Quick Introduction to Max-Plus Network Calculus

ECE 466

University of Toronto

(J. Liebeherr)

Max-Plus Network Calculus

- Min-plus network calculus: Arrival, departures, service are functions of time.
- Max-plus network calculus: Arrival, departures, service are functions of space (bits).

Representing Arrivals

 $T_A(
u)$ Arrival time of bit u

 $T_D(\nu)~~{\rm Departure~time~of~bit}~\nu$, with $T_D(\nu)\geq T_A(\nu)$

 $B^{a}(\nu) \text{ Backlog at arrival of } \nu:$ $B^{a}(\nu) = \inf \{ \kappa > 0 \mid T_{D}(\nu - \kappa) \leq T_{A}(\nu) \}$

 $B^{d}(\nu) \text{ Backlog at departure of } \nu:$ $B^{d}(\nu) = \inf \{ \kappa > 0 \mid T_{A}(\nu + \kappa) \ge T_{D}(\nu) \}$ A busy sequence is a maximal contiguous set of bits that experience non-zero delays.

Begin of a busy sequence with respect to $\nu \geq 0$ is

$$\underline{\nu} = \sup\{\kappa \mid 0 \le \kappa \le \nu, W(\kappa) = 0\}.$$

A function in the space domain, $F : \mathbb{R} \to \mathbb{R} \cup \{\infty\} \cup \{-\infty\}$

 $\mathcal{T}=\mathsf{all}$ non-decreasing and right-continuous functions

$$\mathcal{T}_o =$$
Functions in \mathcal{T} , with $F(\nu) = -\infty$ for $\nu < 0$
and $F(\nu) \ge 0$ for $\nu \ge 0$

Conventional Algebra		Max-Plus Algebra
Addition $(+)$	\longrightarrow	Max (max, \lor)
Multiplication (\cdot)	\longrightarrow	Addition $(+)$
ſ		
$\int_{\mathbb{R}} F(s)G(t-s)ds$	\rightarrow	$\sup_{\kappa \in \mathbb{R}} \left\{ F(\kappa) + G(\nu - \kappa) \right\}$
= F * G(t))	\rightarrow	$(=F\overline{\otimes}G(\nu))$

Burst and delay functions

Burst function

$$\overline{\delta}(\nu) = \begin{cases} -\infty, & \nu < 0\\ 0, & \nu \ge 0 \end{cases},$$

Delay function

$$\overline{\delta}_d(\nu) = \overline{\delta}(\nu) + d$$

Properties of max-plus convolution

 $F, G, H \in \mathcal{T}_o$:

- Closure. $F \overline{\otimes} G \in \mathcal{T}_o$.
- Associativity. $(F \overline{\otimes} G) \overline{\otimes} H = F \overline{\otimes} (G \overline{\otimes} H)$.
- Commutativity. $(F \overline{\otimes} G) \overline{\otimes} H = F \overline{\otimes} (G \overline{\otimes} H)$.
- Distributivity. $(F \lor G) \overline{\otimes} H = (F \overline{\otimes} H) \lor (G \overline{\otimes} H).$
- Neutral element. $F \overline{\otimes} \overline{\delta} = F$.
- Time shift. $F \overline{\otimes} \overline{\delta}_T(\nu) = F(\nu) + T$.
- Monotonicity. If $F \leq G$ then $F \otimes H \leq G \otimes H$.
- Boundedness. $F \overline{\otimes} G \ge F$, in particular, $F \overline{\otimes} F \ge F$.

Except boundedness, properties hold for $F,G,H\in\mathcal{T}$

If
$$F, G \in \mathcal{T}_o$$
: $\sup_{\kappa \in \mathbb{R}} \{F(\kappa) + G(\nu - \kappa)\} = \sup_{0 \le \kappa \le \nu} \{F(\kappa) + G(\nu - \kappa)\}$

(Max-plus) Service Curves

- Buffered link: $\gamma(\nu) = \begin{cases} \frac{\nu}{C}, & \nu \ge 0\\ -\infty, & \nu < 0 \end{cases} \Rightarrow T_D(\nu) = T_A \overline{\otimes} \gamma_S(\nu)$
- Service curve is a generalization:

For arbitrary arrivals T_A and resulting departures T_D at a network system, a process $\gamma_S \in \mathcal{T}_o$ is an *exact service curve*, if for all t,

 $T_D(\nu) = T_A \overline{\otimes} \gamma_S(\nu) \,.$

Lower service curve $\Rightarrow T_D(\nu) \le T_A \overline{\otimes} \gamma_S(\nu)$ Upper service curve $\Rightarrow T_D(\nu) \ge T_A \overline{\otimes} \gamma_S(\nu)$

- Service curves express time-invariant and space-invariant service guarantees
- Constant-rate server: $\gamma_{S_1}(\nu) = \frac{\nu}{R}$
- Delay server: $\gamma_{S_2}(
 u) = T$
- Latency-rate server: $\gamma_{S_3}(\nu) = \gamma_{S_1} \overline{\otimes} \gamma_{S_2}(\nu) = \frac{\nu}{R} + T$

Concatenation of Service Curves

For a sequence of N service elements where the n-th element offers a lower/exact/upper service curve γ_{S_n} (n = 1, ..., N), the sequence as a whole offers an lower/exact/upper service curve $\gamma_{S_1} \otimes \gamma_{S_2} \otimes ... \otimes \gamma_{S_N}$

The service curve of the sequence is called *network service curve*.

For two processes $F, G \in \mathcal{T}$, the max-plus *deconvolution* $F \overline{\oslash} G$ is

$$F\overline{\oslash}\,G(\nu) = \inf_{\kappa \ge 0} \left\{ F(\nu+\kappa) - G(\kappa) \right\}$$

• If
$$F, G \in \mathcal{T}_o$$
, then

$$\inf_{\kappa \ge 0} \{F(\nu + \kappa) - G(\kappa)\} = \inf_{\kappa \in \mathbb{R}} \{F(\nu + \kappa) - G(\kappa)\}.$$

• Weak properties: not closed , not associative, not commutative.

 $F, G, H \in \mathcal{T}_o$

- Composition of $\overline{\otimes}$ and $\overline{\oslash}$. $(F\overline{\oslash}G)\overline{\oslash}H = F\overline{\oslash}(G\overline{\otimes}H)$.
- Duality. $F \leq G \otimes H$ if and only if $F \otimes H \leq G$.

Superadditivity

A function F is superadditive, if for all $\kappa,\nu\in\mathbb{R}$

$$F(\nu + \kappa) \ge F(\nu) + F(\kappa)$$
.

- F convex \Rightarrow Fsuperadditive
- F superadditive:
 - $F=F\overline{\otimes}\,F$
 - $F=F\overline{\oslash}\,F$
- $F \in \mathcal{T}_o$:
 - $F\overline{\oslash} F \in \mathcal{T}_o$
 - $F\overline{\oslash} F$ superadditive

Traffic envelopes put a lower bound on the amount of time needed for a given amount of traffic

A function λ_E is a max-plus traffic envelope for T_A $(T_A \sim \lambda_E$) if

 $\lambda_E(\mu) \le T_A(\nu+\mu) - T_A(\nu), \quad \forall \nu \ge 0, \forall \mu \ge 0.$

•
$$T_A \sim \lambda_E \quad \Rightarrow \quad T_A = T_A \overline{\otimes} \lambda_E$$

Good envelopes are superadditive

What is the best traffic envelope?

The empirical envelope $\lambda_A^{\mathcal{E}}$ of an arrival function A satisfies

$$\lambda_A^{\mathcal{E}}(\nu) = T_A \overline{\oslash} \ T_A(\nu) \ , \quad \nu \ge 0$$

- $\lambda_A^{\mathcal{E}}$ is superadditive
- $\lambda_A^{\mathcal{E}}$ is largest superadditive function with $\lambda_E \leq T_A$

Traffic shaping (Greedy shaper)

Greedy shaper : A network element that

- limits arrivals to a network to a given specification (traffic envelope),
- buffers non-compliant traffic, and
- releases buffered traffic when it becomes compliant.

If λ_E is subadditive, greedy shaper offers an exact service curve, i.e., $T_D=T_A\overline{\otimes}\,\lambda_E$

Example of greedy shaper: Token Bucket

$$\lambda_E(\nu) = \left[\frac{\nu-b}{r}\right]^+$$

Residual Service Curve

Given a work-conserving buffered link with rate C with a through flow and cross traffic. If λ_c is a max-plus traffic envelope for the cross traffic then

$$\gamma_S(\nu) = \frac{1}{C} \left(\inf \left\{ \mu \ge 0 \mid \lambda_c(\mu) \ge \frac{\nu + \mu}{C} \right\} + \nu \right)$$

is a lower service curve for the through.

This residual service curve is a (pessimistic) benchmark for the service experienced at a link with multiplexing.

Given arrival function T_A with traffic envelope λ_E , and a network system with <u>lower</u> service curve γ_S :

Invelope for departures: T_D ~ [λ_E or γ_S]⁺ (for ν ≥ 0)
Delay bound: W(ν) ≤ −λ_E or γ_S(0)
Backlog bound: B^a(ν) ≤ inf {b ≥ 0 | λ_E or γ_S(b) ≥ 0}

Strict Max-Plus Service Curves

Lower service curves are not good for rate guarantees $\left(\gamma_S(\nu) = \frac{\nu}{R}\right)$ Time t_3 $t_2 \frac{\nu}{R}$ T_D T_A t_1 . Traffic (ν) 0 KŇ

A strict max-plus service curve satisfies for all ν and μ ($\mu < \nu$) in the same busy sequence

$$T_D(\nu) - T_D(\mu) \le \gamma_S(\nu - \mu), \text{ if } \underline{\nu} < \mu,$$

$$T_D(\nu) - T_A(\mu) \le \gamma_S(\nu - \mu), \text{ if } \underline{\nu} = \mu.$$

Adaptive Max-Plus Service Curves

Strict service curves are not good for delay guarantees.

Define:

$$F \underset{\mu}{\overline{\otimes}} G(\nu) = \sup_{\mu \le \kappa \le \nu} \{F(\kappa) + G(\nu - \kappa)\}$$

An adaptive max-plus service curve γ_S satisfies for all $\nu \ge 0$ and $\mu \le \nu$:

$$T_D(\nu) \le T_D(\mu) + \gamma_S(\nu - \mu) \quad \text{or} \quad T_D(\nu) \le T_A \overline{\bigotimes}_{\mu} \gamma_S(\nu)$$

This can be re-written as a single condition:

$$T_D(\nu) \le \inf_{\mu \le \nu} \left\{ \max \left[T_D(\mu) + \gamma_S(\nu - \mu), T_A \overline{\bigotimes}_{\mu} \gamma_S(\nu) \right] \right\}, \quad \forall \nu \ge 0$$