## Assignment:

## IP Addresses and IP subnetworks

Problem 1. Consider an Ethernet network with three hosts, Host A, Host B, and Host C as shown in Figure 1. No machine is configured as an IP router, and there is no IP router on this network. Assume that the IP addresses and subnet masks are as shown in the figure.


Figure 1: Network Topology
For each of the following IP datagram transmissions, describe if the transmissions will be successful. If a transmission will not work, provide an explanation:
(a) Host C sends an IP datagram to Host A does not work
(b) Host A sends an IP datagram to Host B works
(c) Host A sends an IP datagram to Host C works
(d) Host B sends an IP datagram to Host A works
(e) Host B sends an IP datagram to Host C does not work

Problem 2. Consider the 128.100.112.0/21 block of IP addresses. This block of addresses must be divided into four subnetworks that have each at least 500 IP addresses.
a) Give the subnet mask of the four new subnetworks.
b) Specify the network address and the network prefix for each subnetwork.
c) Specify the broadcast IP address for each subnetwork.
(a) $11111111.11111111 .11111110 \rightarrow 255.255 .254 .0$
(b) 128.100.112.0/23
128.100.114.0/23
128.100.116.0/23
128.100.118.0/23
(c) 128.100.113.255
128.100.115.255
128.100.117.255
128.100.119.255

Problem 3. Select a subnet mask for $10.0 .0 .0 / 8$ so that there will be at least 16,000 subnets with at least 700 host addressed on each subnet.

One needs to select $n$ such that $2^{n}-2>=16,000$. There must be enough host bits $h$ remaining so that $2^{h}-2>=$ 700. A subnet mask of 255.255 .252 .0 provides 16,382 subnets of the class $A$ address and 1022 host addresses on each subnet. (Note this is the only subnetmask which will work).

Problem 4. Assume that you have been assigned the 200.35.1.0/24 network block.
a) Define an extended-network-prefix that allows the creation of 20 hosts on each subnet.

A minimum of five bits are required to define 20 hosts so the extended-network- prefix is a /27 (27 $=32-5$ ).
b) What is the maximum number of hosts that can be assigned to each subnet?

The maximum number of hosts on each subnet is $25-2$, or 30 .
c) What is the maximum number of subnets that can be defined?

The maximum number of subnets is 23 , or 8 .
d) 4. Specify the subnets of 200.35.1.0/24 in binary format and dotted decimal notation.

Subnet \#0: 11001000.00100011.00000001. $00000000=200.35 .1 .0 / 27$
Subnet \#1: 11001000.00100011.00000001. $00100000=200.35 .1 .32 / 27$
Subnet \#2: 11001000.00100011.00000001. $01000000=200.35 .1 .64 / 27$
Subnet \#3: 11001000.00100011.00000001. $01100000=200.35 .1 .96 / 27$
Subnet \#4: $11001000.00100011 .00000001 .10000000=200.35 .1 .128 / 27$
Subnet \#5: 11001000.00100011.00000001. $10100000=200.35 .1 .160 / 27$
Subnet \#6: $11001000.00100011 .00000001 .11000000=200.35 .1 .192 / 27$
Subnet \#7: 11001000.00100011.00000001. $11100000=200.35 .1 .224 / 27$
e) List range of host addresses that can be assigned to Subnet \#6 (200.35.1.192/27)

Subnet \#6: $11001000.00100011 .00000001 .11000000=200.35 .1 .192 / 27$
Host \#1: 11001000.00100011.00000001.110 00001 $=200.35 .1 .193 / 27$
Host \#2: $11001000.00100011 .000000001 .11000010=200.35 .1 .194 / 27$
Host \#3: 11001000.00100011.00000001.110 00011 $=200.35 .1 .195 / 27$
:
Host \#29: 11001000.00100011.00000001.110 $11101=200.35 .1 .221 / 27$
Host \#30: 11001000.00100011.00000001.110 11110 = 200.35.1.222/27
f) What is the broadcast address for subnet 200.35.1.192/27?
$11001000.00100011 .00000001 .11011111=200.35 .1 .223$
Problem 5. For my research, I have requested a block of IP addresses from the University of Toronto. In reply to my request (on Sept. 19, 2007) I received the following response:

```
Information for new network:
Base address: 142.150.235.0
```

```
Network mask: 255.255.255.224
Broadcast address: 142.150.235.31
Reserved Router address: 142.150.235.1
This network should go on:
    bcit-ece-tier3-if.gw switch and our bcit router.
```

a) What is the address of the assigned subnetwork and what is the extended network prefix?
b) Which IP addresses can I use to configure the computers in my lab?
c) How do I configure the IP address, default gateway, and subnet mask on my computers?
d) Does the assigned address block use subnetting? Do I need to care?
e) What is the meaning and relevance of the last two lines in the above message (about the switch and the bcit router)?
f) If subnetting is used, how many bits of the host number are used to designate the subnet, and what is the IP address of the network that is divided into subnets (without subnetting)?
g) What is the role of the "reserved router address"? Why is this information important?
h) Do I need to set up a router in my lab?
i) Suppose I wanted to do subdivide the assigned address block into 4 smaller subnetworks of equal size. How large are these networks, and how many IP addresses can I assign in each subnetwork? What other equipment and configurations are necessary?

Solutions
a) $142.150 .235 .0 / 27$
b) $142.150 .235 .2-142.150 .235 .30$
c) IP address: from (b)
default gateway: 142.150.235.1
Subnet mask: 255.255.255.224
d) Yes, $142.150 .0 .0 / 16$ is assigned to UofT (see ARIN records). So, subnetting is used. I don't need to know if subnetting is used when managing my own network.
e) The information is used for correct "wiring" of Ethernet switches to the IP router, and for configuring the IP router.
f) Original network address: 142.150.0.0/16. So, 11 bits are used to designate the subnet.
g) This is the address of an IP router on the 142.150.235.0/27 subnet. All systems on this subnet should use the address 142.150 .235 .1 as default gateway.
h) No, I assume that the router is provided (at address 142.150.235.1).
i) I can assign 4 networks with a 29-bit prefix, with network addresses:
142.150.235.0/29
142.150.235.64/29
142.150.235.128/29
142.150.235.192/29

There can be 6 IP addresses on each subnet ( 3 bits $=8$ addresses. But cannot use `000’ (network address) and `111’ (broadcast address))

