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Abstract—We consider physical layer multicasting in an amplify-and-
forward multi-antenna relay network. Assuming each relay antenna has
individual power budget, our objective is to design the relay processing
matrix to minimize the maximum individual antenna power for a given
received SNR target at each destination. As the problem is NP-hard,
we propose an approximate solution by solving the problem inthe
Lagrange dual domain. Through this Lagrange dual approach,we reveal
a prominent structure, which enables us to derive a semi-closed form
expression for the relay processing matrix that depends on aset of dual
variables. These dual variables can be determined through an efficient
semi-definite programming formulation. Compared with the traditional
semi-definite relaxation (SDR) approach, the proposed solution has much
lower computational complexity. Furthermore, it produces the optimal
solution if such solution can be extracted from the SDR approach.
Thus, the proposed solution can serve as a good alternative to the SDR
approach, for the performance and complexity trade-off.

Index Terms—Relay Beamforming, Multicast, Amplify-and-Forward,
Per-Antenna Power Control

1. INTRODUCTION

The next generation relay network needs efficient physical layer
multicasting design for some important emerging wireless applica-
tions such as real-time video broadcasting. We study the design of
amplify-and-forward (AF) multi-antenna relaying in a multicasting
scenario, where a source sends common information to a few desti-
nation users through the assistance of a relay. A processingmatrix is
used at the relay to process received signals to forward to all users.
The focus of the design is to develop efficient algorithms to determine
the relay processing matrix so that good performance at eachuser
can be achieved. In addressing this problem, we impose a more
practical constraint that each relay antenna has its own individual
power budgets. For a relay equipped with multiple antennas,the
constraint reflects the individual RF front-end power amplifier at each
antenna; For multiple relays equipped with single antenna to form a
virtual multi-antenna system for collaborative processing, individual
antenna power budget is particularly more realistic. Theseper-antenna
power constraints render the design problem more challenging than
that with the traditional sum-power constraint.

For single pair of source and destination, optimally designing the
relay processing matrix has been studied under different performance
criteria [1]–[4]. The relay processing design for multiplesources
and/or destinations has also been studied in [5]–[7], wherenumerical
methods were proposed to obtain approximate solutions, or subop-
timal structure was imposed to simplify the problem. Regardless of
single or multiple pairs of source and destinations, most existing
designs for multi-antenna relay processing rely on a sum-power
constraint among relay antennas, which leads to more analytically
tractable problems. When per-antenna power constraints are imposed,
existing techniques developed under the sum-power constraint are no
longer applicable. For the scenario of a single pair of source and
destination, the optimal relay processing matrix under per-antenna
power budget is obtained recently in [8].

The problem of physical layer multicast transmit beamforming has
been well studied in a direct downlink scenario [9]–[11] under the
sum-power constraint. It was shown that the multicasting optimization

problem is in general NP-hard. Thus, the focus is on providing
computationally efficient approximate solutions for the problem.
A semi-definite relaxation (SDR) approach was proposed for an
approximate solution [9]. This approach has been most popular so
far in solving the multicast transmit beamforming problem due to its
good quality of performance with polynomial time [12]. Similarly,
for relay multicasting, the SDR approach can be adopted to solve the
problem. In this paper, instead of SDR, we propose an alternative
approach to find an approximate solution.

In this work, for the AF multi-antenna relay multicasting, we aim
at designing the relay processing matrix to minimize the maximum
relay per-antenna power consumption, with SNR target requirement at
each destination. We develop an approximate solution for the problem
in the Lagrange dual domain. Through a sequence of transformations,
we derive a semi-closed form expression for the approximatesolution
of relay processing matrix, of which a set of dual variables are de-
termined numerically through an efficient semi-definite programming
(SDP) formulation. Our semi-closed form solution is obtained with
much lower computational complexity, as compared with the SDR
approach. The computational efficiency comes from the smaller size
of SDP and the semi-closed form solution without any iteration which
is needed in the SDR approach. In terms of performance, the solution
obtained sometimes is in fact optimal. In this case, both proposed
approach and SDR approach produce the optimal solution at the same
time. However, unlike the proposed approach, obtaining such optimal
solution from the SDR approach is not always straightforward. It
requires the knowledge on the existence of the optimal solution and
methods to extract it (e.g., [13]). When the solution is non-optimal,
the SDR approach tends to have better performance. Thus, both
approaches should be considered in generating the solutionto achieve
overall good performance with high computational efficiency.

Notations: The Kronecker product is denoted as⊗. Hermitian
and transpose are denoted as(·)H and (·)T , respectively. Conjugate
is denoted as(·)∗. vec(A) vectorizes the matrixA = [a1, · · · ,aN ]
to [aT

1 , · · · ,aT
N ]T . The notationA < 0 means that the matrixA is

positive semi-definite; anda < 0 denotes element-wise inequality.
The maximum eigenvalue of the matrixA is denoted asσmax(A).
For A being positive semi-definite,A

1

2 denotes its square-root with
A = A

1

2A
1

2 .

2. PROBLEM FORMULATION

We consider a dual-hop AF multi-antenna relaying system in a
multicast scenario where the source transmits common data to K
destination users through a relay equipped withN antennas. The
channel vector between the source and the relay, and the relay and
userk is denoted byh1 ∈ CN×1 andh2k ∈ CN×1, respectively. The
signals received at the relay are processed with a relay processing
matrix W ∈ CN×N and then are forwarded to all users. Letyr be
the received signal vector at the relay. The received signalat userk
is given by

ydk = h
T
2 (Wyr) + nd = h

T
2kWh1

√
Pos+ h

T
2 Wnr + ndk (1)



where s is the transmitted signal from the source with unit power
E|s|2 = 1, Po is the transmit power at the source, andndk is the
AWGN at userk’s receiver with varianceσ2

d. The received signal-
to-noise ratio (SNR) at userk is obtained as

SNRk =
Po|hT

2kWh1|2
σ2
r‖hT

2kW‖2 + σ2
d

. (2)

With the practical assumption that each transmit antenna atthe
relay is individual power controlled with its own power budget, the
per-antenna power on the output of each transmit antenna at the relay
is given byE{|[Wyr]i|2} =

[

P0Wh1h
H
1 WH + σ2

rWWH
]

ii
, for

i = 1, · · · , N .
Our objective is to design an optimalW at the relay to minimize

the relay per-antenna power usage for data forwarding, subject to
received SNR targets at each user. Let the received SNR target at
user k be γk. We consider minimizing the maximum per-antenna
transmit power at the relay subject to constraints on SNR target of
each user, given as

min
W

max
1≤i≤N

[

PoWh1h
H
1 W

H + σ2
rWW

H
]

ii
(3)

s.t. SNRk ≥ γk, ∀k (4)

It is straightforward to see that the above min-max power minimiza-
tion problem is equivalent to the following problem

min
W

Pr (5)

s.t. SNRk ≥ γk, ∀k
[

P0Wh1h
H
1 W

H + σ2
rWW

H
]

ii
≤ Pr,∀i (6)

which also corresponds to a common per-antenna power constraint.
We also impose the following assumption of the channel between

the source and relays.

A1): The channel between the source and the relay over each antenna
is active,i.e., h1i 6= 0, ∀i, whereh1i is the ith element inh1.

The above assumption is very mild and generally holds in practical
scenarios, as for a fading channel P(h1i = 0) = 0.

3. MULTICAST RELAY PROCESSINGDESIGN

By vectorizing the relay processing matrixW, we first transform
the received SNR expression in (2) to the following form.

SNRk =
Po|gH

k w|2
∥

∥

∥

∥

R
1

2

nkw

∥

∥

∥

∥

2

+ σ2
d

(7)

wherew
∆
= vec(WH), gk

∆
= h2k ⊗ h1, andRnk

∆
= h2kh

H
2k ⊗ Iσ2

r ,
for k = 1, · · · ,K, whereI is anN×N identity matrix. LetWH =
[w1, · · · ,wN ]. Following (7), the constraint (6) can be re-expressed
in terms ofwi, where
[

PoWh1h
H
1 W

H + σ2
rWW

H
]

i,i
= w

H
i (P0h1h

H
1 + σ2

rI)wi.

A. Lagrange Dual Approach

The optimization problem (5) is non-convex, as SNR constraints
in (7) are non-convex w.r.t.w. In fact, for the direct-link multicast
beamforming, it has been shown that the total power minimization
problem is NP-hard [9], and the SDR approach is typically used
to find the approximate solution. In our problem, we find the

approximate solution in the Lagrange dual domain. Withw, the
Lagrangian for (5) is given as

L(Pr,w,Λ,ν) =Pr −
K
∑

k=1

νk

[

Po

γk

∣

∣

∣w
H
gk

∣

∣

∣

2

− ‖R
1

2

nkw‖2 − σ2
d

]

+

N
∑

i=1

λi

[

w
H
i (P0h1h

H
1 + σ2

rI)wi − Pr

]

(8)

whereΛ
∆
= diag(λ1, · · · , λN) is the diagonal matrix of Lagrange

multipliers corresponding to the per-antenna power constraints, and
ν = [ν1, · · · , νK ]T be the vector of Lagrange multipliers associated
with the SNR constraints in (4). By the Lagrangian dual approach,
we obtainw by solving the dual problem

max
Λ,ν

min
Pr,w

L(Pr,w,Λ,ν) (9)

s.t. Λ < 0, ν < 0. (10)

We now show that the solution to the Lagrange dual problem (9)
can be obtained by an equivalent optimization problem givenin the
following theorem.

Proposition 1: The Lagrange dual problem associated with the
optimization problem (5) is equivalent to the following problem

max
Λ

min
ν,w

σ2
d

K
∑

k=1

νk (11)

s.t.

Po

K
∑

k=1

νk
γk

∣

∣

∣
w

H
gk

∣

∣

∣

2

wHΣw
≥ 1 (12)

tr (Λ) ≤ 1,Λ is diagonal (13)

Λ ≻ 0, ν < 0 (14)

whereΣ
∆
= Λ⊗

(

Poh1h
H
1 + σ2

rI
)

+
∑K

k=1 νkRnk.
Proof: The Lagrangian in (8) is given by

L(Pr,w,Λ,ν) =σ2
d

K
∑

k=1

νk + Pr[1− tr(Λ)]

+w
H

[

Σ− Po

K
∑

k=1

νk
γk

gkg
H
k

]

w. (15)

Substituting (15) into (9) and solving the inner minimization of the
dual problem (9), we have the following equivalent problem

max
Λ,ν

σ2
d

K
∑

k=1

νk s.t. (10), (13), and Σ < Po

K
∑

k=1

νk
γk

gkg
H
k . (16)

In order to show the equivalence of the problem (11) and (16),we
have the following lemmas. The proofs are omitted due to space
limitation.

Lemma 1: Let A andB be N ×N positive definite and positive
semi-definite matrices, respectively. Then,

A < B ⇔ 1− σmax

(

A
− 1

2 BA
− 1

2

)

≥ 0 (17)

Lemma 2: Under the assumption A1, at the optimality of the
problem (16), we have the optimalλo

i > 0, for all i = 1, · · · , N .
Using Lemma 2, we have the following.

Lemma 3: At optimality of the problem (16), rank(Σ) = N2, i.e.,
Σ is a positive definite matrix.

Combining Lemma 1 and Lemma 3, the dual problem (16) is now
equivalent to



max
Λ,ν

σ2
d

K
∑

k=1

νk (18)

s.t. (13), (14), andσmax

(

Σ
− 1

2

[

K
∑

k=1

νk
γk

gkg
H
k

]

Σ
− 1

2

)

≤ 1

Po

.

To see how the optimization problem (18) and (11) are equivalent, we
note that the inner minimization of (11) w.r.t.w can be interpreted
as the following problem

min
w̃

K
∑

k=1

P̃k s.t.

K
∑

k=1

αkP̃k|w̃H
gk|2

w̃HΣ̃w̃
≥ κ (19)

where we setP̃k = νkσ
2
d, Σ̃ =

σ2

d

Po
Σ, αk = 1/γk, andκ = 1. We

can solve (19) through a generalized eigenvalue problem, where w̃

has the form

w̃ = Σ̃
− 1

2 · P
(

Σ̃
− 1

2

[

K
∑

k=1

αkP̃kgkg
H
k

]

Σ̃
− 1

2

)

(20)

whereP(·) denotes the principle eigenvector of a matrix1. Substi-
tuting the above into (11), we have

max
Λ

min
ν

σ2
d

K
∑

k=1

νk (21)

s.t. (13), (14), andσmax

(

Σ
− 1

2

[

K
∑

k=1

νk
γk

gkg
H
k

]

Σ
− 1

2

)

≥ 1

Po

.

For any givenΛ, the two optimization problems (18) and (21) are
equivalent, because at optimality, they both require the constraints to
be met with equalityσmax

(

Σ− 1

2

[

∑K

k=1
νk
γk

gkg
H
k

]

Σ− 1

2

)

= 1
Po

,
where the optimalν is the root of this equation.

Assuming the optimization problem (5) is feasible, we obtain w

following (20) in Proposition 1, up to an arbitrary scale factor β, i.e.,

w = βΣo− 1

2 u
o (22)

where uo ∆
= P

(

Σo− 1

2

[

∑K

k=1

νo

k

γk
gkg

H
k

]

Σo− 1

2

)

, and Σo being
under the optimalΛo,νo of the problem (16). The value ofβ is
determined to ensure that all the SNR target constraints (4)are met.
It follows that

|β| = σd/

√

min
1≤k≤K

(

Po

γk

∣

∣

∣
u
oH

Σ
o− 1

2 gk

∣

∣

∣

2

− ‖R− 1

2

nk Σ
o− 1

2 u
o‖2
)

.

Note that an arbitrary phase rotation inw does not affect the SNR
value. Thus, without loss of generality, we simply setβ = |β|.

Finally, we need to obtain the optimal solutions(Λo,νo) to
determinew in (22). They are obtained by solving the optimization
problem (16), which is a dual SDP problem. To see this, we
reformulate (16) as the following SDP problem

min
x

σ
T
x s.t. b

T
x− 1 ≤ 0, x < 0,

N+K
∑

i=1

xiGi < 0 (23)

where σ
∆
= [0T

N×1,−σ2
d1

T
K×1]

T ,b
∆
= [1T

N×1,0
T
K×1]

T , x =

[x1, · · · , xN + K]
T ∆
= [λ1, · · · , λN , ν1, · · · , νK ]T , andGi is anN×N

block diagonal matrix, fori = 1, · · · , N , with the ith diagonal block

1Although there exist other optimal solutions ofw̃o, the solution in (20)
leads to the maximum eigenvalue of a Hermitian matrix

being(Poh1h
H
1 +σ2

rI) and all other(N − 1) diagonal blocks being
0N×N , andGN+k

∆
= Rnk − P0

γk
gkg

H
k , for k = 1, · · · ,K.

It is known that the SDP algorithm has a polynomial worst-
case complexity, and performs very well in practice [14]. Itcan be
efficiently implemented through the interior point method [15].

B. Comparison with the SDR Approach

As mentioned earlier, we can also use the SDR approach to find
the approximate solution to the optimization problem (5). In this
approach, the min-max power minimization problem can be first
formulated as

min
X

Pr (24)

s.t. tr(GiX) ≤ Pr,∀i, tr
([

Po

γk
gkg

H
k −Rnk

]

X

)

≥ σ2
d,∀k

rank(X) = 1, X < 0

whereX = wwH . The above problem can be relaxed to an SDP
problem by removing the rank-1 constraint onX. The problem is
solved using a bi-section search as an outer loop over an SDP
feasibility problem. Then,w is extracted fromX through some
randomization method.

Note that each approach formulates the original problem into an
SDP. However, the computational complexity of the proposeddual
approach is much lower. This is reflected in two aspects:

1) The SDP problem in the SDR approach hasN4 variables
and N + K constraints with complexity per iteration of
O((N4)2(N2)2), while the SDP problem in the dual approach
only hasN+K variables and three constraints with complexity
per iteration of O((N + K)2(N2)2). Therefore, the SDP
problem in the dual approach has smaller size and lower
complexity to compute whenN4 > (N +K) .

2) In the dual approach,w is directly obtained through the semi-
closed form solution (22) and only needs to solve a single SDP
problem (23). In the SDR approach, a bi-section search over
the SDP feasibility test is conducted which needs multiple SDP
feasibility tests due to iterations. In addition, ifX is not rank-1,
a randomization procedure is required to obtainw.

Note that the dual problem (9) and the relaxed SDP problem of (24)
produce the same lower bound of the original optimization problem
(5)2. There are literature works discussing when the rank-1 solution
for X exists in a relaxed SDP problem (i.e., generating the optimal
solution for the original problem ) under certain problem settings,
and how to obtain it. Due to the relation of the two approaches,
when a rank-1 solution can be obtained, the strong duality holds for
the original optimization problem, and both approaches will obtain an
optimal solution. Thus, the advantage of the dual approach is that the
optimal solution can be directly obtained via the semi-closed form
with significantly lower computational complexity.

4. NUMERICAL RESULTS

To study the multicast relay beamforming performance usingthe
proposed approach, we assume the noise powers at the relay and at
the destination are set asσ2

r = σ2
d = 0.1W. The source transmitted

powerP0 is set to be10dB aboveσ2
r . The entries ofh1 andh2k are

assumed i.i.d. zero-mean Gaussian with variance1, and {h2k} are
i.i.d.. All users have the same SNR targetγk = γo, for k = 1, · · · ,K.
The results are generated over 1000 Monte Carlo runs.

2It is known that the two approaches have the same lower bound because the
SDP relaxation problem is essentially the bi-dual of the original optimization
problem [12]



We first compare the multicast relay beamforming performance
under the dual approach and SDR approach. We investigate thegap
between the power obtained from the primal approximate solution
and that of the dual problem. Letg(w) be the optimal objective of
the dual problem (9) wherew is obtained by (22). It is a lower
bound for the primal problem (5). LetJ(w) be the objective of the
primal problem (5) underw. Define the gap ratioGgap = J(w)

g(w)
.

When Ggap[dB] = 0, the solution is optimal,i.e., wopt = w.
Similarly, in the SDR approach, we can computeGgap between the
the approximate solution and the lower bound obtained from the
relaxed SDP problem. Fig. 1 shows the CDF ofGgap under both
dual and SDR approaches. As we see, the cases forGgap = 0dB
in both approaches is identical, verifying that the optimalsolutions
are produced by both approaches. When there is a gap, the SDR
approach provides smaller gap than that of the dual approach. Table I
shows the average processing time in each approach forK = 2, 4, 8
and N = 2 in simulations. As we see, the average computation
time for the dual approach remains roughly unchanged, and that for
the SDR approach increases withK more noticeably. The average
computation time of the SDR approach is15-26 times more than
that of the dual approach forK ranges from2 to 8. Thus, to achieve
better performance while being computationally efficient,we should
consider both approaches as candidates. Since the computational
complexity in the dual approach is much lower than that of the
SDR approach, we can use it as the first candidate to produce the
approximate solution, and only use the SDR approach when thegap
is significant.

We also show the performance under differentN and K.
Fig. 2:Left shows the average per-antenna power usage (normalized
against noise 1

N

∑

i
Pi/σ

2
d) for different required SNRγo with

N = 2, 4, 6, for K = 2. Substantial reduction of power usage
at each antenna is observed as the number of antennas increases.
Fig. 2:Right shows the average per-antenna power usage vs. SNR
targetγo with K = 1, 2, 4 for N = 2. As the number of usersK
increases, the average per-antenna power required to meet the SNR
target also increases significantly.
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Fig. 1: CDF ofGgap (γo = 4dB, N = 2).
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Fig. 2: Left: Average relay antenna power vs.γo (N = 2, 4, 6, K = 2);
Right: Average relay antenna power vs.γo (K = 1, 2, 4 N = 2).

K Dual Approach (sec) SDR Approach (sec)
2 0.13 2.0
4 0.15 3.6

8 0.17 4.5

TABLE I: Average Processing Time (γo = 4dB, N = 2)

5. CONCLUSION

We have considered a multicast AF relaying scenario with mul-
tiple destination users, where we designed the multi-antenna relay
processing matrix under the per-antenna power budget. Since the
optimization problem is NP-hard, we have obtained an approximate
solution for the problem in the Lagrange dual domain. The Lagrange
dual approach enables us to obtain a semi-closed form solution of
the relay processing matrix, where an efficient SDP formulation is
formed to determine the parameters in the semi-closed form solution.
Compared with the traditional SDR approach, the proposed method
has much lower computational complexity. When the optimal solution
can be obtained in either approach, both approaches obtain such
solution at the same time. Simulation cases show that the produced
solution is optimal for a high percentage of time, and the dual
approach can be a good alternative approach considered together with
the SDR approach to produce the approximate solution.
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