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Abstract—We study joint spectrum allocation and user asso-
ciation in heterogeneous cellular networks with multiple tiers
of base stations. A stochastic geometric approach is applied as
the basis to derive the average downlink user data rate in a
closed-form expression. Then, the expression is employed as the
objective function in jointly optimizing spectrum allocation and
user association, which is of non-convex programming in nature.
A computationally efficient Structured Spectrum Allocation and
User Association (SSAUA) approach is proposed, solving the
optimization problem optimally when the density of users is low,
and near-optimally with a guaranteed performance bound when
the density of users is high. A Surcharge Pricing Scheme (SPS)
is also presented, such that the designed association bias values
can be achieved in Nash equilibrium. Simulations and numerical
studies are conducted to validate the accuracy and efficiency of
the proposed SSAUA approach and SPS.

I. INTRODUCTION

Traditional single-tiered macro-cellular networks provide
wide coverage for mobile user equipments (UEs), but they
are insufficient to satisfy the exploding demand driven by
modern mobile traffic, such as multimedia transmissions and
cloud computing tasks. One efficient means to alleviate this
problem is to install a diverse set of small-cells (e.g., picocells
and femtocells), overlaying the macrocells, to form a multi-
tiered heterogeneous cellular network [1]. Each small-cell is e-
quipped with a shorter-range and lower-cost base station (BS),
to provide nearby UEs with higher-quality communication
links with lower power usage.

However, in the presence of multiple tiers of BSs in a
cellular network, user association control becomes more chal-
lenging. A most direct approach is association by maximum
received power, in which UEs are associated with the BS (in
any tier) with the largest received power. However, in this
case, because small-cell BSs are transmitting at lower power
levels, only the UEs very close to them will connect with them,
while most other UEs are still crowding in macrocells, leading
to degraded performance. An example is shown in Fig. 1(a),
in which many UEs are occupying the macrocells, while some
small-cells are nearly empty.

In order to resolve this issue, a flexible user association ap-
proach may be employed [2], [3], in which each tier of BSs is
assigned a user association bias value, and a UE is associated
with a BS with the largest received power multiplied by the
bias value. If small-cell BSs are assigned larger association
bias values, the small-cells are “expanded” accordingly. This
can result in a more balanced mobile traffic pattern and thus
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(a) Association by maximum re-
ceived power.
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(b) Flexible user association.

Fig. 1. An example of a three-tier cellular network. Macrocell BSs, picocell
BSs, and femtocell BSs are represented by squares, circles, and triangles
respectively; UEs are represented by dots; blue lines show cell boundaries.

better network performance. Fig. 1(b) shows an example of
flexible user association. However, if the association bias
values for small-cell BSs are too large, it will cause improper
expansions of small-cells such that UEs at their cell-edge may
suffer from inadequate received power. As a consequence, the
association bias values should be properly designed so that the
overall network performance is optimized.

Further complicating the resource management problem in a
multi-tier cellular network, the radio spectrum licensed by the
network operator needs to be shared by BSs of widely different
power and coverage areas. How to optimally allocate spectrum
among different tiers is an important open problem. In order
to avoid cross-tier interference, and the prohibitive complexity
in tracking and provisioning for such interference especially
with unplanned deployment of small cells, a disjoint spectrum
mode is commonly advocated [4]–[6], where different tiers of
BSs are allocated non-overlapping portions of the spectrum.
Even so, it is still a challenging problem to properly divide
the spectrum for optimal network performance.

In this work, our objective is to study jointly optimal
spectrum allocation and user association in a heterogeneous
celluar network with multiple tiers of BSs. First, we develop
a stochastic geometric model to study the network perfor-
mance analytically. A closed-form expression for the average
downlink UE data rate is derived, which is then employed
as the objective function for jointly optimizing the spectrum
allocation among tiers and the user association bias values.

This resultant optimization problem is of non-convex pro-
gramming in nature and cannot be solved with a standard
method. Instead, we explore two important structures in
solving the problem. Referred to as the density thresholding
structure, we show that the problem can be studied separately
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over sparse UE and dense UE scenarios, divided by a param-
eter specific threshold. Referred to as the priority ordering
structure, we show that a tier with higher BS density should
have higher priority in spectrum allocation. Based on these ob-
servations, we propose a computationally efficient Structured
Spectrum Allocation and User Association (SSAUA) approach
to solve the problem optimally in the sparse UE scenario,
and near-optimally in the dense UE scenario with a quantified
performance bound.

Finally, toward practical implementation of SSAUA, we
propose a Surcharge Pricing Scheme (SPS), such that the
designed association bias values can be achieved in Nash
equilibrium. Hence, each UE is incentivized to adopt the
proposed design with individual rationality.

The rest of the paper is organized as follows. In Section II,
we discuss the relation between our work and prior works.
In Section III, we describe the system model. In Sections
IV, V, and VI, we present our contributions in UE data rate
derivation, SSAUA design, and SPS, respectively. In Section
VII, we present numerical results. Finally, conclusions are
given in Section VIII.

II. RELATED WORKS

A. Stochastic Geometry as Analytical Basis

Stochastic geometry [7]–[10] is a powerful mathematical
modeling tool to analyze the performance (e.g., outage prob-
ability and data rate) of cellular networks with random spatial
patterns of UEs and BSs. In this work, we focus on the
downlink user data rate as performance measure. Pioneering
works on downlink performance analysis using stochastic
geometry include [11], [12], and [13], for either the single-
tier or the multi-tier case. None of them considered spectrum
allocation or user association.

B. Spectrum Allocation and User Association

Most prior studies considered either spectrum allocation or
user association separately. For example, Cheung et al. [6]
studied optimal spectrum allocation, in cellular networks lim-
ited to two tiers of BSs, without flexible user association. Bao
and Liang [14] compared the outage performance between
open and closed small-cell access modes in a two-tier network
with complete spectrum sharing.

Assuming a fixed number of UEs and BSs and without
considering their random spatial patterns, the authors of [15]–
[19] studied optimal user association with deterministic utility
optimization. With a stochastic geometric approach, Jo et
al. [2] proposed the flexible user association model with bias
values, which is adopted in our work. They also derived the
coverage probability and UE data rate, considering cross-tier
interference, but in non-closed forms. They did not provide a
means to optimize the derived performance metrics. This work
was later extended in [3] to study optimal user association in a
network with two tiers of BSs, without considering spectrum
allocation.

Joint spectrum allocation and user association was studied
by Singh and Andrews [20]. They analyzed the network
performance in terms of coverage probability and data rate,

without solving the joint optimization problem. A similar
problem was also studied by Lin and Yu [21], with frequency
reuse instead of tiered spectrum division as the approach
for spectrum sharing. They provided conditionally optimal
user association given frequency reuse factors or conditionally
optimal frequency reuse factors given user association bias
values. Joint optimization remained an open problem.

Compared with the above studies, we consider multiple
tiers of BSs with disjoint spectrum and provide optimal and
analytically bounded near-optimal solutions for joint spectrum
allocation and user association.

III. SYSTEM MODEL

A. Multi-tier Cellular Network

We consider a heterogeneous cellular network with random-
ly spatially distributed K ≥ 2 tiers of BSs. As in conventional
stochastic geometric modeling of multi-tier cellular networks
[2], [3], [12], [20], [21], each tier of BSs independently forms a
homogeneous Poisson point process (PPP) in two dimensional
Euclidean space R2. Let Φk denote the PPP corresponding to
tier-k BSs, with intensity λk. Without loss of generality, we
assume that λ1 < λ2 . . . < λK . (If λi = λj , i ̸= j in reality,
we may approximate λj = λi + ξ, where ξ is arbitrarily close
to 0.) UEs are also modeled as a homogeneous PPP Ψ with
intensity µ, independent of all BSs. We assume each BS is
connected to the core network by separate high-capacity wired
or wireless links that have no influence on our performance
analysis. In addition, because we focus on downlink analysis,
we assume that the downlink and uplink of the system are
operated in different spectrum, so that the uplink interference
and capacity have no influence on the downlink analysis.

B. Power and Pathloss Model

We define the tiers of BSs by their transmission power.
Let Pk be the transmission power of tier-k BSs, which is a
given parameter. If Pt(x), Pt(x) ∈ {P1, P2, . . . , PK}, is the
transmission power from a BS at x and Pr(y) is the received
power at y, we have Pr(y) =

Pt(x)hx,y

α|x−y|γ , where α|x − y|γ
is the propagation loss function with γ > 2, and hx,y is the
fast fading term. We assume that α and γ are constant for all
tiers. Corresponding to common Rayleigh fading with power
normalization, hx,y is independently exponentially distributed
with unit mean. Let H(·) be the cumulative distribution
function of hx,y.

C. Spectrum Allocation

In order to avoid cross-tier interference, different tiers
of BSs are allocated separated spectrum. Assume the total
spectrum bandwidth is W . The network operator allocates
ηkW to each tier-k BS, where ηk is the spectrum allocation
factor and

∑K
k=1 ηk = 1. Let η = (η1, η2, . . . , ηK). Note that

BSs in the same tier are operated on the same spectrum.
We additionally consider the possible constraints ηmin,k ≤

ηk ≤ ηmax,k, for k = 1, 2, . . . ,K. Clearly, we have∑K
k=1 ηmin,k ≤ 1 ≤

∑K
k=1 ηmax,k. Furthermore, we assume

that 0 < ηmin,1 ≤ ηmin,2 . . . ≤ ηmin,K and 0 < ηmax,1 ≤
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ηmax,2 . . . ≤ ηmax,K , i.e., the network operator is likely (but
not necessarily) to allocate more spectrum to a tier with higher
BS density.

Given a specific tier-k BS, it is common to assume that
all its associated UEs are equally allocated spectrum [2], [6],
[21]. Hence, the per-UE assigned spectrum bandwidth is βk =
ηkW/Nk, where Nk is a random variable denoting the number
of UEs associated with the BS.

D. Coverage Probability and UE Data Rate
Let T denote the minimum required Signal-to-Interference

Ratio (SIR) of UEs. The coverage probability of a UE is
defined as the probability that its SIR is no less than T [7].
As in conventional wireless modeling [2], [6], [21], if a UE
experiences coverage probability P ′ and is allocated spectrum
bandwidth β′, its data rate is β′ log(1 + T ) if the SIR is no
less than T , and its data rate is 0 if the SIR is less than T
(i.e., outage occurs). Thus, the overall data rate of the UE
is β′ log(1 + T )P ′. Note that log is in base 2 throughout
this paper. Also, we have assumed the system is interference
limited, such that noise is negligible.

E. Flexible User Association
Given that a UE is located at y, it associates itself with the

BS that provides the maximum biased received power [2], [3],
[21] as follows:

BS(y) = arg max
x∈Φk,∀k

BkPk|x− y|−γ , (1)

where BS(y) denotes the location of the BS associated with
the UE, and Pk|x − y|−γ is the received power from a tier-
k BS located at x, and Bk is the association bias, indicating
the connecting preference of a UE toward tier-k BSs. In this
case, the resultant cell splitting forms a generalized Dirichlet
tessellation, or weighted Poisson Voronoi [22], shown in
Fig. 1(b). Note that for B1, B2, . . . , BK , their effects remain
the same if we multiply all of them by the same positive
constant. Thus, without loss of generality, we normalize them
such that

∑K
k=1 Bk = 1. Let B = (B1, B2, . . . , BK).

Let Ak denote the probability that a UE associates itself
with a tier-k BS, and A = (A1, A2, . . . , AK). As derived in
[2], we have

Ak =
λk(PkBk)

2
γ∑K

j=1 λj(PjBj)
2
γ

, (2)

and thus

Bk =
P−1
k (Ak/λk)

γ
2∑K

j=1 P
−1
j (Aj/λj)

γ
2

. (3)

Hence, there is a one-to-one mapping between A and B, so
we can view them interchangeably.

F. Problem Statement
We first aim to derive a closed-form expression for the

average UE data rate. Then, our objective is to maximize
the average UE data rate by jointly optimizing the spectrum
allocation factors η and the user association bias values B
(or equivalently A). Finally, we give a pricing scheme to
incentivize each UE to adopt the designed B.

IV. CLOSED-FORM AVERAGE UE DATA RATE

In this section, we derive the average UE data rate via
stochastic geometric analysis. Consider a reference UE, termed
as the typical UE, communicating with its BS, termed as the
typical BS. We are interested in the typical UE since the
average UE performance in the system is the same as the
performance of the typical UE [7]. Furthermore, due to the
stationarity of UEs and BSs, throughout this section we will
re-define the coordinates so that the typical UE is located at
0.

First, we study the coverage probability given that the
typical UE is associating with a tier-k BS and their distance
is d. In this case, the overall interference to the typical UE is
the sum interference from all tier-k BSs other than the typical
BS. Let Ik(d) denote such interference. Then

Ik(d) =
∑
x∈Φ′

k

Pkhx,0

α|x|γ
. (4)

where Φ′
k is the Palm point process corresponding to all tier-

k BSs other than the typical BS, given that the typical BS is
located at a distance of d from the typical UE. It can be shown
that Φ′

k is a PPP with intensity 0 in B(0, d) and intensity λk

in R2\B(0, d), where B(0, d) denotes the disk region centered
at 0 with radius d [7].

The distribution of Ik(d) is derived through its Laplace
transform as follows:

LIk(d, s) = E

exp
−

∑
x∈Φ′

k

sPkhx,0

α|x|γ


=exp

(
−λk

∫
R2\B(0,d)

(
1−

∫
R+

e−
sPkh

α|x|γ H(dh)

)
dx

)
(5)

=exp

(
−λk

∫
R2\B(0,d)

sPk

α|x|γ
sPk

α|x|γ + 1
dx

)
(6)

=exp

(
−2πλk

∫ ∞

d

sPkr
α

sPk

α + rγ
dr

)
, (7)

where (5) is obtained from the Laplace functional of PPP Φ′
k

[7], (6) is because h is exponentially distributed with unit
mean, and (7) is through a transformation to polar coordinates.

Let Pcover,k(d) denote the conditional coverage probability
of the typical UE (given k and d). Then

Pcover,k(d) =P

(
PkhxB ,0

αdγ
≥ TIk(d)

)
=LIk(d, s)|s=Tαdγ

Pk

, (8)

where xB is the coordinate of the typical BS, and |xB | = d.
Substituting (7) into (8), we have

Pcover,k(d) = exp

(
−2πλk

∫ ∞

d

Tdγr

Tdγ + rγ
dr

)
t= r2

T2/γd2= exp

(
−πλkT

2
γ d2

∫ ∞

( 1
T )

2
γ

1

1 + t
γ
2

dt

)
. (9)
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Furthermore, the probability density function of the distance
between the typical UE and its associated tier-k BS is

fk(d) =
2πλk

Ak
d exp

−πd2
K∑
j=1

λj

(
PjBj

PkBk

) 2
γ

 (10)

=
2πλk

Ak
d exp

(
−πd2

λk

Ak

)
, (11)

where (10) is derived in [2], and (11) is by substituting (2)
into (10).

Hence, the coverage probability Pcover,k of the typical UE
associated with a tier-k BS can be computed as

Pcover,k =

∫ ∞

0

fk(d)Pcover,k(d)dd

=

∫ ∞

0

2πλk

Ak
d exp

(
−πd2

λk

Ak

)
exp

(
−πλk (T )

2
γ d2

∫ ∞

( 1
T )

2
γ

1

1 + tγ/2
dt

)
dd

=
1

Ak

1
1
Ak

+ C
, (12)

where C = (T )
2
γ
∫∞
( 1

T )
2
γ

1
1+tγ/2 dt is a system-level constant

only related to γ and T . Note that the coverage probability
is given in non-closed form in [2] for a system where the
spectrum is shared by all tiers. Here we are able to obtain a
closed-form expression, mainly as a consequence of different
tiers using separate spectrum.

Let E0(βk) denote the expected spectrum bandwidth allo-
cated to the typical UE (connecting to a tier-k BS). Following
the model in Section III-C, E0(βk) equals the spectrum
bandwidth allocated to the typical tier-k BS divided by the
average number of UEs associated with it conditioned on the
typical UE, which is Akµ/λk + 1. Hence,

E0(βk) =
ηkW

Akµ/λk + 1
. (13)

Then, by Section III-D, the conditional expected data rate of
the typical UE, given it is associated with a tier-k BS, can be
computed as [2], [21]1

Rk = E0(βk) log(1 + T )Pcover,k. (14)

Finally, the average data rate of the typical UE, and hence
the average data rate per UE in the system, is

F =
K∑

k=1

AkRk =
K∑

k=1

AkE0(βk) log(1 + T )Pcover,k

=
K∑

k=1

ηkW log(1 + T )

(Akµ/λk + 1)( 1
Ak

+ C)
. (15)

Note that stochastic geometric analysis often leads to non-
closed forms requiring numerical integrations (e.g., [2], [3],

1By doing so, we slightly underestimate the average data rate because the
coverage event and βk are not completely independent. Although some efforts
have been made to approximate their correlation [3], [23], all of them are
inexact but result in tremendous mathematical complexity. In Section VII, we
show that the resultant analysis is close to actual performance via simulation.

[11], [12]), due to the integral form of the Laplace functional
or generating functional of PPPs applied in analysis [7],
[10]. Fortunately, our derived closed-form expression for the
average UE data rate facilitates the tractability of the resultant
optimization problem.

V. JOINT OPTIMIZATION PROBLEM AND SSAUA

We aim to maximize the average UE data rate F with respect
to η and B. As there is a one-to-one mapping between A and
B, we study the optimization problem over (η,A) instead for
analytical convenience. This is formally stated as optimization
problem P as follows:

maximize
η,A

F(η,A) =
K∑

k=1

ηkMk(Ak)

subject to
K∑

k=1

ηk = 1, ηmin,k ≤ ηk ≤ ηmax,k, ∀k,

K∑
k=1

Ak = 1, Ak ≥ 0, ∀k, (16)

where Mk(Ak) is defined as

Mk(Ak) =
1

(Akµ/λk + 1)
(

1
Ak

+ C
) . (17)

Problem P is non-convex and cannot be solved through a
standard method. Instead, we investigate into two important
structures of the optimal solution, termed density thresholding
and priority ordering, based on which we propose a compu-
tationally efficient Structured Spectrum Allocation and User
Association (SSAUA) approach to solve the problem.

A. Density Thresholding Structure

First, we define an important parameter ak ,
√
λk/(µC).

Note that Mk(Ak) is increasing on [0, ak] and decreasing
on [ak,∞). We further observe several useful properties of
Mk(Ak), which are presented in Appendix A. Based on these
properties, we obtain the following lemma, whose proof is
given in Appendix B.

Lemma 1: Consider a potential solution (η∗∗,A∗∗) to
Problem P. If ∃i ̸= j, such that A∗∗

i < ai and A∗∗
j > aj ,

then (η∗∗,A∗∗) is not an optimal solution.
Lemma 1 suggests that, in an optimal solution, every Ak

must be on the same side of ak. This directly leads to the
following theorem, which is fundamental to our optimization
solution.

Theorem 1: (Density Thresholding) Let (η∗,A∗) be an
optimal solution to Problem P. If

∑K
k=1 ak > 1, then

∀k,A∗
k ≤ ak; if

∑K
k=1 ak < 1, then ∀k,A∗

k ≥ ak; if∑K
k=1 ak = 1, then ∀k,A∗

k = ak.
Proof: If

∑K
k=1 ak > 1, because

∑K
k=1 A

∗
k = 1, ∃l such

that A∗
l < al. This leads to A∗

k ≤ ak, ∀k, according to Lemma
1. The cases where

∑K
k=1 ak < 1 and

∑K
k=1 ak = 1 are

similar.
Note that, the condition

∑K
i=1 ai > 1 is equivalent to√

1
C

(∑K
i=1

√
λi

)
>

√
µ, implying the density of UEs is
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sparse (compared with that of BSs). Thus, we refer to the
case

∑K
i=1 ai > 1 as the sparse UE scenario. On the other

hand, we refer to the case
∑K

i=1 ai < 1, which is equivalent

to
√

1
C

(∑K
i=1

√
λi

)
<

√
µ, as the dense UE scenario. If∑K

i=1 ai = 1, Problem P can be trivially solved and is ignored
in the rest of our discussion. Note that because ak can be
computed directly from the given parameters, one can judge
which scenario Problem P falls within before solving the
problem. Next, the solution to P will be investigated separately
in the sparse UE and dense UE scenarios.

B. SSAUA in the Sparse UE Scenario

In this case, the original Problem P becomes Problem P1
as follows:

maximize
η,A

F(η,A) =

K∑
k=1

ηkMk(Ak)

subject to
K∑

k=1

ηk = 1, ηmin,k ≤ ηk ≤ ηmax,k, ∀k,

K∑
k=1

Ak = 1, 0 ≤ Ak ≤ ak, ∀k. (18)

We first observe an important ordering property of the
optimal solution to P1, as shown in the following lemma,
whose proof is given in Appendix C.

Lemma 2: (Ordering Property) Let A∗ be optimal for P1,
then M1(A

∗
1) ≤ M2(A

∗
2) ≤ . . . ≤ MK(A∗

K).
Next, by sequentially computing η∗ as follows:

η∗K = min(1−
∑K−1

k=1 ηmin,k, ηmax,K),

η∗K−1 = min(1− η∗K −
∑K−2

k=1 ηmin,k, ηmax,K−1),
. . . ,

η∗l = min(1−
∑K

k=l+1 η
∗
k −

∑l−1
k=1 ηmin,k, ηmax,l),

. . . ,

η∗1 = min(1−
∑K

k=2 η
∗
k, ηmax,1),

(19)

we have the following theorem:
Theorem 2: (Priority Ordering) Let A∗ be optimal for

Problem P1, then (η∗,A∗), where η∗ is computed in (19), is
an optimal solution to P1.

Proof: Consider Problem P1A as follows:

maximize
η

K∑
k=1

ηkMk(A
∗
k)

subject to
K∑

k=1

ηk = 1, ηmin,k ≤ ηk ≤ ηmax,k, ∀k. (20)

Then P1A is a simple linear programming problem with
ordered linear coefficients in the objective, since M1(A

∗
1) ≤

M2(A
∗
2) ≤ . . . ≤ MK(A∗

K) due to Lemma 2. Note that η∗

does not depend on the exact values of A∗; it only requires
the ordering property as shown in Lemma 2. Also, η∗ is in the
feasible region due to

∑K
k=1 ηmin,k ≤ 1 ≤

∑K
k=1 ηmax,k. It is

easy to verify that, (η∗,A∗) is an optimal solution to P1.

Equation (19) indicates the priority ordering structure in
spectrum allocation. We see that tier-K has the highest priority
in spectrum allocation, followed by tier-(K−1), and so forth.

Theorem 2 provides a means to derive an optimal η∗

regardless of the A∗ values. We need one further step to
derive the corresponding optimal A∗ by solving the following
Problem P1B:

maximize
A

K∑
k=1

η∗kMk(Ak)

subject to
K∑

k=1

Ak = 1, 0 ≤ Ak ≤ ak, ∀k. (21)

Note that P1B is a convex programming problem, since
Mk(Ak) is concave on [0, ak]. Thus, A∗ can be computed by a
computationally efficient algorithm, such as the interior point
method. Hence the both steps to compute the jointly optimal
solution (η∗,A∗) have low computational complexity.

C. SSAUA in the Dense UE Scenario with Performance Bound

In this case, the original Problem P becomes Problem P2
as follows:

maximize
η,A

F(η,A) =

K∑
k=1

ηkMk(Ak)

subject to
K∑

k=1

ηk = 1, ηmin ≤ ηk ≤ ηmax, ∀k,

K∑
k=1

Ak = 1, Ak ≥ ak, ∀k. (22)

Problem P2 is more complicated than Problem P1, as
Mk(Ak) is not concave, but an S-shaped function, in the fea-
sible region. Hence, P2 generally incurs high computational
complexity even if an optimal η∗ is given [24], [25].

Therefore, instead of directly solving P2, we first approx-
imate Mk(Ak) by M̃k(Ak) defined as follows:

M̃k(Ak) =
1

(Akµ/λk)
(

1
Ak

+ C
) . (23)

Note that this approximation is reasonable because Akµ/λk

is much larger than 1 when µ is large (i.e., the dense UE
scenario). This observation is also supported by the small
performance gap as derived in Section V-C2. Some useful
properties of M̃k(Ak) are shown in Appendix D.

The approximated problem is referred to as Problem P2A,
where we simply replace the objective function of P2 by the
following:

F′(η,A) =
K∑

k=1

ηkM̃k(Ak). (24)

1) Solution to P2A: The important ordering property still
holds for Problem P2A, as formalized in the following
lemma, whose proof is given in Appendix E.

Lemma 3: (Ordering Property) Let (η̃∗, Ã∗) be an op-
timal solution to P2A, then M̃1(Ã

∗
1) ≤ M̃2(Ã

∗
2) ≤ . . . ≤

M̃K(Ã∗
K).
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We observe that with the same ordering property, (19) can
again be adopted as an optimal solution to P2A in the dense
UE scenario, leading to the following theorem:

Theorem 3: (Priority Ordering) Let Ã∗ be optimal for
Problem P2A, then (η̃∗, Ã∗), where η̃∗ is computed the same
way as η∗ in (19), is an optimal solution to P2A.

Proof: The proof is similar to that of Theorem 2.
Given an optimal η̃∗ for P2A, we find the corresponding

optimal Ã∗ for P2A by solving the following Problem P2B:

maximize
A

K∑
k=1

η̃∗kM̃k(Ak)

subject to
K∑

k=1

Ak = 1, Ak ≥ ak,∀k. (25)

Unlike in the sparse UE scenario, here we have an explicit
solution, as stated in the following theorem:

Theorem 4: Given an optimal η̃∗ for P2A (computed the
same way as η∗ in (19)), the corresponding optimal Ã∗ can
be expressed as follows:{

Ã∗
k = ak, k ≥ 2

Ã∗
1 = 1−

∑K
l=2 Ã

∗
l .

(26)

Proof: See Appendix F.
Note that both (19) and (26) can be computed with low
computational complexity.

2) Bounding the Performance Gap: Since (η̃∗, Ã∗) is
optimal for P2A rather than P2, we next quantify the
performance gap between (η̃∗, Ã∗) and an optimal solution
(η∗,A∗) to P2.

The performance gap is defined as

E = F(η∗,A∗)− F(η̃∗, Ã∗). (27)

Because F(η̃∗, Ã∗) ≤ F(η∗,A∗) ≤ F′(η∗,A∗) ≤
F′(η̃∗, Ã∗), we have

E ≤ F′(η̃∗, Ã∗)− F(η̃∗, Ã∗) , E′. (28)

Substituting η̃∗ and Ã∗ into E′, we have

E′ =

K∑
k=1

η̃∗k
Ã∗

kµ

λk

(
Ã∗

kµ

λk
+ 1
)(

1

Ã∗
k

+ C
) . (29)

Therefore, the relative performance gap is bounded by

ϵ , E

F(η∗,A∗)
≤ E′

F(η̃∗, Ã∗)
(30)

=

∑K
k=1

η̃∗
k

Ã∗
k
µ

λk

(
Ã∗

k
µ

λk
+1

)(
1

Ã∗
k

+C

)
∑K

k=1
η̃∗
k(

Ã∗
k
µ

λk
+1

)(
1

Ã∗
k

+C

) (31)

(a)

≤ max
k

λk

Ã∗
kµ

≤ max
k

λk

akµ
(32)

=
√
λKC/µ, (33)

where inequality (a) is obtained by observing the common
factor in the summations in the numerator and denominator

of (31). This implies that ϵ scales as O
(√

λK/µ
)

. Note
that because we are considering the dense UE scenario (i.e.,√

1
C

(∑K
i=1

√
λi

)
<

√
µ), O

(√
λK/µ

)
is small by defini-

tion.

D. Estimation for Complexity of Exhaustive Search

In this subsection, we briefly discuss the complexity of
the exhaustive search approach to solve Problem P. First, as
explained in details in our technical report [26], we observe
that at least one of the optimal solutions to P, (η∗,A∗), has
the following property: there is at most one k ∈ {1, 2, . . .K}
such that ηmin,k < η∗k < ηmax,k; ∀j ̸= k, either η∗j = ηmin,j

or η∗j = ηmax,j (i.e., at the boundary). Thus, the search for η∗

needs to be performed only at these boundary cases, leading
to a complexity of Ω(2K). Furthermore, in the dense UE
scenario, a numerical search over all locally optimal A (at least
2K of them) is required, leading to another fold of Ω(2K),
i.e., Ω(4K) overall, in complexity. Numerical studies on the
computational complexity will be presented in Section VII.

VI. NASH EQUILIBRIUM FOR SSAUA

Individual UEs may behave selfishly to derive unfair advan-
tage despite our design of B∗ (or equivalently A∗). Thus, in
this section, we propose a Surcharge Pricing Scheme (SPS),
such that the designed B∗ is the natural outcome of a Nash
equilibrium. Note that the designed spectrum allocation factors
η∗ can be maintained by the network operator and is beyond
our concern.

We consider a reference individual UE, whose associa-
tion bias values are B′ = (B′

1, B
′
2, . . . , B

′
K). Let A′ =

(A′
1, A

′
2, . . . , A

′
K) be its corresponding association probabili-

ties. For the other UEs, suppose they all obey the association
bias values B∗ assigned by the network operator. Similar to
the discussions in Section III and IV, the average data rate of
the reference UE is

F =

K∑
k=1

η∗kW log(1 + T )

(A∗
kµ/λk + 1)( 1

A′
k
+ C)

. (34)

If the reference UE performs an optimization on F with
respect to A′, the resultant optimal A′∗ = (A′∗

1 , A
′∗
2 , . . . , A

′∗
K)

is unlikely to be the same as A∗. Therefore, we add the
following Surcharge Pricing Scheme: the network operator
applies a surcharge ck to each UE associated with a tier-
k BS. Let c = (c1, c2, . . . , cK). In this case, the average
surcharge for the reference UE is

∑K
k=1 ckA

′
k. Accordingly,

the reference UE will perform the following optimization
Problem P3:

maximize
A′

F′ =

K∑
k=1

 η∗kW log(1 + T )

(A∗
kµ/λk + 1)

(
1
A′

k
+ C

) − ckA
′
k


subject to

K∑
k=1

A′
k = 1, A′

k ≥ 0. (35)

Different from P, it can be shown that P3 is a standard
convex optimization problem. By the KKT conditions, its
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optimal solution A′∗ satisfies

Hk

(1 + CA′∗
k )

2
− ck − ν + θk = 0, (36)

θkA
′∗
k = 0, θk ≥ 0, (37)

where Hk =
η∗
kW log(1+T )
A∗

kµ/λk+1 , θk is a Lagrange multiplier
corresponding to the inequality constraint A′

k ≥ 0, and ν is
a Lagrange multiplier corresponding to the equality constraint∑K

k=1 A
′
k = 1.

Setting A′∗
k = A∗

k, we have

ck =

{
∞, if A∗

k = 0,
Hk

(1+CA∗
k)

2 − ν, otherwise.
(38)

Note that ν could be set arbitrarily due to the equality con-
straint. Without loss of generality, we set ν = mink

Hk

(1+CA∗
k)

2

so that the minimum surcharge among tiers is 0. As a
consequence, a Nash Equilibrium is achieved where every UE
adopts the assigned B∗.

VII. NUMERICAL STUDY

In this section, we present numerical studies on the perfor-
mance of SSAUA. We label the SSAUA solution as (η̂∗, B̂∗)
and (η̃∗, B̃∗) in the sparse and dense UE scenarios, respec-
tively. Note that (η̂∗, B̂∗) is optimal in the sparse UE scenario.
We also compare (η̃∗, B̃∗) with an optimal solution (η∗,B∗)
obtained from exhaustive search in the dense UE scenario.

First, we study the network performance under different UE
density µ. The network parameters are as follows: K = 3,
λ1 = 1 units/km2, λ2 = 5 units/km2, λ3 = 10 units/km2,
P1 = 56 dBm, P2 = 46 dBm, P3 = 36 dBm, ηmin,1 = 0.2,
ηmin,2 = 0.25, ηmin,3 = 0.3, ηmax,1 = 0.35, ηmax,2 = 0.4,
ηmax,3 = 0.45, γ = 4, W = 200 MHz, and T = 0.2. In each
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round of simulation, UEs and BSs are generated on a 10 km ×
10 km square, and the UEs in the central 5 km × 5 km square
are sampled for performance evaluation (in order to remove
the edge effect). Each simulation data point is averaged over
all sampled UEs during 100 rounds of simulations.

The results are shown in Fig. 2. A vertical line indicates
the threshold value of µ, as given in Theorem 1, separating
the sparse and dense UE scenarios. For both scenarios, we
show results of the analytical and simulated performance of
SSAUA, and analytical and simulated performance of a “max
power” approach, which employs equal spectrum allocation
and user association based on the maximum received power.
Since SSAUA is not optimal in the dense UE scenario,
we also add two sets of results accordingly: the analytical
optimal performance F(η∗,B∗) through exhaustive search
and its analytical upper bound F′(η̃∗, B̃∗). Fig. 2 illustrates
that SSAUA achieves near-optimal solution in the dense UE
scenario. Furthermore, SSAUA substantially outperforms max
power.

Fig. 3 shows the optimal network performance under differ-
ent path loss exponent γ. The network parameters are the same
as those used in Fig. 2 except µ is fixed at 100 (i.e., sparse
UE) and 500 (i.e., dense UE) units/km2 in Fig. 3 (a) and (b)
respectively. This figure further confirms the observations from
Fig. 2. Furthermore, it shows that SSAUA is effective for a
wide range of path loss conditions.

Note that in both Fig. 2 and Fig. 3, due to the approximation
made in (14), the analytical data rate is slightly smaller than
the simulated one, matching our discussion in Section IV.

Fig. 4 shows B̂∗, B̃∗, and B∗; and Fig. 5 shows their
corresponding prices ĉ∗, c̃∗, and c∗, under different µ. We
observe that B̃∗ and c̃∗ computed based on SSAUA approach
are close to their counterparts B∗ and c∗.

Finally, a run time experiment is conducted to compare the
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computational complexity of SSAUA with that of exhaustive
search. The experiment is executed by Matlab R2011a on an
ASUS PC with Intel i7-3610QM 2.3GHz processor and 4GB
RAM. The results are averaged over 1000 runs for SSAUA and
10 runs for exhaustive search (both with randomly generated
parameters). Fig. 6 shows that the run time of SSAUA is
almost negligible compared with exhaustive search. Note that
the y-axis is in log scale. When K increases, the run time
of exhaustive search exhibits an exponential growth tendency,
while SSAUA remains computationally efficient.

VIII. CONCLUSIONS

In this work, we provide a theoretical framework to study
the joint optimization of spectrum allocation and user asso-
ciation in heterogeneous cellular networks. We establish a
stochastic geometric model that captures the random spatial
patterns of BSs and UEs, and a closed-form expression of the
analytical average UE data rate is derived. We then consider
the problem of maximizing the average UE data rate by jointly
optimizing the spectrum allocation factors and user association
bias values, which is non-convex programming in nature. We
propose the SSAUA approach to solve this problem with low
computational complexity. We show that SSAUA is optimal
in the sparse UE scenario and near-optimal in the dense UE
scenario, with a quantified tight bound scaling as O(

√
λK/µ).

We also propose a pricing scheme such that the designed
association bias values can be achieved in Nash equilibrium.

APPENDIX

A. Useful Properties of Mk(Ak)

(M-1) Mk(Ak) is increasing on [0, ak] and decreasing on
[ak,∞).

(M-2) Mk(Ak) is concave on [0, a′k] and convex on
[a′k,∞), where a′k is some threshold value a′k > ak.
Mk(Ak) is concave on [0, ak].

(M-3) If λi < λj , then Mi(A) < Mj(A), ∀A > 0.
(M-4) If λi < λj , then Mj(A)−Mi(A) is strictly increasing

on [0, aj ].

B. Proof of Lemma 1

Proof: Suppose A∗∗ is optimal, A∗∗
i < ai, and A∗∗

j > aj .
Consider that we increase A∗∗

i by a small value ∆ > 0 and de-
crease A∗∗

j by ∆. According to property (M-1), η∗∗i Mi(A
∗∗
i )+

η∗∗j Mj(A
∗∗
j ) < η∗∗i Mi(A

∗∗
i +∆) + η∗∗j Mj(A

∗∗
j −∆). Thus,

Ai
*

Aj
*

Mi(Ai
*
)

Mi(Aj
*)

Mj(Aj
*)

Mj(Ai
*
)

Mj

Mi

Fig. 7. Diagram of Mi(·) and Mj(·).

through replacing A∗∗
i and A∗∗

j by A∗∗
i + ∆ and A∗∗

j − ∆
respectively, we find a better solution to P, leading to a
contradiction.

C. Proof of Lemma 2

Proof: Suppose ∃i < j such that Mi(A
∗
i ) > Mj(A

∗
j ).

This implies that A∗
i > A∗

j . (Otherwise, suppose A∗
i ≤ A∗

j ,
then we have Mi(A

∗
i ) ≤ Mi(A

∗
j ) < Mj(A

∗
j ), leading to a

contradiction.) A corresponding diagram is shown in Fig. 7.
Case 1: η∗i ≤ η∗j .
Let Â∗

j = A∗
i and Â∗

i = A∗
j , then we have

[η∗iMi(Â
∗
i ) + η∗jMj(Â

∗
j )]− [η∗i Mi(A

∗
i ) + η∗jMj(A

∗
j )]

=[η∗iMi(A
∗
j ) + η∗jMj(A

∗
i )]− [η∗i Mi(A

∗
i ) + η∗jMj(A

∗
j )]

=η∗j [Mj(A
∗
i )−Mj(A

∗
j )] + η∗i [Mi(A

∗
j )−Mi(A

∗
i )]

≥η∗i [Mj(A
∗
i )−Mj(A

∗
j ) +Mi(A

∗
j )−Mi(A

∗
i )] > 0, (39)

where (39) is due to property (M-4).
As a consequence, if A∗

i and A∗
j are replaced by Â∗

i and Â∗
j

respectively, we obtain a larger F, leading to a contradiction.
Case 2: η∗i > η∗j .
Let Â∗

j = A∗
i , Â∗

i = A∗
j , η̂∗j = η∗i , and η̂∗i = η∗j . (Note that

because ηmin,i ≤ ηmin,j and ηmax,i ≤ ηmax,j , η̂∗j and η̂∗i are
guaranteed to be in the feasible region.)

[η̂∗iMi(Â
∗
i ) + η̂∗jMj(Â

∗
j )]− [η∗i Mi(A

∗
i ) + η∗jMj(A

∗
j )]

=[η∗jMi(A
∗
j ) + η∗i Mj(A

∗
i )]− [η∗i Mi(A

∗
i ) + η∗jMj(A

∗
j )]

=η∗i [Mj(A
∗
i )−Mi(A

∗
i )] + η∗j [Mi(A

∗
j )−Mj(A

∗
j )]

>η∗j [Mj(A
∗
i )−Mi(A

∗
i ) +Mi(A

∗
j )−Mj(A

∗
j )] > 0. (40)

Thus, if A∗
i , A∗

j , η∗i , and η∗j are replaced by Â∗
i , Â∗

j , η̂∗i , and η̂∗j
respectively, we can find a larger F, leading to a contradiction.

D. Useful Properties of M̃k(Ak)

(M-1’)M̃k(Ak) is a decreasing convex function.
(M-2’)If λi < λj , M̃i(ai) < M̃j(aj).
(M-3’)If λi < λj , then M̃j(A) − M̃i(A) is a strictly

decreasing function.
(M-4’)M̃k(A)−M̃k(A+D) > M̃k(A

′)−M̃k(A
′+D), for

any A′ > A ≥ ak and D > 0.
(M-5’)If λi < λj , then M̃j(aj)− M̃j(aj +D) > M̃i(ai)−

M̃i(ai +D), for any D > 0.
(M-6’)If λi < λj , then M̃j(aj)−M̃j(aj +D) > M̃i(A

′)−
M̃i(A

′+D), for any D > 0 and A′ > ai (combining
(M-4’) and (M-5’)).
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E. Proof of Lemma 3

Proof: Suppose that ∃i < j (i.e., λi < λj) such that
M̃i(Ã

∗
i ) > M̃j(Ã

∗
j ), which also implies that ai ≤ Ã∗

i < Ã∗
j .

The corresponding diagrams are shown in Fig. 8.
Case 1: η̃∗i ≤ η̃∗j .
Case 1.1: Ã∗

i ≥ aj .
Let Â∗

j = Ã∗
i and Â∗

i = Ã∗
j , then we have

[η̃∗i M̃i(Â
∗
i ) + η̃∗j M̃j(Â

∗
j )]− [η̃∗i M̃i(Ã

∗
i ) + η̃∗j M̃j(Ã

∗
j )]

=[η̃∗i M̃i(Ã
∗
j ) + η̃∗j M̃j(Ã

∗
i )]− [η̃∗i M̃i(Ã

∗
i ) + η̃∗j M̃j(Ã

∗
j )]

=η̃∗j [M̃j(Ã
∗
i )− M̃j(Ã

∗
j )] + η̃∗i [M̃i(Ã

∗
j )− M̃i(Ã

∗
i )]

≥η̃∗i [M̃j(Ã
∗
i )− M̃j(Ã

∗
j ) + M̃i(Ã

∗
j )− M̃i(Ã

∗
i )] > 0, (41)

where (41) is due to property (M-3’).
Thus, if Ã∗

i and Ã∗
j are replaced by Â∗

i and Â∗
j respectively,

we obtain a larger F′, leading to a contradiction.
Case 1.2: Ã∗

i < aj .
Let Â∗

j = aj , D = Ã∗
j − aj and Â∗

i = Ã∗
i + D, then we

have

[η̃∗i M̃i(Â
∗
i ) + η̃∗j M̃j(Â

∗
j )]− [η̃∗i M̃i(Ã

∗
i ) + η̃∗j M̃j(Ã

∗
j )]

=[η̃∗i M̃i(Ã
∗
i +D) + η̃∗j M̃j(aj)]− [η̃∗i M̃i(Ã

∗
i ) + η̃∗j M̃j(Ã

∗
j )]

=η̃∗j [M̃j(aj)− M̃j(Ã
∗
j )] + η̃∗i [M̃i(Ã

∗
i +D)− M̃i(Ã

∗
i )]

≥η̃∗i [M̃j(aj)− M̃j(Ã
∗
j ) + M̃i(Ã

∗
i +D)− M̃i(Ã

∗
i )] > 0,

(42)

where (42) is due to property (M-6’).
Thus, if Ã∗

i and Ã∗
j are replaced by Â∗

i and Â∗
j respectively,

we obtain a larger F′, leading to a contradiction.
Case 2: η̃∗i > η̃∗j . Case 2.1: Ã∗

i ≥ aj . Case 2.2: Ã∗
i < aj .

The proof for these cases can be found in our technical report
[26].

F. Proof of Theorem 4

Proof: Suppose ∃k ≥ 2 such that Ã∗
k > ak. Let l = 1,

Â∗
k = ak, D = Ã∗

k − ak, and Â∗
l = Ã∗

l + D. Similar to the
proof of Lemma 3, we can show that if we replace Ã∗

l and
Ã∗

k by Â∗
l and Â∗

k respectively, we find a better solution to
Problem P2A, which leads to a contradiction. See [26] for
details.
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