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ABSTRACT: Noise suppression in multichannel data sets, such as

color images, has drawn much attention in the last few years. An
issue of paramount importance in designing color image filters is the

determination of the coefficients that should be used to weight the

inputs to the filter. In this study, we propose an evolutionary compu-
tation-based approach to select and optimize the coefficients in the

class of weighted vector directional filters. Using a genetic algorithm,

we were able to adapt the filter weights to match varying image and

noise characteristics. Extended experimentation with realistic image
processing applications, including television image enhancement

and virtual restoration of artworks, indicates that the proposed filters

are capable of removing noise while preserving chromaticity infor-

mation, edges, and fine details, as well as structural image content.
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I. INTRODUCTION

In the last few years, evolutionary computation (EC) solutions

(Man et al., 1999; Goldberg, 2002) have been applied to solve diffi-

cult optimization problems via simulated evolution. By repeatedly

utilizing selection and reproduction principles to the population of

individuals representing solutions to the problem, the evolutionary

techniques evolve a satisfactory solution quickly and efficiently.

Therefore, EC tools find applications in many problems ranging

from telecommunication networks (Arabas and Kozdrowski, 2001),

to fuzzy learning (Russo, 2000), to modeling (Fujiwara and Sawai,

1999; Chen et al., 2002), and data mining (Brameier and Banzhaf,

2001; Parpinelli et al., 2002), as well as image processing problems

mostly related to gray-scale restoration (Hamid et al., 2003), feature

extraction (Liu et al., 1997), and coding (Dasgupta et al., 2000). In

this study, we intend to use genetic algorithm (GA) in color image

filtering and enhancement applications (Lukac et al., 2005a). This

choice is reasonable due to the fact that: (i) the intention of this

experimentation is to obtain the globally optimal setting of the

directional processing based vector filtering scheme considered, (ii)

GAs are relatively easy to implement, (iii) the optimization problem

defined over the vectorial inputs is complex, and (iv) GAs work

well in noisy conditions.

Color image processing (Plataniotis and Venetsanopoulos, 2000;

Lukac et al., 2005a) has gained much interest over the past few

years since color information conveys information needed for

image understanding and object recognition. Humans and image

processing systems use color information to sense the environment.

The human eye recognizes thousands of different colors and uses

the information to identify visual objects and understand the envir-

onment. Color image systems are used to capture and reproduce the

scenes that humans see. However, as imaging systems are built

using optical, electronic, and chemical components, the process is

not without problems. Random variations in the sensor readings

make the recorded values different from the ideal ones, introducing

errors and undesirable side effects in the subsequent stages of the

image processing process (Fig. 1). Noise affects the perceptual

quality of the image decreasing not only the appreciation of the

image but also the performance of the task for which the image was

intended. Therefore, noise filtering and image enhancement are

essential part of any image processing system, whether the pro-

cessed information is utilized for visual interpretation or for auto-

matic analysis (Lukac et al., 2005a).

Image filtering can be divided into: (i) reconstruction filtering,

and (ii) enhancement filtering. In general, reconstruction filters

attempt to suppress and remove image corruption noise by utilizing

prior knowledge on the type of image degradation. Image enhance-

ment techniques process an image so that the final results are more

suitable than the original image for a specific application.

Numerous filtering techniques have been proposed to date for

multichannel image processing. With regards to the multichannel

nature of the color image, these techniques can be classified as com-

ponent-wise techniques (Rantanen et al., 1992; Zheng et al., 1993)

and vector techniques (multichannel or multivariate) methods (Pla-

taniotis and Venetsanopoulos, 2000; Lukac et al., 2004d; Lukac

et al., 2005a).

Component-wise techniques are the early methods of multichan-

nel image processing. These methods are direct extensions of the

traditional approaches developed for gray-scale images (Pitas and

Venetsanopoulos, 1990; Mitra and Sicuranza, 2001) and operate on

color channels separately (Rantanen et al., 1992; Zheng et al.,
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1993). Since separate processing discards inherent correlation

between color channels, component-wise filtering often results in

color artifacts (Lukac et al., 2005a).

It has been widely recognized (Trahanias et al., 1996; Plataniotis

et al., 1999; Smolka et al., 2003) that vector processing of color

images is a more effective way to filter out noise and to enhance

color images. Each pixel of an image is represented by three values,

which can be treated as a vector. Thus, any color image can be con-

sidered a vector field where each vector’s direction and length are

related to the pixel’s color characteristics and influence significantly

its perception by the human observer (Lukac et al., 2005a). The

vector filtering procedure can be described according to some dis-

tance criterion, which is applied to the set of input vectors inside a

processing window.

The vector median filter (VMF) (Astola et al., 1990) is the most

commonly used member of the vector filtering family (Plataniotis

and Venetsanopoulos, 2000; Vardavoilia et al., 2001; Lukac et al.,

2005a). To quantify relative magnitude differences of the input

samples, the VMF filtering class utilizes the well-known Euclidean

distance or the generalized Minkowski metric. Because vectors,

which diverge greatly from the data population, usually correspond

to maximum aggregated relative magnitude differences, the VMF

output is the sample that minimizes the aggregated Euclidean dis-

tance to the input vectors. To improve the detail-preserving charac-

teristics of the VMF, the basic idea has been modified in designs of

the extended VMF (Astola et al., 1990), weighted VMF (Viero

et al., 1994; Lucat et al., 2002; Lukac et al., 2003a; Lukac et al.,

2004c), extended weighted VMF (Viero et al., 1994), outlier rejec-

tion VMF schemes (Lukac, 2003; Smolka et al., 2003), vector filters

based on the reduced ordering according to the reference point in

the vector space (Tang et al., 1995), gradient-based design (Lin and

Hsueh, 2000), VMF-rational filters (Khriji and Gabbouj, 1999),

fuzzy vector filters (Tsai and Yu, 2000; Lukac et al., 2005b), and

noise filtering techniques based on the digital path approach (Szcze-

panski et al., 2003).

However, it has been observed that the filtering techniques tak-

ing into the account vectors’ magnitude often produce color outputs

with chromaticity problems. To alleviate such problems, a new type

of multichannel filters was proposed (Trahanias et al.; 1996). The

so-called vector directional filter (VDF) family operates on the

direction of the image vectors, aiming to eliminate vectors with

atypical directions in the vector space. To achieve its objective, the

VDF utilizes the angle between the image vectors to order vector

inputs inside a processing window (Plataniotis and Venetsanopou-

los, 2000; Tang et al., 2001; Lukac et al., 2005a). As a result of this

process, a set of input vectors with approximately the same direc-

tion in the vector space is produced as the output set. The idea of

directional processing of color images is employed by the basic

vector directional filter (BVDF) (Trahanias et al.; 1996), general-

ized vector directional filter (GVDF) (Trahanias et al.; 1996), dou-

ble window GVDF (GVDF-DW) structures (Plataniotis and Venet-

sanopoulos, 2000), spherical median filter (SMF) (Plataniotis and

Venetsanopoulos, 2000), and fuzzy VDF (Plataniotis et al., 1999;

Lukac et al., 2005b). The directional distance filter (DDF) (Karakos

and Trahanias, 1997) and vector median-vector directional hybrid

filters (HVF) (Gabbouj and Cheickh, 1996) combine the properties

of both VMF and VDF designs. Recently developed weighted vec-

tor directional filters (WVDF) (Lukac, 2004; Lukac et al., 2004a)

extend the flexibility of the VDF based designs and provide a

powerful color image filtering tool capable of tracking varying sig-

nal and noise statistics.

This study focuses on GA optimization of the WVDF filters.

The work extends the preliminary results presented in conference

Figure 2. Noise frequently introduced into the image.

Figure 1. Image processing chain.

Figure 3. Sliding filtering window ensuring the stationarity of the

processes generating the image.
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publications (Lukac et al., 2003b,c; 2004b). Mathematical ap-

proaches to the WVDF optimization problem have been addressed

in (Lukac et al., 2004a). Unfortunately, these methods based on

least mean absolute (LMA) or least mean square (LMS) adaptation

algorithms usually do not converge to a globally optimal weight

vector (Lukac et al., 2004a,c). This can result in worse WVDF

detail-preserving characteristics. Since the GA, a biologically ori-

ented computational technique, searches the whole solution space

(in a sufficiently large time or number of generations), it provides

the globally optimal (or very close) solution. Using the GA, we

avoid situations when, due to the wide search space and the amount

of data to be processed, other optimization techniques may fail to

find the optimal solution. We will show that the proposed

genetically optimized WVDF filter achieves excellent results in

terms of commonly used objective image quality criteria and can

outperform the state-of-the-art color image filters as well as local

adaptation based WVDF approaches introduced in (Lukac et al.,

2004a). The efficiency of the proposed method will be examined

using well-known test images as well as real images of digitized art-

works and television images.

The rest of the study is organized as follows. In Section II, the

formulation of the problem is introduced and color image filtering

fundamentals are presented. A generalized class of WVDF filters

operating on the directionality of color vectors is described in Sec-

tion III. Optimal design features are discussed in Section IV. Sec-

tion V focuses on the GA optimization of the WVDF filters. Mo-

tivation, design characteristics, and variations of the proposed

method are discussed in detail. In Section VI, the proposed solution

is analyzed in terms of optimization and parameters used. Proposed

optimized filters are tested in a variety of noise corrupted test

images as well as television images and digitized images of fine

arts. Conclusions are offered in Section VII.

II. PROBLEM FORMULATION

Let us consider a K1 � K2 color image x : Z2 ? Z3 representing a

two-dimensional matrix of three-component samples (pixels) xi ¼
[xi1, xi2, xi3]. Components xik, for k ¼ 1, 2, 3 and i ¼ 1, 2, . . . ,
K1K2, represent the color channel values quantified into the integer

domain Z. The process of displaying an image creates a graphical

representation of the image matrix where the pixel values represent

particular colors. It should be emphasized that color pixels are mul-

tichannel signals commonly termed as color vectors (Plataniotis

and Venetsanopoulos, 2000; Lukac et al., 2005a). Therefore the

term color vector is used throughout the paper.

Noise introduced into color images (Fig. 2) is present in the

form of artifacts significantly deviating from neighboring pixels.

This results in color distortions to which the human visual system is

very sensitive (Faugeras, 1979). In many practical applications,

color images are corrupted by additive noise. The most commonly

used model is defined (Plataniotis and Venetsanopoulos, 2000;

Lukac et al., 2005a) as follows

xi ¼ oi þ vi; ð1Þ

where xi represents the observation (noisy) sample, oi ¼ [oi1, oi2,
oi3] is the desired (noise free) sample, vi ¼ [vi1, vi2, vi3] is the vector
describing the noise process, and i characterizes the spatial position
of the samples in the image. Note that vi can describe both signal-

dependent and independent noise.

The most popular color filtering techniques operate on some

type of sliding (moving, running) window W ¼ {xi [ Z2; i ¼ 1,

2, . . . , N} of finite odd sizeN, (Fig. 3). The filtering operation usually

Figure 4. Basic parameters related

to the color vector xi ¼ [xi1, xi2, xi3]: (a)

magnitude (brightness) Mxi
, (b) direc-

tion (chrominance) illustrates as the
point Cxi

defined on the Maxwell trian-

gle. [Color figure can be viewed in

the online issue, which is available at

www.interscience.wiley.com]

Figure 5. Algorithm of the WVDF filtering.
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affects one image sample––usually the sample x(Nþl)/2 placed in the

center of the window––at a time, changing its value by applying a

function on the local neighborhood area {x1, x2, . . ., xN}. This win-
dow operator slides over the image to affect individually all the

image pixels (Lukac et al., 2005a). The localized nature of the oper-

ator allows for the minimization of the local distortion and ensures

the stationarity of the processes, including the noise and blurring

characteristics.

Following the tristimulus theory of color, each color pixel xi
inside the supporting window is treated as a three-dimensional vec-

tor in the RGB color space (Wyszecki and Stiles, 1982; Lukac

et al., 2005a). As such, it is uniquely defined (Fig. 4) by its magni-

tude Mxi : Z
2 ? Rþ

Mxi
¼ kxik ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxi1Þ2 þ ðxi2Þ2 þ ðxi3Þ2

q
ð2Þ

and direction Cxi
: Z2 ? T with coordinates

Cxik ¼
xik

xi1 þ xi2 þ xi3
; for k ¼ 1; 2; 3 ð3Þ

defined on Maxwell triangle T2, where cxi1 þ cxi2 þ cxi3 ¼ 1.

On the basis of the magnitude of color vectors, filtering tech-

niques process the image according to its brightness, whereas operating

on the directionality of the color inputs focus on the chrominance

properties of the input vectors (Plataniotis and Venetsanopoulos,

2000; Lukac et al., 2005a). Since a vector’s direction corresponds to

its color chromaticity, filtering techniques operating on the direc-

tional domain of color images preserve their chromaticity. Since the

human visual system is sensitive to changes in color and edge infor-

mation (indication of the shape of objects in the image), color chro-

maticity preservation along with the noise attenuation and detail pre-

serving capabilities are fundamental properties required in many

applications (Lukac et al., 2005a), such as television image denois-

ing, virtual restoration of artworks, satellite image processing, old

movie restoration, and surveillance. Note that false colored and

blurred edges introduced as a result of inappropriate filtering sig-

nificantly degrade the quality of the perceived image. From an

application point of view, the introduction of false edges and color

shifts is considered to be more problematic than the presence of

the noise.

III. WEIGHTED VECTOR DIRECTIONAL FILTERS

The recently introduced WVDF filters (Lukac et al., 2004a) employ

nonnegative real weighting coefficients w1, w2, . . .,wN associated

with the input vectors x1, x2, . . ., xN. These filters output the color

vector y ¼ xi [ W, which minimizes the aggregated weighted angu-

lar distance to other samples insideW:

y ¼ arg min
xi2W

XN
j¼1

wj Aðxi;xjÞ; ð4Þ

where

Aðxi;xjÞ ¼ arc cos
xi;xj

kxikxjk
� �

ð5Þ

¼ arc cos
xi1xj1 þ xi2xj2 þ xi3xj3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2i1 þ x2i2 þ x2i3
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2j1 þ x2j2 þ x2j3

q
0
B@

1
CA; ð6Þ

represents the angle between two color vectors xi ¼ [xi1, xi2, xi3]
and xj ¼ [xj1, xj2, xj3].

This angular minimization approach is useful for directional

data, such as color data. It has been proven that, in the case of

color images, filtering schemes based on directional processing of

color images may achieve better performance in terms of the

color chromaticity (direction of color data) preservation than ap-

proaches operating on the vectors’ magnitude (Nikolaidis and

Pitas, 1998).

The output of the WVDF filter is determined using the algorithm

summarized in Figure 5. Let us consider the aggregated weighted

distance �i associated with the input color vector xi:

�i ¼
XN
j¼1

wj Aðxi;xjÞ for i ¼ 1; 2; . . . ;N: ð7Þ

The ordered sequence of �1, �2, . . . , �N is given by �(1) � �(2)

� � � � � �(N). Assuming that the ordering of �i terms implies the

same ordering for the original set x1, x2, . . . , xN, the ordered

Figure 6. Optimal filter designed under the minimization of the cost

function.

Figure 7. Block scheme of the GA optimization of the WVDF weighting coefficients.
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sequence x(1) � x(2) � � � � � x(N), where x(i) is associated with �(i),

can be obtained. In this case, the WVDF output is defined as the

lowest order-statistics x(1), which is equivalent to the sample mini-

mizing earlier definition (4). From this algorithm, it is evident that

the WVDF output is restricted to be the sample of the input set W
and thus, it can never introduce a novel outlying vector. In addition,

the WVDF output y(w, W) is a function of the weight vector w ¼
[w1, w2, . . . , wN] and it can be expressed as the sample y [ W mini-

mizing F(y) ¼ SN
j¼1 wj A(y, xj). Then, the following statements can

be declared:

� The WVDF filter has N independent parameters w1, w2, . . . ,
wN described by the weight vector w.

� If the vectorial set W appear constantly in the WVDF input, the

WVDF output y(w,W) depends only on the weight vector w.
� The WVDF output corresponds to one of the local minimums

of F(y).

IV. OPTIMALWVDF DESIGN

Each set of weighting coefficients represents a specific filter, which

can be used for specific purposes. Using the optimization scheme

(Fig. 6), the weighting coefficients can follow the statistics and struc-

tural content of desired signal and be adapted in the required manner.

It will be shown that WVDF filters optimized for the removal of im-

pulsive noise and the preservation of the color/structural information

are sufficiently robust and do not necessitate additional optimization

or weight vector adaptation in order to perform the task in other

images where the corrupting noise, although varying in the amount

and appearance, is impulsive in the nature. Moreover, we will dem-

onstrate that WVDF filters optimized using the test images and noise

approximations, can be used to remove outliers and noise impair-

ments in real, nonsimulated applications such as television image

denoising and virtual restoration of artworks. Note that these real

images contain numerous noise impairments including low-amounts

of additive Gaussian-type noise (e.g., thermal noise). In both applica-

tions, image filtering is of paramount importance, and the use of the

proposed WVDF filters is highly suggested due to their excellent

color/structural preserving characteristics.

The objective of the filtering operator is to accurately determine

the unavailable color vector o given its noisy observation x. To
measure the similarity between the original vector and the obtained,

filtered vector y, a number of different objective measures can be

utilized (Plataniotis and Venetsanopoulos, 2000). One of the most

popular is the Minkowski family of metrics defined by

ko� ykL ¼
X3
k¼1

jok � ykjL
 !1=L

; ð8Þ

where L denotes the norm parameter, e.g., the city-block distance

(L ¼ 1) or Euclidean distance (L ¼ 2), and ok and yk are the k-th
elements of the original color vector o and the filter output y,
respectively.

In all optimal schemes discussed in this work, a loss function,

which depends on the noiseless input vector and its filtered esti-

mate, is used to penalize errors during the procedure. Following

standard practice, it is only natural to assume that if one penalizes

estimation errors through a loss function then the optimum filter is

that function of the measurements which minimizes the average

(expected) loss (Principe et al., 1999). For example, E{(o�y)2},

which corresponds to an average error measured using the Euclid-

ean distance, is commonly used to derive filters operating under the

additive Gaussian noise assumption. The selection-type filters are

primarily focusing on removing outliers and impulsive noise in

color images. Therefore, the average loss is defined using the abso-

lute error k�k1 as follows:

Efko� yk1g ¼ 1

K1K2

XK1K2

i¼1

koi � yiðw;WÞk1; ð9Þ

where yi(w, W) denotes the WVDF output, which is considered to

be the estimate of the original, noise free, color vector oi.

Ignoring the normalization factor in (9), the optimal WVDF can

be obtained by minimizing the absolute error accumulated over all

Figure 8. Test images serving as desired signal and training set,

respectively: (a) original image Lena, (b) image corrupted by 10% im-
pulsive noise (pv ¼ 0.10). [Color figure can be viewed in the online

issue, which is available at www.interscience.wiley.com]

Figure 9. Crossover operator: (a) single-point crossover, (b) uniform

crossover, (c) arithmetic crossover.
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possible signal locations i ¼ 1, 2, . . . , K1K2. This forms a WVDF

cost function defined as follows:

JWVDF ðwÞ ¼
XK1K2

i¼1

koi � yiðw;WÞk1: ð10Þ

Enforcing the constraint of nonnegative weights in order to keep

the aggregated distance (7) positive, the above optimization prob-

lem can be re-written as an optimization problem with inequality

constraints:

minimize JWVDF ðwÞ
subject to wi � 0; for i ¼ 1; 2; . . . ;N:

ð11Þ

V. GA OPTIMIZATION

In general, the WVDF optimization problem may be solved using a wide

range of possible methods, but it is difficult to determine, analytically, the

optimal one. The previously developed WVDF optimization framework

(Lukac et al., 2004a) utilizes local adaptation based on linear and sigmoi-

dal approximations of the sign function. It has been proven that these

methods cannot converge to a globally optimal weight vector w. Under
certain application conditions, this restricts WVDF’s detail-preserving

characteristics. Since GA-based methods search the entire solution space

(given sufficiently large processing time or number of generations), they

can potentially provide a globally optimal (or very close) solution.

GA optimization approaches belong to the field of biologically

oriented computational techniques (Goldberg, 1989). The GA is

useful in applications, when other optimization techniques may fail

to find the optimal solution due to the wide search space and the

amount of data to be processed. Moreover, analytically oriented

methods require the exact specification of the initial conditions––a

difficult task in most practical applications.

GA optimization (Fig. 7) differs from traditional search algo-

rithms due to the utilization of multiple candidate solutions (Man

et al., 1999). Each candidate solution is represented by the so-called

individual, a data structure that contains two parts, the so-called

chromosome and fitness. A set of individuals constitutes a popula-

tion, whose size Np remains unchanged during the entire searching

process. Note that small Np leads to premature convergence upon a

sub-optimal solution, whereas for too large Np, GA tends to con-

verge slower upon a solution. To avoid premature convergence

caused by a small population size, Np ¼ 120 (i.e., 120 real-coded

chromosomes) is utilized in this study.

A. Chromosome Representation. Based on nonnegative, real

weighting coefficients, the candidate solutions––WVDF weight

vectors––are represented by real-coded chromosomes. For the con-

straint optimization problem of (11), a real-coded chromosome rep-

resentation has the advantage of being closer to the way candidate

solutions are described in the application. Therefore, real chromo-

some coding is more appropriate, compared to binary coding, for

the problem under consideration. In real-coded chromosomes, each

variable of the chromosome is represented by one gene. In the

WVDF optimization, each individual represents the weight vector

w and each gene corresponds to the weighting coefficient wi [ w,

for i ¼ 1, 2, . . . , N. Thus, chromosomes contain N genes corre-

sponding to the N real-valued WVDF weights. Since each real-val-

ued weight vector can be normalized into the unity space, it is rea-

sonable to set the boundaries of the search space to 0 � wi � 1, for

i ¼ 1, 2, . . . , N.

B. Training Set. To solve the optimization problem of (11), the

utilization of a pair of original and corrupted (training set) images

(Fig. 8) is required. In this study, the commonly used color image

Lena serves as the original, training signal. This image is corrupted

by impulsive noise following the additive model of (1) with the

Figure 10. Mutation operator defined by the probability pm introdu-
ces a random change into the chromosome.

Figure 11. GA efficiency related to the WVDF optimization depending on crossover pc and mutation pm probabilities: (a) GA’s cost function
JGA averaged over 20 runs, and (b) the corresponding standard deviation of the measurements. [Color figure can be viewed in the online issue,

which is available at www.interscience.wiley.com]
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noise component vi defined as follows:

vi ¼ vi with probability pv
0 with probability 1� pv

�
ð12Þ

where pv is a corruption probability (also termed as the percentage

number of corrupted pixels). The impulse vi is independent from

pixel to pixel making xi of (1) a vector exhibiting much larger and/

or smaller amplitude characteristics at least in one of the compo-

nents, compared to those of the neighboring samples.

C. Fitness Function and GA’s Cost. During the searching

process, the GA requires a quality criterion, which is used to evalu-

ate the generated solutions (individuals). The measure of the indi-

vidual quality is known as a fitness value (Man et al., 1999). Based

on their fitness, individuals are enforced to create offspring.

With respect to the optimization problem described in (11),

achieving the output image for all individuals (solutions in forms of

weight vectors w), fitness values �j corresponding to the individuals

Ij, for j ¼ 1, 2, . . . , Np, are given, similar to (Hamid et al., 2003), as

follows:

�j ¼ 1� MAEj

MAEmax
; ð13Þ

where MAEmax is the maximum possible mean absolute error

(MAE) for the image (i.e., MAEmax ¼ 255 in the case of 8 bits per

channel representation), and MAEj denotes the MAE value corre-

sponding to the solution Ij. The MAE is defined as:

MAE ¼ 1

3K1K2

X3
k¼1

XK1K2

i¼1

joik � yikj; ð14Þ

where oi ¼ [oi1, oi2, oi3] is the original pixel, yi ¼ [yi1, yi2, yi3] is the
filtered pixel, i is the pixel position in a K1 � K2 color image and k
characterizes the color channel.

Figure 12. Convergence of the GA-WVDF optimization expressed through the GA’s cost JGA for pc ¼ 0.7 and pm ¼ 0.05 depending on the
number of generations: (a) single-point crossover and Gaussian mutation, (b) arithmetic crossover and Gaussian mutations. Note that the dotted

lines represent the cost of the individual runs, whereas emphasized lines represent the interpolated values. [Color figure can be viewed in the

online issue, which is available at www.interscience.wiley.com]

Figure 13. Maximum fitness depending on the number of generations for pc ¼ 0.7 and pm ¼ 0.05: (a) single-point crossover and Gaussian

mutation, (b) arithmetic crossover and Gaussian mutation.
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The earlier defined fitness values measure how close the solu-

tion is to the ideal solution. Individuals associated with large fit-

ness values are capable of restoring quite accurately the proc-

essed image. Solutions associated with low-fitness values pro-

duce images, which deviate significantly from the in-accessible

original.

It should be mentioned that the fitness values can be defined in

many ways utilizing numerous image quality measures listed in

(Avcibas et al., 2002). Following the traditional practice of image

quality evaluation in the area of color image processing (Plataniotis

and Venetsanopoulos, 2000; Lukac et al., 2004c), the mean square

error (MSE) defined as

MSE ¼ 1

3K1K2

X3
k¼1

XK1K2

i¼1

ðoik � yikÞ2; ð15Þ

and/or the normalized color difference (NCD) criterion (Plataniotis

et al., 1999) defined by

NCD ¼

PK1K2

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP3
k¼1

ð�oik � �yikÞ2
s

PK1K2

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP3
k¼1

ð�oikÞ2
s ; ð16Þ

may be considered as an alternative. While both MAE and MSE are

defined in the RGB domain, the NCD criterion in 16) is defined in

the CIE LUV color space, where �oi ¼ [�oi1, �oi2, �oi3] and �yi ¼ [�yi1,
�yi2, �yi3] are the vectors representing respectively the RGB vectors

oi and yi in the CIE LUV color space with the white reference point

D65 (Wyszecki and Stiles, 1982). Thus, the NCD is useful for eval-

uating the color chromaticity differences between the color vectors

and allows us to quantify the error in the uniformly perceived color

space (Plataniotis and Venetsanopoulos, 2000). On the other hand,

MAE and MSE are commonly accepted in the image processing

community as the measures of signal-detail preservation and noise-

attenuation, respectively. Although all aforementioned error criteria

will be used in the sequence to quantify the difference between the

original and filtered (or noisy) images, due to the simplicity of the

implementation the fitness values of (13) are used here to guide the

GA-WVDF optimization process.

Figure 14. The number of the generations at which the final best

solution obtained (within 20 runs) was reached versus the GA param-
eters pc and pm. [Color figure can be viewed in the online issue, which

is available at www.interscience.wiley.com]

Figure 15. Appropriateness of the best solution expressed using the
image quality criteria averaged over 20 runs. [Color figure can be viewed

in the online issue, which is available at www.interscience.wiley.com]
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Assuming that wj ¼ [w1
j, w2

j, . . . , wN
j] is the weight vector corre-

sponding to the individual Ij, for j ¼ 1, 2, . . . , Np, the GA-WVDF

optimization problem is expressed as:

minimize JGA ¼ 1
Np

PNp

j¼1

JWVDF ðwjÞ

subject to wj
i � 0; for i ¼ 1; 2; . . . ;N;

ð17Þ

where JGA is the GA’s cost function and

JWVDF ðwjÞ ¼
XK1K2

i¼1

koi � yi w
j;W

� �k1: ð18Þ

is the cost function of the individual Ij. Visual inspection of (17)

suggests that GA minimizes the error defined over the entire popu-

lation. Therefore, it is reasonable to conclude that given sufficiently

large number of generations, the obtained population will contain

numerous acceptable solutions (Goldberg, 1989).

D. Genetic Operators. Based on an individual’s fitness, the

selection operator is used to select the parents from the current pop-

ulation of solutions in order to produce offspring. The chance of

selecting an individual increases with its fitness. GA solutions strive

to make compromises between selective pressure and diversity

(Leung et al., 2001; Bosman and Thierens, 2003). Based on the set-

ting of the initial parameters, the user can tune this trade-off and

boost GA performance. To keep the selection process simple, a

tournament selection is usually employed (Man et al., 1999). This

selection mechanism compares a randomly constituted set of cur-

rent individuals and selects the individual with the best fitness. The

repeated process results in a second parent selection. Note that the

selective pressure of this approach increases with the size Ns of the

randomly constituted sets. In this study, we will make use of uni-

formly distributed, randomly generated, Ns.

Another genetic operator is the crossover and the corresponding

crossover probability pc. This operator creates offsprings by mixing

and recombining the chromosomes of selected parents (Man et al.,

1999; Leung et al., 2001). Figure 9a illustrates the traditional, single

point crossover, which randomly selects a point of the crossover

and replaces the genetic information of parents chromosomes after

this point. Figure 9b illustrates a uniform crossover, in which the

Figure 16. Zoomed parts of images achieved during the GA training: (a) original image, (b) image corrupted by 10% impulsive noise (pv ¼
0.10), (c) 1st generation with MAE ¼ 3.203, MSE ¼ 53.9, NCD ¼ 0.0332, (d) 3rd generation with MAE ¼ 2.724, MSE ¼ 64.3, NCD ¼ 0.0283, (e)
10th generation with MAE ¼ 2.398, MSE ¼ 51.5, NCD ¼ 0.0247, (f) 87th generation with MAE ¼ 1.646, MSE ¼ 62.8, NCD ¼ 0.0166, (g) 217th

generation with MAE ¼ 1.619, MSE ¼ 55.7, NCD ¼ 0.0164, (h) 466th generation with MAE ¼ 1.606, MSE ¼ 55.2, NCD ¼ 0.0162. [Color figure

can be viewed in the online issue, which is available at www.interscience.wiley.com]

Table I. Obtained weight vectors normalized according to their corresponding maximum values.

WVDF Type

Weighting Coefficients

w1 w2 w3 w4 w5 w6 w7 w8 w9

LWVDF 0.3919 0.4634 0.3774 0.3766 1.0000 0.3824 0.3625 0.4624 0.3928

SWVDF 0.1920 0.4688 0.2771 0.2449 1.0000 0.2913 0.1838 0.5668 0.1602

Proposed w1 0.1763 0.2536 0.1574 0.1969 1.0000 0.1676 0.2240 0.2462 0.2176

Proposed w2 0.1526 0.2610 0.2007 0.2059 1.0000 0.1992 0.2115 0.2581 0.1435

Proposed w3 0.1719 0.3106 0.2248 0.2297 1.0000 0.2130 0.2125 0.3246 0.1817
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value of each gene of an offspring is randomly taken form either

parent. Figure 9c shows an arithmetic crossover, where the off-

spring is obtained by averaging the genes of the parent chromo-

somes. Note that sophisticated EC tools use special crossover oper-

ators that create offspring statistically located in proportion to the

difference of the parents in the search space (Beyer and Deb, 2001).

It should be emphasized that the weighting coefficients represent

the degree to which each input vector contributes to the filter out-

put. Therefore, the use of the single-point crossover preserves part

of the weights’ setting, transferring the sequences of weights from

the best parents to offsprings during evolution. This is very impor-

tant from an image processing point of view since the offspring are

allowed to share the detail-preserving and noise-attenuating charac-

teristics of the parents. Although this choice often slows down the

convergence process compared to that noticed using the traditional

arithmetic crossover, the new populations contain a large number of

useful individuals. On the other hand, the use of the arithmetic

crossover in the GA-WVDF optimization process unifies solutions

to the weight vector corresponding to the best fitness. However, it is

known that many, although seemingly different weight vectors, can

produce similar, if not identical, outputs in the selection-type based

nonlinear filters. By exchanging the sequence of the weights (genes)

through the use of a single-point crossover, less uniform popula-

tions and more interesting filtering settings can be obtained.

Mutation operators are referenced via the mutation probability

pm. This operator (Fig. 10) is used to introduce small random infor-

mation to the offspring. Note that mutation can potentially affect

more than one gene of the chromosome, because each gene is

mutated with the same probability pm. The mutation operator can

be implemented in many ways, for example (Goldberg, 1989; Man

et al., 1999) (i) a uniform mutation replaces a gene with a random

number from the interval specified for a given position in the chro-

mosome, (ii) a Gaussian mutation adds to a gene a Gaussian distrib-

uted random value, (iii) a boundary mutation, which replaces a gene

with the maximum or the minimum value currently used in the off-

spring representation. Since the mutation operator supports diver-

sity, pm should be set to a small value in order to obtain a practical

convergence rate (Goldberg, 1989). In this study, the commonly

accepted Gaussian mutation was used mainly due to the fact that

the operator usually introduces only small changes in an individual.

We allow up to six genes in each chromosome to be affected by the

mutation operator. Both crossover and mutation probabilities pc and
pm will be the subject of heuristic analysis provided in Section VI.

It is evident that because of recombining and mutation, duplicate

individuals representing the same solutions may be produced. To avoid

premature convergence and to increase the efficiency, any duplicate

individuals should be eliminated from the pool of candidates.

Two other operators employed in our solution are the so-called

generation gap (or subpopulation) and elitism operators. Both are

determined by setting rg (for generation map) and re (for elitism oper-

ator) to a real number between 0 and 1. Thus, rg multiplied by Np

represents the fraction of the current population (usually the individu-

als with the worst fitness) which is to be replaced by the offspring.

On the other hand, the elitism parameter re multiplied by Np denotes

the fraction of the best individuals, which will appear unchanged in

next population. In this study, we employ an elitism operator defined

by re ¼ 0.1. Therefore, the individual with the best fitness reported

during evolution corresponds to an optimal solution.

VI. APPLICATION TO COLOR IMAGES

In this section, the performance of the GA-WVDF filters is eval-

uated in the most important area of multichannel processing, namely

color image filtering. The results presented in this paper were ob-

tained with a 3� 3 square window (i.e., N¼ 9) shown in Figure 3.

First, the GA efficiency is tested using the original image Lena

(Fig. 8a) and its noisy version (Fig. 8b) in order to optimize the

WVDF weights for an impulsive noise removal task. The perform-

ance characteristics of GA-WVDF optimization are evaluated using

the GA’s cost function, fitness values, and conventional color image

error measures (MAE, MSE, and NCD). Note that the single-point

crossover, Gaussian mutation, and an optimization boundary of

1000 generations represent the default setting in our scheme. Since

genetic operators tend to be problem specific (Man et al., 1999),

using the fixed parameters Np ¼ 120 and re ¼ 0.1 we will examine

Table II. Standard deviation corresponding to the weight vectors w2 and w3 (listed in Table 1) obtained through averaging of 1800 measurements (only

winning chromosomes).

WVDF Type

Weighting Coefficients

w1 w2 w3 w4 w5 w6 w7 w8 w9

w2 0.0354 0.0209 0.0322 0.0422 0.0525 0.0350 0.0325 0.0192 0.0338

w3 0.1148 0.1762 0.1180 0.1390 0.0600 0.1422 0.1084 0.1861 0.1495

Table III. Methods taken for comparison with the proposed GA-WVDF framework.

Notation Method Reference

MF Component-wise median filter Zheng et al. (1993)

VMF Vector median filter Astola et al. (1990)

BVDF Basic vector directional filter Trahanias et al. (1996)

DDF Directional-distance filter Karakos and Trahanias (1997)

GVDF Generalized vector directional filter Plataniotis and Venetsanopoulos (2000)

SMF Spherical median filter Trahanias et al. (1996)

HVF Hybrid vector filter Gabbouj and Cheickh (1996)

WVDF WVDF with w ¼ [1,2,1,4,5,4,1,2,1] Lukac (2004)

LWVDF Linearly optimized WVDF Lukac et al. (2004a)

SWVDF Sigmoidally optimized WVDF Lukac et al. (2004a)
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the influence of the probabilities pc and pm, and the number of gen-

erations on the aforementioned evaluation criteria.

Figure 11a demonstrates the dependence of the GA’s cost (17)

on the setting of the probabilities pc ¼ 0.1, 0.2, . . . , 0.9 and pm ¼
0.05, 0.15, . . . , 0.95. To follow the standard practice in testing sto-

chastic methods, 20 runs for each allowed combination of pc and pm
were used. Figure 11a depicts the cost values averaged over 20

measurements. As it was expected, a large value of pm extends the

variability of individuals. Moreover, visual inspection of the corre-

sponding standard deviation (Fig. 11b) reveals that the final values

of the GA’s cost function vary significantly. To this end, the largest

spread of the cost values was observed for pc ¼ 0.5 and pm ¼ 0.95,

whereas the pc ¼ 0.5 and pm ¼ 0.45 setting corresponded to the

smallest deviation in the GA’s cost values. The smallest averaged

GA’s cost was obtained using pc ¼ 0.7 and pm ¼ 0.05; therefore,

this setting is used in the following experimentation.

Figure 12 allows for the comparison of the GA’s convergence

obtained using the default setting (single-point crossover and Gaus-

sian mutation) and the conventional setting (arithmetic-point cross-

over and Gaussian mutation). The use of the arithmetic crossover

(Fig. 12b) provides more uniform curves, and the convergence is

usually obtained within 50 generations compared to 90 generations

in the default setting (Fig. 12a). When these generations are

reached, the convergence process continues significantly slower.

Figure 13 displays the best fitness values obtained using the pa-

rameters pc ¼ 0.7 and pm ¼ 0.05. Note that the curves are plotted

for a single run in which the largest value of (13) among 20 runs

was observed. Both settings resulted in the identical maximum fit-

ness �max ¼ 0.9937. As it can be seen, in order to obtain the maxi-

mum fitness, 605 generations were needed using the default setting,

whereas the use of the other setting led to the same value perform-

ing 864 generations during evolution.

The following experimentation was performed using the default

setting only. Figure 14 plots the number of generations needed in

order to obtain the best fitness. Note that 20 runs for each combina-

tion of pc and pm were executed. Visual inspection of the results

reveals that the GA converges to the best solution slower for large pm
with small pc. Figure 15 demonstrates that in many situations the

final fitness increases with the number of generations. It should be

mentioned that the MAE values (detail-preserving capability) are

extremely small. Similar statements can be drawn using the NCD cri-

terion (color preservation capability). In some cases, the improve-

ment in terms of the MSE values (noise suppression capability) is not

as high as it was expected. This behavior can be attributed to: (i) the

utilization of the MAE-based optimization criterion in (17), and (ii)

mainly to the fact that the GA did not converge to the solution that

provides the best balance between the various objective measures.

Figure 16 shows zoomed parts of images achieved during the

training. The visual quality of the output image, especially in terms

of signal-detail preservation and color appearance, increases with

Figure 17. Test color images: (a) original image Parrots, (b) image

Parrots corrupted by 5% impulsive noise (pv ¼ 0.05). [Color figure
can be viewed in the online issue, which is available at www.

interscience.wiley.com]

Figure 18. Zoomed results corresponding to Figure 17: (a) original image, (b) image corrupted by 5% impulsive noise (pv ¼ 0.05), (c) MF out-
put, (d) VMF output, (e) BVDF output, (f) DDF output, (g) LWVDF output, (h) proposed filter (w1) output optimized using Figure 8. [Color figure can

be viewed in the online issue, which is available at www.interscience.wiley.com]
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the number of generations. It can be seen that this improvement also

results in improved objective quality measures listed in the descrip-

tion of Figure 16.

Table I shows the weight vectors obtained using the WVDF

framework. The least mean error principle solutions (Lukac et al.,

2004) with the linear (LWVDF) and sigmoidal (SWVDF) approxi-

mation of the sign function as well as the proposed GA-optimized

WVDF were obtained using identical images depicted in Figure 8.

Note that the vector w1 corresponds to the best fitness obtained for

pc ¼ 0.7 and pm ¼ 0.05 used in Figure 13. The vector w2 consists of

the weights averaged over the best solutions obtained for each of 20

different runs (1000 generations) of the GA and the individual set-

tings of pc ¼ 0.1, 0.2, . . . , 0.9 and pm ¼ 0.05, 0.15, . . . , 0.95.
Finally, w3 contains the weighting coefficients obtained under a

procedure identical to the one used in determining w2. The only dif-

ference is that the best solutions were achieved within 10 genera-

tions, instead of 1000 generations, needed in the determination of

w2. These results confirm our expectations that the center sample

has the greatest impact on the accuracy of the estimates when im-

pulsive noise is corrupting the original input. In general, the contri-

bution of the surrounding color vectors is approximately five times

smaller compared with the contribution of the central sample.

Table II illustrates the influence of the evolution process. Since

both w2 and w3 are calculated over 1800 measurements (20 runs, 9

values of pc, and 10 values of pm), the influence of the number of

generations on the uniformity (or variability) of the winning chro-

mosomes can be evaluated. Table II summarizes the standard devia-

tion corresponding to the individual weights of w2 and w3. The

results demonstrate that (i) winning chromosomes obtained within

10 generations (for vector w3) vary significantly within the set of all

obtained solutions, and (ii) GA did not achieve globally optimal sol-

utions in many cases. Please note that the weight w5 corresponding

to the central sample x(Nþl)/2 ¼ x5 was observed to be the most con-

sistent value within w3. However, if 1000 generations are used to

obtain GA evolution, the process converges to similar solutions

(globally optimal or close weight vectors); and thus, the averaged

weight vector w2 does not deviate significantly from the sets of

1800 measurements. Since neighboring vectors do not have a large

impact on the WVDF output, the lowest consistency in the obtained

weights corresponds to the central weight w5.

In the sequence, the GA-optimized WVDF filters are compared

in terms of performance, to the color image filters listed in Table III.

To facilitate the comparison, widely used test images such as the

Lena image (Fig. 8a) and the Parrots image (Fig. 17a) are utilized.

These standard size (256 � 256) images are displayed using 8-bit

per channel RGB representation. To measure similarity between the

original RGB image o and the filtered image y, and determine

objectively the quality of filtered images, we will make use of the

Figure 19. Estimation errors emphasized by a factor of 2.5 corresponding to Figure 17: (a) MF output, (b) VMF output, (c) BVDF output, (d)

DDF output, (e) HVF1 output, (f) nonadaptive WVDF with w ¼ [1,2,1,4,5,4,1,2,1], (g) LWVDF output, (h) proposed filter (w1) output optimized using
Figure 8. [Color figure can be viewed in the online issue, which is available at www.interscience.wiley.com]

Table IV. Comparison of the presented algorithms using impulsive noise

corruption pv ¼ 0.02.

Method

Lena Parrots

MAE MSE NCD MAE MSE NCD

Noisy 1.519 173.0 0.0180 1.578 186.2 0.0177

MF 3.239 45.9 0.0414 2.547 57.9 0.0150

VMF 3.300 47.8 0.0391 2.493 58.0 0.0123

BVDF 3.694 55.1 0.0394 3.289 101.8 0.0106

DDF 3.379 48.8 0.0389 2.482 60.2 0.0108

GVDF 3.587 55.3 0.0420 2.864 84.8 0.0117

SMF 3.523 45.6 0.0406 2.896 57.4 0.0120

HVF 3.450 48.4 0.0397 2.604 59.8 0.0114

WVDF 2.487 36.0 0.0265 1.879 53.3 0.0059

LWVDF 1.790 23.7 0.0211 1.306 28.8 0.0060

SWVDF 1.631 18.5 0.0172 1.433 45.2 0.0043

Proposed w1 0.849 12.4 0.0089 0.694 20.3 0.0025

Proposed w2 0.832 11.8 0.0087 0.696 20.7 0.0022

Proposed w3 1.094 13.6 0.0115 0.933 28.7 0.0028
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MAE, MSE, and NCD criteria defined by (14), (15), and (16),

respectively.

Note that WVDF filters were primarily focusing on removing

additive impulsive noise. Therefore, the test images have been cor-

rupted by 2, 5, and 10% impulsive noise of (12) corresponding to

impulsive noise probability of pv ¼ 0.02, pv ¼ 0.05, and pv ¼ 0.10

in (12), respectively. Since training data are unavailable in realistic

applications, determining robustness of the proposed filters in mis-

matched operating conditions is of paramount importance.

Figure 18 illustrates the performance of the methods using

enlarged parts of the test image Parrots. These results clearly indicate

that the component-wise median filter (MF) produces color artifacts

Figure 18c. It can be seen that standard vector filtering schemes, such

as VMF, BVDF, and DDF, avoid color artifacts; however, VMF and

DDF often produce regions called streaks (Figs. 18d and 18f) of con-

stant or nearly constant brightness. It can be seen that the angular

minimization approach employed by the BVDF is useful, and it leads

to better performance (Fig. 18e) in terms of the color–structural pres-

ervation. The recently introduced linearly optimized WVDF

(LWVDF) filter (Lukac et al., 2004a) exhibits improved detail-pre-

serving characteristics and produces an output image (Fig. 18g),

which is close to the original image shown in Figure 18a. The pro-

posed genetically optimized filtering framework produces an output

image (Fig. 18h), which looks sharper than Figure 18g. Moreover,

the GA-WVDF output is characterized by excellently preserved color

and structure elements. These excellent characteristics result in the

smallest estimation error (Fig. 19) among tested filters, as can be seen

from the results summarized in Tables IV–VI. These results demon-

strate that the proposed optimal filter works well using the training

image, although the amount of image corrupting noise (here impul-

sive noise) encountered during the actual operation, differs signifi-

cantly from the amount assumed present during training. Moreover,

the solution is stable and robust even when during the actual opera-

tion an image such as Parrots, with significantly different characteris-

tics, both in color and structural information, from the one used in

training, is encountered. This suggests that the optimal GA-WVDF

framework constitutes a robust solution for the removal of outliers

and impulsive noise.

The following experimentation examines the performance of

the optimal GA-WVDF filters in different qualitative and quanti-

tative noise environments. During the actual operation, the noisy

inputs are real images corrupted by real, nonapproximated noise,

which is different in characteristics and statistical properties

from the impulsive noise assumed during training. Figure 20

shows a digitized artwork and a television image. Noise is intro-

duced into the digitized artworks by scanning damaged and

granulated surfaces of the original paintings, mural frescos, and

roll documents. Noise is also introduced into television images,

mostly due to atmospheric interference and imperfections of the

transmission channel. Since the original, noise-free images are

not available, the images shown in Figures 21 and 22 are subjec-

tively evaluated. Image quality is evaluated with respect to the

structural content (edges, textures, and fine details) preservation,

and the presence of residual noise or color artifacts as a result of

faulty processing. Note that the human visual system is sensitive

to changes in color and thus maintaining the sharpness of the

edges is as important as removing the image noise when it comes

to the visual assessment of the filtering process. Edges are impor-

tant features since they provide an indication of the shape of the

objects in the image.

The VMF technique exhibits robust noise-attenuation character-

istics; however, it removes important color/structural details (Figs.

21b and 22b). The BVDF enhanced images shown in (Figs. 21c and

22c) look sharper and with more details, compared with the VMF

obtained outputs. However, the proposed method provides the best

Table VI. Comparison of the presented algorithms using impulsive noise

corruption pv ¼ 0.10.

Method

Lena Parrots

MAE MSE NCD MAE MSE NCD

Noisy 7.312 832.0 0.0840 7.526 882.0 0.0857

MF 3.703 56.8 0.0489 2.960 70.0 0.0198

VMF 3.687 56.5 0.0428 2.890 69.6 0.0142

BVDF 4.099 67.6 0.0432 3.630 113.5 0.0127

DDF 3.733 57.3 0.0424 2.839 69.7 0.0128

GVDF 3.925 66.8 0.0448 3.188 96.2 0.0137

SMF 3.907 53.1 0.0439 3.133 67.1 0.0141

HVF 3.857 56.9 0.0434 3.002 69.9 0.0132

WVDF 2.989 56.3 0.0314 2.362 77.2 0.0083

LWVDF 2.661 42.5 0.0281 2.238 72.2 0.0074

SWVDF 2.114 39.8 0.0219 3.196 110.2 0.0108

Proposed w1 1.606 55.2 0.0162 1.340 59.4 0.0062

Proposed w2 1.605 59.2 0.0160 1.375 65.0 0.0063

Proposed w3 1.700 44.6 0.0173 1.418 52.9 0.0056

Table V. Comparison of the presented algorithms using impulsive noise

corruption pv ¼ 0.05.

Method

Lena Parrots

MAE MSE NCD MAE MSE NCD

Noisy 3.762 427.3 0.0445 3.805 443.6 0.0432

MF 3.394 49.7 0.0442 2.718 63.1 0.0170

VMF 3.430 50.8 0.0403 2.669 64.2 0.0132

BVDF 3.818 58.6 0.0407 3.460 109.0 0.0116

DDF 3.509 52.3 0.0402 2.645 65.3 0.0117

GVDF 3.587 55.3 0.0420 3.036 93.6 0.0126

SMF 3.523 45.6 0.0406 2.927 61.6 0.0130

HVF 3.857 56.9 0.0434 2.786 65.7 0.0122

WVDF 2.989 56.3 0.0314 2.061 62.2 0.0090

LWVDF 2.399 33.4 0.0256 2.029 63.5 0.0064

SWVDF 1.783 24.2 0.0188 1.574 50.4 0.0052

Proposed w1 1.084 24.8 0.0113 0.893 29.9 0.0035

Proposed w2 1.065 23.9 0.0111 0.893 29.9 0.0036

Proposed w3 1.278 21.7 0.0134 1.106 36.2 0.0038

Figure 20. Real images: (a) digitized image of fine arts, (b) televi-
sion image. [Color figure can be viewed in the online issue, which is

available at www.interscience.wiley.com]
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results in terms of subjective evaluation, since the corresponding

images shown in Figures 21d and 22d contain all the important

details. The GA-based solution is capable of removing samples

deviating from their neighbors while excellently preserves color/

structural information. This suggests that the filter is sufficiently ro-

bust to relatively large deviations from the conditions assumed dur-

ing training. However, it should be noted that in case of substantial

qualitative difference in terms of noise characteristics, Gaussian

versus impulsive, there is a drop in performance, which largely

depends on the intensity of the corrupting noise. In this case, reop-

timization of the filter coefficients may be recommended. It should

be emphasize that selection type filters, such as the considered

WVDF, are primarily geared to address to the problem of impulsive

noise removal. For such a task, the proposed solution holds excel-

lent performance.

Summarizing the results presented earlier, the following conclu-

sions can be drawn:

� The presented GA-WVDF framework blends together con-

cepts from evolutionary computation, nonlinear estimation

theory, multichannel image processing, and it can be readily

applied to emerging application areas, such as color image

processing and virtual restoration of artworks. The results and

improvements presented in the paper clearly demonstrate that

from a practical point of view, the proposed GA optimization-

based filtering solution delivers excellent performance.

� The GA-WVDF solution is sufficiently robust, attenuates im-

pulsive noise present in color images, and produces images

with excellent fidelity compared to the originals.

� The GA-WVDF optimization process converges to a useful

suboptimal solution within 100 generations. The uniformity

of the optimal WVDF weight vectors obtained for the differ-

ent parameters pc and pm increases with the number of genera-

tions. The smallest standard deviation in the GA-WVDF con-

vergence was observed for pc ¼ 0.5 and pm ¼ 0.45. The pa-

rameters pc ¼ 0.7 and pm ¼ 0.05 were found to produce the

smallest cost (averaged over 20 runs) of the GA-WVDF opti-

mization process for all settings of the parameters pc and pm
considered here. The maximum fitness 0.9937 was obtained

for the parameters pc ¼ 0.7 and pm ¼ 0.05.

� The optimal GA-WVDF filters are consistent in perform-

ance even when the image corrupting noise differs quantita-

tively from the assumed during training noise model. More-

over, the proposed method outperforms other techniques in

terms of the most commonly used image quality measures.

Optimized WVDF filters are capable of preserving the

color/structural information of real images, such as digitized

artworks and television images, while attenuating low-level

noise appearing in forms of impulsive sequences or isolated

deviating colors.

VII. CONCLUSIONS

This study introduced a new, genetically optimized color image fil-

tering solution operating on nonnegative real weights and the direc-

tionality of color vectors. The proposed GA optimization concept

significantly improves color/structural preserving characteristics of

the traditional color filtering schemes, while exhibiting acceptable

noise attenuation capabilities. The behavior of the introduced

framework was analyzed in detail and modifications of the proposed

framework have been provided as well. Television image enhance-

ment and virtual restoration of artworks were introduced as an

Figure 21. Zoomed results corresponding to Figure 20a: (a) original image, (b) VMF output, (c) BVDF output, (d) proposed filter (w1) output

optimized using Figure 8. [Color figure can be viewed in the online issue, which is available at www.interscience.wiley.com]

Figure 22. Zoomed results corresponding to Figure 20b: (a) original image, (b) VMF output, (c) BVDF output, (d) proposed filter (w1) output

optimized using Figure 8. [Color figure can be viewed in the online issue, which is available at www.interscience.wiley.com]
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example of emerging applications in color image filtering. Simu-

lation results and comparisons reported here indicate that the

proposed framework achieves excellent trade-off between

smoothing and preserving characteristics, and is sufficiently ro-

bust and can outperform the commonly used color image filtering

schemes in terms of both objective and subjective image quality

measures.
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