj =
n∏

i=n−j+1

eθ(Xi−Pi−b) , j = 1, . . . , n− 1 .

We compute the moment-generating function of Xn − Pn as

E
[
eθ(Xn−Pn)

]
=

1
(1− θ/ρ)(1 + θ)

, (θ < ρ) .

Let θ be the minimizer in Eq. (38). Then Z1, . . . , Zn−1 form a
nonnegative supermartingale

E[Zj+1 | Zj ] = E
[
eθ(Xn−j−Pn−j−b)

]
· Zj ≤ Zj .

We invoke Doob’s maximal inequality [16] (p. 496) to see that

Pr
(

sup
j=1,...,n−1

Zj ≥ 1
)
≤ E[Z1] .

By the definition of Z1, . . . , Zn−1, and the choice of b and θ,
this implies

Pr

(
sup

j=1,...,n

n∑
i=j+1

(Xi − Pi − b) > 0
)
≤ z(1− z) . (43)
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Note that the term for j = n on the left hand side corresponds
to an empty sum that does not contribute to the probability.

To complete the proof, we combine Eq. (42) with Eq. (43) to
bound the right hand side of Eq. (39) and arrive at

Pr

{
Wnet,n ≤ H log

(H(1− e−nb/H)
2b| log z|

)}
≤ z .

The theorem follows by taking n→∞.

B. Scaling of Lower Bounds

We now explore the scaling behavior implied by Theorem 3,
and compare the obtained lower bound to the upper bounds
from Subsection IV-B. To enable a comparison with the upper
bounds, we express the compound Poisson arrival process with-
out cross traffic used in this section in terms of the model from
Section III. The parameters for the through flow and cross traffic
arrivals and the packet-size distribution used in Theorem 2 are
given by

θ0 < µ , r0 = λ
µ−θ0 < C , M0 = 1 ,

θc =∞ , rc = 0 , Mc = 1 ,
θp = µ , E[P ] = µ−1 , Mp = 1 .

(44)

B.1 Long Paths (H →∞)

From Theorem 3 we obtain that the quantiles of the end-to-
end delay satisfy

wnet(z) ≥
H

µC
logH −O(H) . (45)

We thus conclude that typical delays grow as

Wnet = Θ(H logH) .

If we compare the lower bound in Eq. (45) to the upper bound
from Eq. (35), with the parameters as given in Eq. (44), we
see that upper and lower bounds only differ by a factor of two,
thus validating the quality of the bounds in Theorems 2 and 3.
Note that, since the bounds hold for the entire distribution, the
Θ(H logH) scaling and the ratio of upper to lower bounds also
extends to the mean delay.

B.2 Large Delays (w →∞)

For the tail of the delay distribution, Theorem 3 implies that

wnet(1− ε) ≥
H

µC
log ε−1 −O(1) , (ε→ 0) .

It follows that

Pr{Wnet(t) > w} ≥ Ω
(
e−

µ
HCw

)
.

In particular, the exponential decay rate satisfies

lim
w→∞

− 1
w

logPr
{
Wnet(t) > w

}
≤ µC

H
. (46)

When we insert the parameters from Eq. (44) into the upper
bound from Eq. (36) we obtain that the exponential decay rate
must be at least C

Hµ−1+θ−1
0

. Since θ0 < µ can be chosen arbi-
trarily, we can combine the upper and lower bounds to obtain
the exact rate of the exponential decay of the end-to-end delays,
given by

lim
w→∞

− 1
w

logPr
{
W (t) > w

}
=
µC

H
. (47)

C. The Role of the Packet Size Distribution

We next investigate how different packet size distributions im-
pact the scaling of end-to-end delays. For this comparison, we
abandon the Poisson arrival process considered earlier in this
section in favor of a fixed (deterministic) inter-arrival distance.
The constant interarrival distance emphasizes the impact of the
packet-size distribution. It also simplifies our computations, and
allows a concise comparison of the scaling behavior of different
distributions.

As in the proof of Theorem 3, we work in units where the
link capacity is C = 1, and the mean packet size E[Y ] = 1. Ar-
rivals are evenly spaced, i.e., the inter-arrival distance is given
by Xn = 1/ρ. We consider three examples of packet-size dis-
tributions: exponential (light-tailed), Pareto (heavy-tailed), and
Bernoulli (deterministically bounded).

Exponential: To obtain a lower bound for Wnet, we use
Eq. (39) with b set equal to the packet spacing. Then the second
supremum in Eq. (39) is guaranteed to be nonpositive, and can
be neglected. For the first supremum, we obtain from Eq. (41)
that

logPr
(
Wnet ≤ w

)
≤ −H

b
e−w/H .

Setting the right hand side equal to log z and solving for w leads
to

wnet(z) ≥ H log
(

H

b| log z|

)
. (48)

Note that this model falls within the scope of the O(H logH)
delay bound discussed in Section III.

Pareto: Next we consider the situation where the packet size
distribution follows a Pareto law

Pr
(
P > y

)
=
(
ymin
y

)α
, y ≥ ymin .

The parameter α determines the decay of the tail of the distribu-
tion, with smaller values of α signifying a heavier tail, and ymin
is the minimum packet size. We assume that α > 1 so that the
distribution has a finite mean and choose ymin = (α− 1)/α so
that the mean packet size becomes

E[P ] =
α

α− 1
ymin = 1 .



11

For the lower bound, we set b = 1/ρ and insert Eq. (40) into
Eq. (39) to obtain

logPr
(
Wnet ≤ w

)
≤ −H

b

∫ (w+bn)/H

w/H

(
ymin
y

)α
dy

→
n→∞

− (Hymin)α

b(α− 1)wα−1
.

Setting the right hand side equal to log z and solving forw yields
for the quantiles

wnet(z) ≥
(Hymin)α/(α−1)(

b(α− 1)| log z|
)1/(α−1)

. (49)

Thus, typical end-to-end delays show at least a power-law
growth in the number of nodes. The closer α is to 1, i.e., the
heavier the tail of the packet size distribution, the more rapid the
growth of the end-to-end delay with the number of nodes. Note
that even for large values of α, the Ω(Hα/(α−1)) growth ob-
served for the Pareto packet-size distribution always dominates
the Θ(H logH) growth observed for packet size distributions
with exponential tails.

Bernoulli: Lastly, we consider a packet-size distribution that is
deterministically bounded. Suppose that there are two packet
sizes, ymax > ymin > 0, where large packets occur with some
small frequency p, i.e.,

Pr(P = ymax) = p, Pr(P = ymin) = 1− p .

The mean packet size is given by

E[P ] = p ymax + (1− p) ymin .

We clearly have the deterministic bound on the end-to-end delay

Hymin ≤Wnet ≤ Hymax .

If we choose b = 1/ρ − ymin, then the second supremum in
Eq. (39) is nonnegative, and we compute

Pr
(
Wnet ≤ w

)
≤

n−1∏
j=0

Pr
(
HP − bj ≤ w

)
≤ (1− p)#{j:w+bj<Hymax}

→
n→∞

(1− p)(Hymax−w)/b .

Solving for the quantiles provides the bound

wnet(z) ≥ Hymax −
b| log z|
| log(1− p)|

. (50)

Thus, the difference between typical delays and the determin-
istic worst-case delay remains bounded as the number of nodes
grow large. In other words, typical delays on a long path are es-
sentially determined by the processing time of the largest pack-
ets. This finding holds up for bounded packet-size distributions
in general.

V. NUMERICAL EXAMPLES

In this section we illustrate the upper and lower bounds on
the end-to-end delay by numerical examples. As in Section IV,
we consider a tandem network of H nodes, each representing a
FIFO link with fixed capacity C, with no cross traffic. Arrivals
are packetized, and the packet sizes are drawn from i.i.d random
variables P1, P2, . . . . The service time of the n-th packet at
each node is given by Pn/C. Packets arrive at times T1, T2, . . . ,
where the inter-arrival distances Xn = Tn − Tn−1 are indepen-
dent and identically distributed in Example 1, and constant in
Examples 2 and 3.

A. Example 1: Lower and Upper Bounds

We consider the scenario from Theorem 3. Packets arrive to
the network as a Poisson process. The link capacity is given
by C = 100 Mbps, and the average size of packets is µ−1 =
400 Bytes [24]. For a given load factor ρ, we determine the
arrival rate by λ = ρµC. For computing upper bounds on the
end-to-end delay from Theorem 2 we set γ = 0 and M = 1.

We focus on quantiles wnet(z) where z is very close to 1. To
simulate wnet(z) for z = 1− 10−6, we start with an empty net-
work and run the simulations until 108 packets have completed
service at node H , storing the 100 largest observed values of
the end-to-end delay at each node. We use the smallest of these
values as our estimate for the z-quantile of the end-to-end delay.

In Fig. 3 we show the end-to-end delay bounds as a function
of the number of nodes H in the network, when the load factor
is low (ρ = 0.1) and high (ρ = 0.9). The figures illustrate the
quantitative relationship between the upper and lower bounds
and the simulations. For the chosen range of H , which is al-
ready larger than typical routes in a packet network, the graphs
appear to grow linearly. This indicates that, for path lengths en-
countered in practice, a linear growth of delays may be a suitable
heuristic, and that analytical models that show a linear growth
can be justified.

In Fig. 4 we evaluate the delays for fixed path length (H =
25) as the load factor ρ approaches one. In order to capture the
blow-up of the delays as ρ → 1, we use a logarithmic scale
on the vertical axis. In addition to the bounds and the simula-
tions, we include Vinogradov’s asymptotic formula for the av-
erage end-to-end delay (2H| log(1 − ρ)| as ρ → 1) [27]. The
simulations show a significant increase in the end-to-end delay
only at values of the load factor well above 90%. Vinogradov’s
result captures the blow-up as ρ → 1 rather well, even though
it applies to the mean rather than the z-th quantile, but has no
useful relationship to the simulations for smaller values of ρ.
On the other hand, the upper and lower bounds correctly predict
the order of magnitude of the delays seen in the simulations at
values of the load factor ρ < 0.9, but the lower bound fails to
capture the blow-up, while the upper bound over-estimates the
rate of blow-up. Thus, the upper and lower bound capture the
scaling of delays as H →∞ but may become loose as ρ→ 1.
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(a) Load factor ρ = 0.1
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(b) Load factor ρ = 0.9

Fig. 3. Example 1: End-to-end delay wnet(z) as a function of the number of
nodes H for two values of the load factor. (quantile z = 1 − 10−6, link
capacity C = 100 Mbps, mean packet size µ−1 = 400 Bytes.)

B. Example 2: Lower Bounds for Packet Size Distributions

In this example we illustrate the impact of the packet size
distribution on lower bounds for the median of the end-to-end
delays (that is, we set z = 0.5). We consider three different
packet-size distributions: An exponential distribution (µ = 1),
a heavy-tailed Pareto distribution with α = 1.5 and P = 1/3,
and a Bernoulli distribution where a small fraction p = 0.1 of
packets has size ymax = 2 while the remaining packets have size
ymin = 0.8889. We use the lower bounds in Eq. (48), Eq. (49)
and Eq. (50) for varying number of nodes H and fixed load fac-
tor ρ = 0.75. For the purpose of comparison, we use dimen-
sionless variables, where the link capacity is C = 1, the average
packet size is E[Y ] = 1, and the distance between consecutive
packets is ρ−1 = 4/3. Also included in the plot is the expected
value of the pure processing time.

Fig. 5 shows that different packet size distributions give rise
to fundamentally different scaling behavior. The upper curve
shows the power-law growth of the end-to-end delay of the
Pareto distribution; here, the power is α/(α − 1) = 2. The
middle curve shows the sightly superlinear Θ(H logH) growth
of the delay bounds for the exponential packet-size distribution.
For the Bernoulli distribution, we observe linear scaling, caused
by the linear growth of the worst-case delay. Note that the
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Fig. 4. Example 1: End-to-end delay wnet(z) as a function of the load factor
ρ (quantile z = 1 − 10−6, H = 25 nodes, link capacity C = 100 Mbps,
mean packet size µ−1 = 400 Bytes.)
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Fig. 5. Example 2: Lower bounds for the median of the end-to-end delay for dif-
ferent packet size distributions as a function of the number of nodes. (quan-
tile z = 0.5, link capacity C = 1, load factor ρ = 0.75, mean packet size
1.)

growth rate lies well above the average rate E[Y ] = 1 and is
determined by the maximum packet length ymax = 2.

C. Example 3: Truncated Packet Size

Since packet sizes are limited in practice, we want to evaluate
if the superlinear scaling of delays is maintained when a max-
imum packet size is enforced. We continue with the network
configuration and assumptions of Example 2, and setC = 1. We
consider a constant interarrival spacing of packets of 1 time unit.
We only evaluate the exponential packet size distribution with
µ = 1. With this choice, the utilization is equal to ρ = 0.75.
We compare the lower bound for the end-to-end delays with a
truncated distribution, where packet sizes cannot exceed k times
the average packet size of the original distribution. Specifically,
for the truncation, we work with the following packet size dis-
tribution:

Pr(Y < y) =

{
1− e−y , if y < k ,

1 , otherwise .

We ignore the impact of the truncation on the mean of the dis-
tribution. In Fig. 6 we depict the lower bounds of the median
delays (z = 0.5) for the original distribution without trunca-
tion), and the results for the truncation at k = 2, 4, and 6. We
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Fig. 6. Example 3: Sensitivity of lower bounds for the median end-to-end delay
to truncation of (exponentially bounded) packet size distribution (quantile
z = 0.5, link capacity C = 1, load factor ρ = 0.75, mean packet size 1.)

observe that imposing limits on the packet lengths can have a
noticeable impact on the scaling of the lower bounds. At the
same time, even for a truncation of k = 4, the scaling behav-
ior is close to that of the original distribution. As a point of
reference, measurements of the average size of IP datagrams re-
port an average around 400 Bytes [24], while the maximum IP
datagram size is often set to 1500 Bytes. Thus, networks today
meet the conditions under which superlinear delay scaling can
manifest themselves.

VI. CONCLUSIONS

We have shown that in a network with exponentially bounded
arrivals and service, and where each packet maintains the same
service time at each traversed node, end-to-end delays grow as
Θ(H logH) with the number of nodes. This is quite different
from the Θ(H) scaling obtained when service at nodes is sta-
tistically independent. We proved a lower bound for delays in
a tandem network without cross traffic where packets arrive ac-
cording to a Poisson process and have exponentially distributed
service times. The Θ(H logH) scaling of delays followed by
extending a O(H logH) upper bound for fluid-flow traffic to a
packetized arrival description. The Θ(H logH) bounds remain
valid in networks with cross traffic and with different packet-
size distributions, so long as all arrival processes satisfy suit-
able exponential bounds. An open question is whether there are
scenarios with purely fluid-flow arrivals where delays grow as
Ω(H logH). We believe this to be the case, but suspect it may
require to analyze rather subtle correlations between the arrivals
from cross flows at different nodes.
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APPENDIX

I. TECHNICAL LEMMAS

The following lemma from [11] is used in Section III.

Lemma 1 For any positive numbers Mk, θk (k = 1, . . . ,K)
and every σ ≥ 0,

inf
σ1+···+σK=σ

K∑
k=1

Mke
−θkσk =

K∏
k=1

(
Mkθk

θ

)θ/θk
e−θσ ,

where θ =
(∑K

k=1
1
θk

)−1

.

The next lemma is used to simplify explicit delay bounds in
Section III.

Lemma 2 For any positive numbers ak, xk (k = 1, . . . ,K)
with

∑K
k=1 ak ≥ e and

∑K
k=1 xk ≤ 1,

K∏
k=1

(
ak
xk

)xk
≤

K∑
k=1

ak .

Proof: Let a1, . . . , an be given. We compute

maxP
xk≤1

K∏
k=1

(
ak
xk

)xk
≤ max

0≤s≤1
maxP
xk=s

K∏
k=1

(
ak
xk

)xk
= max

0≤s≤1

(∑
ai
s

)s
=

K∑
k=1

ak .

In the first line, we have divided the maximization over
x1, . . . , xk into two steps. In the second line, we have used the
Lagrange multiplier method to identify the maximizing choice

xk =
aks∑
ai
,

which we then inserted into the objective function. Since∑
ai ≥ e by assumption, the resulting function is increasing

in s for 0 ≤ s ≤ 1, and so the maximum is assumed for s = 1.

The third lemma is used to motivate the choice of the free
parameters in our study of scaling properties of the upper bounds
on delays in Section III.

Lemma 3 Let R2 > R1 ≥ 0 and β1, β2 ≥ 0 be given con-
stants. Then, for every x ≥ 0, there exists an R with R1 < R <

R2 such that

(R−R1)−β1(R2 −R)−β2e−Rx

≤ (R2 −R1)−(β1+β2)
{
e

(R2 −R1)x+ β1 + β2

β2

}β2

e−R2x .
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Proof: We will show that the inequality holds for

R = R2 −
β2(R2 −R1)

β1 + β2 + (R2 −R1)x
. (51)

Under the change of variables

r =
R−R1

R2 −R1
, s =

β1

β1 + β2
y =

R2 −R1

β1 + β2
x ,

the left hand side of the claim transforms into{
(R2 −R1)−1r−s(1− r)−(1−s)e−ry

}β1+β2

e−R1x ,

and the choice of R in Eq. (51) transforms into r = s+y
1+y . An

elementary manipulation gives r−se−ry ≤ e1−se−y . Plugging
in, we obtain

r−s(1− r)−(1−s)e−ry ≤
(
e
y + 1
1− s

)1−s
e−y .

Scaling back to the original variables, we obtain the right hand
side of the claim.

REFERENCES

[1] R. Agrawal, R. L. Cruz, C. Okino, and R. Rajan. Performance bounds for
flow control protocols. IEEE/ACM Transactions on Networking, 7(3):310–
323, June 1999.

[2] S. Ayyorgun and R. Cruz. A service-curve model with loss and a multi-
plexing problem. In Proceedings of the 24th IEEE International Confer-
ence on Distributed Computing System (ICDCS), pages 756–765, March
2004.

[3] F. Baskett, K. M. Chandy, R. R. Muntz, and F. G. Palacios. Open, closed
and mixed networks of queues with different classes of customers. Journal
of the ACM, 22(2):248–260, April 1975.

[4] R. Boorstyn, A. Burchard, J. Liebeherr, and C. Oottamakorn. Statistical
service assurances for traffic scheduling algorithms. IEEE Journal on Se-
lected Areas in Communications, 18(12):2651–2664, December 2000.

[5] J. Y. Le Boudec and P. Thiran. Network Calculus. Springer Verlag, Lecture
Notes in Computer Science, LNCS 2050, 2001.

[6] O. Boxma. On a tandem queueing model with identical service times at
both counters. part 1,2. Advances in Applied Probability, 11(3):616–659,
1979.

[7] A. Burchard, J. Liebeherr, and F. Ciucu. On Θ (H logH) scaling of net-
work delays. In Proc. of IEEE Infocom, pages 1866–1874, May 2007.

[8] A. Burchard, J. Liebeherr, and S. D. Patek. A min-plus calculus for end-
to-end statistical service guarantees. IEEE Transactions on Information
Theory, 52(9):4105 – 4114, September 2006.

[9] S. B. Calo. Delay properties of message channels. In Proc. IEEE ICC,
Boston, Mass., pages 43.5.1–43.5.4, 1979.

[10] C.-S. Chang. Performance Guarantees in Communication Networks.
Springer Verlag, 2000.

[11] F. Ciucu, A. Burchard, and J. Liebeherr. Scaling properties of statistical
end-to-end bounds in the network calculus. IEEE Transactions on Infor-
mation Theory, 52(6):2300–2312, June 2006.

[12] R. L. Cruz. Quality of service guarantees in virtual circuit switched net-
works. IEEE Journal on Selected Areas in Communications, 13(6):1048–
1056, August 1995.

[13] M. Fidler. An end-to-end probabilistic network calculus with moment gen-
erating functions. In IEEE 14th International Workshop on Quality of Ser-
vice (IWQoS), pages 261–270, June 2006.

[14] P. Le Gall. The overall sojourn time in tandem queues with identical suc-
cessive service times and renewal input. Stochastic Processes and Their
Applications, 52(1):165–178, August 1994.

[15] P. W Glynn and W. Whitt. Departures from many queues in series. Annals
of Applied Probability, 1:546–572, 1991.

[16] G. Grimmett and D. Stirzaker. Probability and Random Processes. Oxford
University Press, 2001.

[17] Y. Jiang. A basic stochastic network calculus. In ACM Sigcomm, pages
123–134, September 2006.

[18] Y. Jiang and P. J. Emstad. Analysis of stochastic service guarantees in
communication networks: A server model. In Proceedings of the Inter-
national Workshop on Quality of Service (IWQoS), pages 233–245, June
2005.

[19] Y. Jiang and Y. Liu. Stochastic Network Calculus. Springer, 2008.
[20] F. I. Karpelevitch and A. Ya. Kreinin. Asymptotic analysis of queuing

systems with identical service. Journal of Applied Probability, 33(1):267–
281, 1996.

[21] F. P. Kelly. Networks of queues with customers of different types. Journal
of Applied Probability, 3(12):542–554, September 1975.

[22] F. P. Kelly. Notes on effective bandwidths. In Stochastic Networks: The-
ory and Applications. (Editors: F.P. Kelly, S. Zachary and I.B. Ziedins)
Royal Statistical Society Lecture Notes Series, 4, pages 141–168. Oxford
University Press, 1996.

[23] C. Li, A. Burchard, and J. Liebeherr. A network calculus with effective
bandwidth. IEEE/ACM Transactions on Networking, 15(6):1442–1453,
December 2007.

[24] S. McCreary and K. Claffy. Trends in wide area IP traffic patterns. In Pro-
ceeings of 13th ITC Specialist Seminar on Internet Traffic Measurement
and Modeling, September 2000.

[25] P. I. Richards. Shock waves on the highway. Operations Research,
4(1):42–51, February 1956.

[26] O. P. Vinogradov. A multiphase system with identical service. Soviet
Journal of Computer and Systems Sciences., 24(2):28–31, March 1986.

[27] O. P. Vinogradov. A multiphase system with many servers and identical
service times. Stochastic Processes and Their Applications, MIEM, 24:42–
45, 1989 (in Russian).

[28] O. P. Vinogradov. On certain asymptotic properties of waiting time in a
multiserver queueing system with identical times. SIAM Theory of Proba-
bility and Its Applications (TVP), 39(4):714–718, 1994.

[29] O. Yaron and M. Sidi. Performance and stability of communication net-
works via robust exponential bounds. IEEE/ACM Transactions on Net-
working, 1(3):372–385, June 1993.

[30] Q. Yin, Y. Jiang, S. Jiang, and P. Y. Kong. Analysis on generalized stochas-
tically bounded bursty traffic for communication networks. In Proceed-
ings of IEEE Local Computer Networks (LCN), pages 141–149, November
2002.

PLACE
PHOTO
HERE

Almut Burchard received the Ph.D. degree in Math-
ematics from the Georgia Institute of Technology in
1994. She was on the faculty of the Department of
Mathematics at Princeton University (1994-1998) and
the University of Virginia (1994-2005). She is cur-
rently a Professor of Mathematics at the University of
Toronto.

PLACE
PHOTO
HERE

Jörg Liebeherr (S’88, M’92, SM’03, F’08) received
the Ph.D. degree in Computer Science from the Geor-
gia Institute of Technology in 1991. He was on the
faculty of the Department of Computer Science at the
University of Virginia from 1992–2005. Since Fall
2005, he is with the University of Toronto as Profes-
sor of Electrical and Computer Engineering and Nor-
tel Chair of Network Architecture and Services.

PLACE
PHOTO
HERE

Florin Ciucu received the Ph.D. degree in Computer
Science from the University of Virginia in 2007. In
2007/08, he was a Postdoctoral Fellow at the Univer-
sity of Toronto. Since Fall 2008, he is a Senior Scien-
tist at the Deutsche Telekom Laboratories at the Tech-
nical University of Berlin.


