
Semi-online Task Partitioning and Communication

between Local and Remote Processors

Jaya Prakash Champati and Ben Liang

Department of Electrical and Computer Engineering, University of Toronto, Canada

Abstract—We study the scheduling of computational tasks on
one local processor and one remote processor with communi-
cation delay. This problem has important application in cloud
computing. Although the communication time to transmit a task
can be inferred from the known data size of the task and
the transmission bandwidth, the processing time of the task is
generally unknown until it is processed to completion. Given
a set of independent tasks with unknown processing times, we
propose a Semi-online Partitioning and Communication (SPaC)
algorithm, to jointly select the subset of tasks to be offloaded
to the remote processor and their order of transmission, with
an aim to minimize the overall makespan to process all tasks.
Even though the offline version of this problem, with a priori
known processing times, is NP-hard, we show that the proposed
semi-online algorithm achieves a small competitive ratio when the
communication times of tasks are smaller than their processing
times at the remote processor. For general communication times,
we use simulation to demonstrate that SPaC outperforms online
list scheduling and performs comparably well with known offline
heuristics.

I. INTRODUCTION

Infrastructure-as-a-Service cloud computing enables parallel

task processing with local and remote processors [1]. In the

most common paradigm, a local machine (e.g., a mobile de-

vice) enlists the help of a remote server (e.g., an Amazon EC2

instance), by breaking down its jobs into multiple parallel tasks

and offloading some of them to be processed remotely. The

remote server often has higher computational capability and

less stringent energy usage constraints than the local machine.

However, offloading tasks necessarily incurs communication

delay. For many delay sensitive applications, the makespan

to process a given set of tasks is of paramount importance.

Therefore, judicious designs are required to balance the remote

processing gain and communication overhead in minimizing

the makespan.

Although communication delay (or communication time) is

a fundamental challenge in cloud computing, it is not a part of

the general system model in the classical literature on parallel

processing (e.g., [2]–[4]). Some recent studies on grid and

cloud computing [5]–[8], and mobile cloud computing [9] in

particular, have considered the effect of communication delay

on remote processing. However, as detailed in Section II, these

works either propose only heuristics or study highly simplified

models.

The remote processor awaits the next task arrival when it

is idle. Therefore, any communication delay in the next task

arrival results in idle time on the remote processor. With sub-

optimal scheduling, the wastage in idle time could be much

more severe. We need to jointly optimize the partitioning

of the set of tasks and the transmission schedule of tasks.

Unfortunately, as we will show in Section III, this joint

partitioning and scheduling problem is NP-hard even if all

processing times are known a priori, i.e., in the offline setting.

Furthermore, even though the communication time to trans-

mit a task can be reasonably inferred from its data size

and the transmission bandwidth, the processing time required

for the task generally is unknown without first processing

it [3]. In particular, we note that the processing time of a

task is often independent of its communication delay. For

example, a task having a single for-loop will have data size

on the order of tens of bytes. With typical LTE or 3G uplink

data rates, the task can be transmitted within milliseconds.

However, depending on the number of iterations in the for-

loop, its processing can take an indeterminate amount of time.

Therefore, a practical task offloading algorithm must progress

in an online manner, without assuming knowledge of the

processing time of each unprocessed task. This requirement

for online decision making, coupled with the NP-hardness of

the original offline problem, introduces substantial challenges

in the design of an effective and computationally efficient

solution.

In this work, we study the problem of scheduling indepen-

dent tasks on parallel local and remote processors to minimize

the makespan of processing these tasks, without a priori

knowledge of the processing times. Our main contributions

are as follows:

First, we propose a Semi-online Partitioning and Com-

munication (SPaC) algorithm, which jointly selects the tasks

to be processed locally or to be offloaded and determines

the transmission schedule to the remote processor. It has

computational complexity O(n log n), where n is the number

of tasks.

Second, for ηmax ≤ 1, where ηmax is defined as the maxi-

mum ratio, among all tasks, between the communication time

and the processing time on the remote processor, we prove that

SPaC has a competitive ratio θ ≤ 1+min
{

max{1,ρ}
ρ+1 , 1

ρ
, ρ
}

≤
√
5+1
2 , where ρ is the speed ratio between the remote and local

processors. This suggests that SPaC performs well in scenarios

where the communication time of each task is small in

comparison with its processing time on the remote processor.

Such scenarios are of practical importance, since tasks with

heavy computation and small communication payload often

are prime targets of cloud computing. This is particularly

the case in mobile cloud computing, since tasks with a large

communication payload would drain too much battery power

to be transmitted wirelessly [9]. In addition, such scenarios

also commonly arise when the local and remote processors

are connected by a high-bandwidth wired network.

Third, for the special case of ηmax ≤ 1 and ρ = 1, we

show that SPaC is optimal, in the sense that it provides the

minimum competitive ratio of 3
2 among all deterministic semi-

online algorithms. Finally, for general ηmax, we compare

the average maskespan of SPaC with classical online list

scheduling and two of the best known offline heuristics to

show that the proposed solution significantly outperforms the

online alternative and performs close to the offline heuristics.

II. RELATED WORK

The related works on computational task offloading and

parallel processing may be categorized based on whether

communication delay plays a role in the system model and

task scheduling.

A. Parallel Processing without Communication Delay

In classical computer science literature, one of the most

studied scheduling problems is the partitioning of a set of

independent tasks for N processors to minimize the overall

makespan. The celebrated list scheduling [2] is a greedy algo-

rithm that selects a task from the given set in an arbitrary order

and assigns it to whichever processor that becomes idle first.

It does not require a priori knowledge of the processing times

and has a (2 − 1
N
)-approximation ratio when the processors

are identical. More complex algorithms for various processor

settings were studied in [3], [10]. None of the above works

accounts for communication delay. For a detailed review on

scheduling on parallel processors without task communication

delays, the readers are referred to [8].

B. Grid and Cloud Computing with Communication Delay

The problem of scheduling independent tasks with commu-

nication overhead on multiple processors was considered in [5]

and [6] for the grid/cloud computing environment. The authors

proposed a set of heuristics without performance bounds.

Simplifying assumptions were made in other works to improve

analytical tractability. For example, the tasks were assumed

identical in [7], and they were assumed infinitely divisible

with processing times proportional to their data size in [8,

Ch. 7]. Furthermore, all of these works assume knowledge of

the processing times and hence are offline.

More recently, in mobile cloud computing research, most

studies focus on energy savings at the mobile device instead of

makespan minimization [9], [11]–[14]. For example, in [9], the

authors gave a general guideline that tasks should be offloaded

only if the local computing time of the task is greater than its

remote communication and computing time.

To the best of our knowledge, our work is the first to focus

on analytical modelling and optimization of the makespan

with consideration for communication delay, proposing a

semi-online algorithm with provable competitive ratio when

communication delay is small.

III. SYSTEM MODEL

We index the processors by i ∈ Q = {0, 1}, where 0 and

1 represent the local and remote processors, respectively. Let

n denote the number of tasks to be processed and j ∈ T =
{1, . . . , n} be the task index. We assume that the tasks are

independent and no preemption is allowed.

A. Processing, Communication, and Scheduling

Let αj denote the time required to process task j on the

remote processor. We assume that the time required to process

the same task on the local processor is given by ραj , where

ρ > 0 represents the speed ratio between the processors. Let

αmax = maxj∈T αj and V =
∑n

j=1 αj .

The remote processor can process a task only after all the

data load of the task is received. The data size of task j is

denoted by βj in bits. The time taken to transmit the task j

to the remote processor may be given by bβj where b is the

inverse of data rate to the remote processor. For simplicity of

presentation, without loss of generality, we suppress writing b

by merging it into βj . Let ηj =
βj

αj
and ηmax = maxj∈T ηj .

We further assume that after each task is processed on the

remote processor, a short acknowledgement is returned with

negligible delay.

A schedule s consists of a pair of functions (π,g), where

π : T → Q partitions the set T and maps the partitions to

processors. Let Ti(s) ⊆ T denote the partition assigned to

processor i. We use function g to specify the sequence in

which the tasks assigned to remote processor are transmitted,

i.e., g : {1, . . . , |T1(s)|} → T1(s), where task g(k) is

transmitted k-th in the sequence. Let S denote the set of all

possible schedules.

B. Optimization Problem

Given T at time 0, the makespan is defined as the time

when the processing of the last task in T is complete. Let

Cmax(s) represent the makespan under schedule s. It equals

max{C0(s), C1(s)}, where Ci(s) represents the time when

processor i finishes processing the tasks assigned to it. It

is clear that C0(s) = ρ
∑

j∈T0(s)
αj . In the following we

establish a closed-form expression for C1(s).
Let I(s) denote the idle time of the remote processor under

schedule s. Any task scheduled on this processor should

go through a communication stage and a processing stage.

We note that this is equivalent to a two-machine flow shop

model [15], and hence we have

I(s) = max
1≤u≤|T1(s)|

g(u)
∑

j=g(1)

βj −

g(u−1)
∑

j=g(1)

αj

. (1)

Since C1(s) equals the total idle time plus the total processing

time of the tasks, we have

C1(s) = I(s) +
∑

j∈T1(s)

αj

= max
1≤u≤|T1(s)|

g(u)
∑

j=g(1)

βj +

g(|T1(s)|)
∑

j=g(u)

αj

.

(2)

We are interested in the following makespan minimization

problem P :

minimize
(π,g)=s∈S

max{C0(s), C1(s)}.

In the offline setting, all parameter values of the tasks are

known at time 0. In this case, let s∗ denote an optimal schedule

and C∗
max denote the minimum makespan. We note that,

when b = 0, P is equivalent to the problem of scheduling

independent tasks on two identical processors to minimize

makespan which is NP-hard [8]. Therefore, P is NP-hard.

C. Semi-online Scheduling with Unknown Processing Times

Even though the communication time to transmit a task can

be reasonably inferred from its data size and the transmission

bandwidth, the processing time required for the task generally

is unknown without first processing it [3]. Therefore, we are

interested in semi-online scheduling, where αj , ∀j, are not

known a priori and βj , ∀j, are known a priori.

The efficacy of an online algorithm is often measured by

its competitive ratio in comparison with the optimal offline

algorithm. We use the same measure for semi-online algo-

rithms as well. Let P be a problem instance of P , s(P) be

the schedule given by an online algorithm and s∗(P) be the

schedule given by an optimal offline algorithm. The online

algorithm is said to have a competitive ratio θ if and only if

∀P, Cmax(s(P)) ≤ θCmax(s
∗(P)).

IV. THE SEMI-ONLINE PARTITIONING AND

COMMUNICATION ALGORITHM

Despite the lack of a priori knowledge of the task processing

times, we demonstrate that a simple algorithm based on

the communication times and online observation of the task

processing progress can achieve small makespans.

The following observations motivate the design of the SPaC

algorithm. We first note that the tasks to be scheduled on the

remote processor should be transmitted without any gaps, since

there is no advantage in adding artificial communication delay.

Second, from (1), it is desirable to assign tasks with smaller

communication times to the remote processor, in order to

reduce the idle time. Third, given the set of tasks chosen to be

offloaded to the remote processor, the optimal order in which

they are to be transmitted is known and given by Johnson’s

rule [15]. Unfortunately, Johnson’s rule requires the knowledge

of processing times. Therefore, we resort to ordering the tasks

based on their communication times alone, while maintaining

observation of the task processing progress. Interestingly, as

will be shown in Section V-B, in the case of ηmax <= 1, the

proposed procedure is equivalent to Johnson’s rule.

In SPaC, we list the tasks in the increasing order of their

communication times. We process the tasks one by one from

the end of the list on the local processor, and transmit the

tasks, that are not yet processed to completion, one by one

from the start of the list to the remote processor. At the

remote processor the tasks received are processed in the same

order. The details of SPaC are given in Algorithm 1, where E1

denotes the event that the processing of a task is complete on

either processor and E2 denotes the event that the transmission

of a task to the remote processor is complete. Note that the

last remaining task may be processed on both processors at

the same time. In such a case, when the task is processed to

completion on one processor, we terminate its processing on

the other processor. To achieve this, we assume that a short

message indicating task index can be exchanged between the

processors whenever the task is processed to completion.

Algorithm 1: SPaC

1: Sort T in the ascending order of communication times.

WLOG, consider β1 ≤ β2 ≤ . . . ≤ βn.

2: j0 = n, j1 = 1 and k = 1.

3: Start processing task j0 on processor 0;

Start transmitting task j1 to processor 1.

4: while j0 6= j1 do

5: Wait until next event E occurs

6: if E = E1 then

7: if E1 is due to processor 0 then

8: j0 = j0 − 1
9: Start processing task j0 on processor 0.

10: else if E1 is due to processor 1 then

11: j1 = j1 + 1
12: end if

13: else if E = E2 then

14: k = k + 1
15: Start transmitting task k to processor 1.

16: end if

17: end while

18: q = j0 = j1
19: Task q is scheduled both on processor 0 and processor 1.

If task q is finished processing on

processor 0 first, cancel its execution on processor 1
and vice-versa.

The computational complexity of SPaC is O(n logn), since

Step 1 requires sorting the communication times of all tasks,

while the rest of the algorithm has no more than linear

complexity. Throughout this paper, we use s
S to denote the

schedule given by SPaC.

V. SPAC COMPETITIVE RATIO ANALYSIS

In this section, we derive a competitive ratio for SPaC when

the communication time of a task is always less than its remote

processing time, i.e., ηmax ≤ 1.

A. Preliminary Analysis

We first present several preliminary results that will be

used extensively in the remaining analysis. Lemma 1 below

provides a simple upper bound on the makespan of sS .

Lemma 1. Cmax(s
S) ≤ (1 + ρ)C∗

max

Proof. Under any schedule s, we have

1

ρ
C0(s) + [C1(s)− I(s)] = V.

We use Cmax(s) ≥ C0(s) and Cmax(s) ≥ C1(s) to obtain

Cmax(s) ≥
ρ

ρ+ 1
(V + I(s)) . (3)

Now, if the communication time plus the processing time of

the task at the start of the list formed by SPaC exceeds ρV ,

in s
S all tasks will be processed on the local processor. In all

other cases it can be easily argued that the makespan under sS

will be smaller than that of the schedule where all the tasks

are assigned to the local processor. Therefore,

Cmax(s
S) ≤ ρV ≤ (1 + ρ)C∗

max,

where the second inequality is due to (3) when s = s
∗.

Furthermore, from (3) in the proof above, we have

ραj

ρ+ 1
≤

αmax

V
C∗

max, ∀j. (4)

Finally, the optimal makespan cannot be smaller than the

processing time of any task on the fastest processor. Therefore,

C∗
max ≥ min{1, ρ}αmax. (5)

B. SPaC Competitive Ratio for ηmax ≤ 1

In the following we focus on how SPaC minimizes C1(s)
given T1(s). As stated in Section III-B, scheduling tasks on

the remote processor, via the communication and processing

stages, is equivalent to the two-machine flow shop problem.

In Lemma 2 we observe that, for ηmax ≤ 1, the optimal John-

son’s rule for the two-machine flow shop problem degrades

to simply ordering the tasks in the increasing order of their

communication times.

Lemma 2. In the two-machine flow shop problem, under the

condition ηmax ≤ 1, scheduling tasks in the increasing order

of their communication times minimizes the makespan.

Proof. Let tasks j1 and j2 be any two tasks in the two-

machine flow shop problem. From Johnson’s rule, in the

optimal schedule, task j1 precedes j2 if and only if

min{βj1 , αj2} ≤ min{βj2 , αj1}.

Since βj1 ≤ αj1 and βj2 ≤ αj2 , a sufficient condition for the

above inequality to hold is βj1 ≤ βj2 . Hence the result.

From Lemma 2 we conclude that, when ηmax ≤ 1, the SPaC

scheduling policy to order the tasks in T1(s) in the increasing

order of communication times serves to minimize C1(s).
Let I∗(B) denote the idle time when tasks belonging to

some set B are scheduled on the remote processor in the

sequence of increasing order of their communication times.

Lemma 3 below provides insight into the idle time of SPaC.

Due to page limitation, its proof is omitted.

Lemma 3. Consider β1 ≤ β2 ≤ . . . ≤ βn and ηmax ≤ 1. Let

B1 = {1, 2, . . . , l}, l ≤ n, and B2 ⊆ T , B2 * {1, 2, . . . , l−1}.

Then I∗(B1) ≤ I∗(B2).

The implication of Lemma 3 is the following. When ηmax ≤
1, given a set of tasks, the idle time of a schedule that places all

those tasks on the remote processor in the increasing order of

their communication times cannot be greater than that of any

other schedule applied to any subset of those tasks, unless that

subset does not have the task with maximum communication

time. Later, in the proof of Theorem 1 we use Lemma 3 to

argue that the idle time on the remote processor under SPaC is

no greater than the idle time under an optimal offline schedule.

We now present one of our key results in Theorem 1.

Theorem 1. If ηmax ≤ 1, then
Cmax(s

S)
C∗

max
≤ θ, where

θ = min{θ1, θ2}

θ1 = 1 +
αmax

V

θ2 = 1 +min

{

max{1, ρ}

ρ+ 1
,
1

ρ
, ρ

}

Proof. The proof is given in Appendix A.

The main implication of Theorem 1 is that when ηmax ≤ 1,

SPaC has O(1) competitive ratio. In the following we give

several additional observations on competitive ratio θ.

1) Simple Upper Bound: A simple upper bound for θ can be

obtained by solving for ρ that maximizes min{max{1,ρ}
ρ+1 , 1

ρ
, ρ}.

The solution is ρ =
√
5+1
2 , and hence the upper bound is√

5+1
2 ≈ 1.618.

2) Variation with ρ: For ρ <
√
5+1
2 we have θ ≤ 1 +

min{max{1,ρ}
1+ρ

, ρ}, and for ρ ≥
√
5+1
2 we have θ ≤ 1+ 1

ρ
. Note

that for ρ >> 1, θ approaches 1. This is intuitive because in

this case any competent algorithm will schedule all the tasks

on the remote processor and the problem reduces to the two-

machine flow shop problem, for which SPaC gives an optimal

schedule when ηmax ≤ 1 (Lemma 2).

3) Equally Powerful Processors: For ρ = 1 we have

θ = 3
2 . Furthermore, in Theorem 2 below, we observe that

no deterministic semi-online algorithm can have a competitive

ratio better than 3
2 . This suggests that in this case SPaC

is the most competitive among all deterministic semi-online

algorithms.

Theorem 2. For ηmax ≤ 1 and ρ = 1, the competitive ratio

of any semi-online algorithm with predetermined scheduling

order is at least 3
2 .

Proof. The proof is given in Appendix B.

VI. NUMERICAL ANALYSIS

In addition to deriving the competitive ratio of SPaC, we

use simulation to compare the average performance of the

proposed solution against alternatives. We simulate the two-

processor task offloading system in MATLAB. The default

value of ρ is set to 5. The following parameter values are

chosen based on the experimental results from task offloading

system MAUI [11]. We use an uplink data rate of 3 Mbps,

which typical in today’s wireless networks (e.g., LTE). The

default data size of a task is chosen from an exponential

distribution with mean 562.5 kB. Thus, βj , ∀j, are determined

by the above parameters, with a default mean value of 1500

1000 1500 2000
0.5

1

1.5

2

2.5

x 10
5

Mean communication time

A
v
er

ag
e

m
ak

es
p
an

list sched.

SPaC

offlineMin

offlineMax

n=50

n=100

Fig. 1. Comparison of average makespan for different algorithms. ρ = 5.

ms. We assume that the processing times αj , ∀j, are exponen-

tially distributed with mean 1500 ms. Similar results have been

observed when other distributions are used, but such results are

omitted to avoid redundancy. Note that in the above parameter

settings we do not restrict the values of ηmax, i.e., we simulate

for general ηmax.

Since we are not aware of any online algorithm that ac-

counts for communication delay, we first compare the average

makespan performance of SPaC with the online list scheduling

algorithm [2]. We simply ignore communication delay in

applying the list scheduling decisions to schedule tasks. To

further demonstrate the strength of SPaC, we also compare

it with offline scheduling that accounts for communication

delay. Since the offline problem is NP-hard, we resort to two

heuristics reported in [6]. For convenience of exposition, we

name the two heuristics offlineMin and offlineMax. OfflineMin

selects the next task such that, when that task is assigned to its

best processor (i.e., one that completes the task in the shortest

time), it results in the minimum completion time among all

tasks when they are assigned to their corresponding best

processors next. In contrast, offlineMax selects the next task

based on the maximum completion time. We note that these

heuristics require a priori knowledge of the task processing

times and have computational complexity O(n2).
For each parameter setting, we generate 5000 problem

instances to evaluate the average makespan for each algorithm.

Figs. 1 and 2 compare the algorithms, with varying mean

communication time and ρ, respectively. We observe that SPaC

performs significantly better than list scheduling. Therefore,

we conclude that scheduling tasks while taking communication

times into consideration will have considerable benefit on

reducing the makespan. Furthermore, we observe that the

performance of SPaC is comparable to or sometimes even

better than the offline heuristics.

VII. CONCLUSIONS

We have studied the problem of computational task of-

floading with communication delay. Without assuming a priori

knowledge of task processing times, we have proposed the

SPaC algorithm proving O(1) competitive ratio for ηmax ≤ 1.

For general ηmax, simulation results suggest that SPaC outper-

1 2 3 4 5

0.5

1

1.5

2

x 10
5

ρ

A
v

er
ag

e
m

ak
es

p
an

list sched.

SPaC

offlineMin

offlineMax n=100

n=50

Fig. 2. Comparison of average makespan for different algorithms. Mean
communication time 1500 ms.

forms online list scheduling and provides average makespans

that can be as small as those obtained from known offline

heuristics.

VIII. APPENDIX

A. Proof of Theorem 1

Suppose the schedule produced by SPaC is such that

T1(sS) = {1, . . . , k − 1} and T0(sS) = {k, . . . , n}, where

1 ≤ k ≤ n + 1. Note that, if k = 1, T1(sS) = ∅, and if

k = n+1, T0(sS) = ∅. We now consider the following cases.

Case 1: C0(s
S) ≤ C1(s

S), i.e., Cmax(s
S) = C1(s

S). For

this case we have k > 1. We claim that T1(s∗) * {1, . . . , k−
2}. Otherwise, scheduling any task j ∈ T1(sS)\T1(s∗) on

processor 0 by SPaC would have reduced the makespan over

Cmax(s
S). In particular, scheduling task k− 1 on processor 0

by SPaC would have reduced the makespan. However, this

could not be true since, by the definition of k, SPaC has

already checked for this condition and scheduled task k − 1
on processor 1. Hence, by contradiction the claim is true.

Therefore, from Lemma 3 we have I(s∗) ≥ I(sS).
Now we know that Cmax(s

S) − ραk−1 ≤ C0(s
S), since

otherwise, the processing of task k− 1 would have completed

on processor 0 first, and under SPaC we would have k− 1 ∈
T0(sS). Therefore, we obtain

1

ρ
C0(s

S) + C1(s
S)− I(sS) = V

⇒
1

ρ
[Cmax(s

S)− ραk−1] + Cmax(s
S)− I(sS) ≤ V

⇒Cmax(s
S) ≤

ρ

ρ+ 1

[

V + αk−1 + I(sS)
]

⇒Cmax ≤
ρ

ρ+ 1
[V + αk−1 + I(s∗)]

⇒Cmax ≤ C∗
max +

ραk−1

ρ+ 1
. (6)

The last inequality above is due to (3).

We substitute (4) into (6) to obtain
Cmax(s

S)
C∗

max
≤ θ1 and

substitute (5) into (6) to obtain

Cmax(s
S)

C∗
max

≤ 1 +
ρ

min{1, ρ}(ρ+ 1)
= 1 +

max{1, ρ}

(ρ+ 1)
.

Furthermore, we have the relation Cmax(s
S) ≤ V + I(sS).

We use I(s∗) ≥ I(sS) and (3) to obtain
Cmax(s

S)
C∗

max
≤ 1 + 1

ρ
.

Case 2: C0(s
S) ≥ C1(s

S), i.e., Cmax(s
S) = C0(s

S).
For this case we have k ≤ n. We claim that T1(s∗) *
{1, . . . , k − 1}. This claim can be proved using a similar

argument as in Case 1. Therefore, from Lemma 3 we have

I(s∗) ≥ I(s′) ≥ I(sS), where s
′ is a schedule under which

T1(s′) = T1(sS) ∪ {k}, and the tasks of set T1(s′) are

transmitted in the increasing order of their communication

times. Now, we also have

max{C1(s
S),

k
∑

j=1

βj}+ αk ≥ Cmax(s
S) (7)

since otherwise, the processing of task k would have com-

pleted on processor 1 first and under SPaC we would have

k ∈ T1(sS). If C1(s
S) ≥

∑k

j=1 βj , then Cmax(s
S) − αk ≤

C1(s
S) and similar steps as in (6) can be followed to prove

the bounds θ1 and θ2. If C1(s
S) <

∑k

j=1 βj , then we proceed

as follows. For this case we have the following inequalities.

k
∑

j=1

βj ≥ Cmax(s
S)− αk

⇒C1(s
S)− I(sS) +

k
∑

j=1

βj −
k−1
∑

j=1

αj

≥ Cmax(s
S)− αk

⇒C1(s
S)− I(sS)

≥ Cmax(s
S)− αk −

k
∑

j=1

βj −
k−1
∑

j=1

αj

≥ Cmax(s
S)− αk − I(s∗).

In the second step above we have used C1(s
S) = I(sS) +

∑k−1
j=1 αj , and in the last inequality, we have used I(s∗) ≥

I(s′) ≥
∑k

j=1 βj −
∑k−1

j=1 αj . Therefore,

1

ρ
C0(s

S) + C1(s
S)− I(sS) = V

⇒
1

ρ
Cmax(s

S) + Cmax(s
S)− αk − I(s∗) ≤ V

⇒Cmax(s
S) ≤

ρ

ρ+ 1
[V + αk + I(s∗)]

≤ C∗
max +

ραk

ρ+ 1
. (8)

We substitute (4) into (8) to obtain
Cmax(s

S)
C∗

max
≤ θ1 and

substitute (5) into (8) to obtain
Cmax(s

S)
C∗

max
≤ 1 + max{1,ρ}

ρ+1 .

Furthermore, from (7) we have Cmax(s
S) ≤ Cmax(s

′).
Therefore, Cmax(s

S) ≤
∑k

j=1 αj + I(s′) ≤ V + I(s∗). We

use (3) to obtain
Cmax(s

S)
C∗

max
≤ 1 + 1

ρ
.

Finally, from Lemma 1 we have
Cmax(s

S)
C∗

max
≤ 1 + ρ. Hence

the result.

B. Proof of Theorem 2

We argue that an adversary can construct problem instances

for any given semi-online algorithm with pre-determined

scheduling order for which the ratio of makespan achieved by

the algorithm to the optimal makespan approaches 3
2 . Consider

three tasks with equal communication times, βj = β ≤ 1, ∀j.

Let α1 = 1, α2 = 1 and α3 = 2. We note that the only

known information about the tasks is the communication

times, which are equal in this problem instance, and hence

the tasks are indistinguishable. Now, given the pre-determined

scheduling order of the tasks by the semi-online algorithm,

the adversary can present the tasks in such a way that the

algorithm schedules task 1 and task 2 first, and then schedule

task 3, which results in a makespan of at least 3. The optimal

makespan 2 + β is obtained by scheduling tasks 1 and 2 on

processor 0 and scheduling task 3 on processor 1. Therefore,

the competitive ratio that can be achieved by the semi-online

algorithm is at least 3
2+β

for the given problem instance. The

result follows by noting that β can be chosen arbitrarily small.

REFERENCES

[1] M. Armbrust, A. Fox, R. Griffith, A. Joseph, R. Katz, A. Konwinski,
G. Lee, D. Patterson, A. Rabkin, I. Stoica, and M. Zaharia, “A view of
cloud computing,” Commun. ACM, vol. 53, no. 4, pp. 50–58, 2010.

[2] R. L. Graham, “Bounds for certain multiprocessing anomalies,” Bell

System Technical Journal, vol. 45, pp. 1563–1541, 1966.
[3] D. B. Shmoys, J. Wein, and D. P. Williamson, “Scheduling parallel

machines on-line,” SIAM J. Comput., vol. 24, no. 6, pp. 1313–1331,
Dec. 1995.

[4] R. L. Graham, E. L. Lawler, J. K. Lenstra, and A. H. G. Rin-
nooy Kan, “Optimization and approximation in deterministic sequencing
and scheduling: a survey,” Annals of discrete mathematics, vol. 5, no. 2,
pp. 287–326, 1979.

[5] H. Casanova, A. Legrand, D. Zagorodnov, and F. Berman, “Heuristics
for scheduling parameter sweep applications in grid environments,” in
Heterogeneous Computing Workshop, 2000, pp. 349–363.

[6] A. Giersch, Y. Robert, and F. Vivien, “Scheduling tasks sharing files on
heterogeneous master-slave platforms,” Journal of Systems Architecture,
vol. 52, no. 2, pp. 88–104, 2006.

[7] O. Beaumont, A. Legrand, and Y. Robert, “The master-slave paradigm
with heterogeneous processors,” IEEE Trans. Parallel Distrib. Syst.,
vol. 14, no. 9, pp. 897–908, 2003.

[8] M. Drozdowski, Scheduling for Parallel Processing, 1st ed. Springer
Publishing Company, Incorporated, 2009.

[9] K. Kumar, J. Liu, Y.-H. Lu, and B. Bhargava, “A survey of computation
offloading for mobile systems,” Mob. Netw. Appl., vol. 18, no. 1, pp.
129–140, Feb. 2013.

[10] J. P. Champati and B. Liang, “One-restart algorithm for scheduling
and offloading in a hybrid cloud,” in Proc. IEEE/ACM International

Symposium on Quality of Service (IWQoS), Jun. 2015.
[11] E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wolman, S. Saroiu,

R. Chandra, and P. Bahl, “Maui: making smartphones last longer with
code offload,” in Proc. International Conference on Mobile Systems,

Applications, and Services (MobiSys), 2010, pp. 49–62.
[12] S. Kosta, A. Aucinas, P. Hui, R. Mortier, and X. Zhang, “Thinkair:

Dynamic resource allocation and parallel execution in the cloud for
mobile code offloading,” in Proc. IEEE INFOCOM, 2012, pp. 945–953.

[13] N. Fernando, S. W. Loke, and W. Rahayu, “Mobile cloud computing:
A survey,” Future Gener. Comput. Syst., vol. 29, no. 1, pp. 84–106, Jan
2013.

[14] J. Champati and B. Liang, “Energy compensated cloud assistance in
mobile cloud computing,” in Proc. IEEE INFOCOM Workshop on

Mobile Cloud Computing, April 2014.
[15] S. M. Johnson, “Optimal two- and three-stage production schedules with

setup times included,” Navel Research Logistics Quaterly, vol. 1, no. 1,
pp. 61–68, 1954.

