
  

  

Java Socket Workshop   
July 2012 

 

Purpose of this workshop: 
The objective of this workshop is to gain experience with writing and compiling programs 
using the Java programming language.  

The exercises provide an introduction to Java datagram sockets and to opening and closing 
a file.  

 



UCC 2012 PAGE 2 J. Liebeherr 

Table of Content 

Table of Content _______________________________________________________________ 2	  
Background ___________________________________________________________________ 2	  
1.  Programming with Java_______________________________________________________ 3	  
2.  Programming with Datagram Sockets and with Files_______________________________ 5	  

 
 

Background 

There is an informative and short tutorial on Java datagrams is available at: 
http://java.sun.com/docs/books/tutorial/networking/datagrams/index.html 
 
Java datagram sockets use the UDP transport protocol to transmit traffic. The relationship 
between Java datagrams and the UDP protocol is described in: 
http://www.roseindia.net/java/example/java/net/udp/ 
 
 
 
 



UCC 2012 PAGE 3 J. Liebeherr 

1.  Programming with Java 

The following are a set of exercises that provide an introduction to the Java programming 
language. The exercises are from the online textbook: 
 

R. Sedgewick, K. Wayne: Introduciton to Programming in Java 
http://introcs.cs.princeton.edu/java/home/ 

 
The online textbook has numerous interesting examples.  
 
Exercise 1.1 Writing a “Hello World” program    
The following program prints “Hello World!” in a terminal window.  

public class HelloWorld {       
public static void main(String[] args) {         
System.out.println("Hello, World");      
}   

}  

 
Follow the steps from http://introcs.cs.princeton.edu/java/11hello/ (in Dropbox: javafiles/Intro-
Java-Hello World.html) to write, compile and run the example. 
 
 

Exercise 1.2. Program with user argument 
The following program prints the command line argument.  

public class UseArgument {       
 public static void main(String[] args) {    
 System.out.print("Hi, ");          
 System.out.print(args[0]);          
 System.out.println(". How are you?");      
 }   
}  

 
The program  is described in  http://introcs.cs.princeton.edu/java/11hello/ (in Dropbox: 
javafiles/Intro-Java-Hello World.html).  
 
Exercise 1.3. Program with user argument 
Write a program that uses a for-loop which generates the following output:  
 Line 1 
 Line 2 

Line 3 
Line 4 
Line 5 
 
 
 
 
 



UCC 2012 PAGE 4 J. Liebeherr 

Exercise 1.4. Adding integers 
The following program takes a command line argument N, reads in N integers, and prints out 
their sum. (E.g., when you type “java AddInts 5”, the program asks for 5 numbers and prints 
their sum.  
 
public class AddInts {       
 public static void main(String[] args)     {           
 int N = Integer.parseInt(args[0]);          
 int sum = 0;          
 for (int i = 0; i < N; i++)              
  sum = sum + StdIn.readInt();          
 System.out.println("Sum is " + sum);     
 }  
}  
 
Compile and run the program. Then, modify the program so that it does not use a command 
line argument (i.e., you run it as “java AddInts”). Instead, when the program starts it firsts asks 
to enter the number of integers N. 
 



UCC 2012 PAGE 5 J. Liebeherr 

2.  Programming with Datagram Sockets and with Files 

The purpose of this part of the lab is to become familiar with programming Datagram sockets 
and with writing Java programs that read and write data to/from a file. The programs provided 
in this part intend to offer guidance for the programming tasks needed later on. 

Exercise 2.1 Programming with datagram sockets   
Compile and run the following two programs. The program Sender.java transmits a string to 
the receiver over a datagram socket. The program Receiver.java displays the string when it is 
received.  

Sender.java 

import java.io.*; 
import java.net.*; 
public class Sender { 
    public static void main(String[] args) throws IOException { 
    InetAddress  addr = InetAddress.getByName(args[0]); 
    byte[] buf  = args[1].getBytes(); 
    DatagramPacket packet =  
    new DatagramPacket(buf, buf.length, addr, 4444); 
    DatagramSocket socket = new DatagramSocket(); 
    socket.send(packet); 
  } 
  

Receiver.java 

import java.io.*; 
import java.net.*; 
public class Receiver { 
  public static void main(String[] args) throws IOException { 
    DatagramSocket socket = new DatagramSocket(4444); 
    byte[] buf = new byte[256]; 
    DatagramPacket packet = new DatagramPacket(buf, buf.length); 
    System.out.println("Waiting ...");  
    socket.receive(packet); 
    String s = new String(p.getData(), 0, p.getLength()); 
    System.out.println(p.getAddress().getHostName() + ": " + s); 
  } 
} 
 

• Compile the programs. 

• Start the receiver by running “java Receiver”. 

• Assuming that the receiver is running on a host with IP address 128.100.13.131, start 
the sender by running:   
  java Sender 128.100.13.131  “My String” 

• The receiver program should now display the string “My String”. 

• Repeat this exercise, with the difference, that you run the sender and receiver on two 
different hosts.  



UCC 2012 PAGE 6 J. Liebeherr 

Exercise 1.2 Reading and Writing data from a file 
Download the Java program ReadFileWriteFile.java. The program reads an input file 
"data.txt" which has entries of the form  

 0 0.000000 I 536 98.190 92.170 92.170 
 4 133.333330 P 152 98.190 92.170 92.170 
 1 33.333330 B 136 98.190 92.170 92.170 

…  …  …  
 
Each line has seven columns:  

• Column 1: a sequence number (note that the numbers are slightly out of order) 
• Column 2: a time stamp (in milliseconds)  
• Column 3: a  type field. There are 3 types: I, P, B.  
• Column 4: a size field (the unit is byte) 
• Columns 5 – 7: not used 

 

The file is read line-by-line, the values in a line are parsed and assigned to variables. Then 
the values are displayed, and written to a file with name output.txt.   

• Run the program with the using the following file as input file (found in the Dropbox):   
movietrace.data 

• Modify the program so that it computes and displays the average size of the following 
frame types: 

o Lines with type “I” 

o Lines with type “P” 

o Lines with type “B”. 

 


