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Abstract—We study optimal radio resource allocation across
multiple tiers of a heterogeneous wireless network in order to
maximize the downlink sum throughput. Different from prior
works, we consider both the randomness of base stations in space
and dynamic user traffic session arrivals in time, accounting for
both elastic and inelastic user traffic. A new stochastic analysis
framework, which accommodates both spatial and temporal
dimensions, is proposed to quantify the throughput objective.
The derived throughput function is not in closed form and is
non-concave in terms of the radio resource allocation factors to
be optimized, hindering the search for an efficient optimization
solution. Therefore, we further develop closed-form concave
bounds that envelop the throughput function, to form convex
approximations of the original optimization problem that can
be solved efficiently. We characterize the performance gap when
these bounds are used instead of the original objective. Both
analytical bounding and simulation experiments demonstrate that
the proposed solution is nearly optimal.

I. INTRODUCTION

Future cellular networks are expected to integrate a diverse
set of both macrocells and small-cells (e.g., picocells and
femtocells). Each small-cell is equipped with a shorter-range
and lower-cost base station (BS) or access point (AP), to
provide nearby User Equipments (UEs) with high bandwidth
network access with low power usage, and to offload data traf-
fic from macrocells. In such multi-tier Heterogeneous Wireless
Networks (HWNs), the small-cell BSs are spread irregularly,
sometimes in an “anywhere plug-and-play” manner, leading to
a high level of spatial randomness. This results in complicated
cell shapes and spatial interference patterns, which imposes
substantial challenges to data rate analysis and radio resource
management.

Further complicating the problem is the recent proliferation
of smart mobile devices and the rapid growth of multimedia
traffic. A defining characteristic of multimedia traffic is in-
elasticity. The required network throughput for a multimedia
session is defined in discrete levels, and a minimum throughput
must be satisfied. Meanwhile, elastic traffic, such as file
transfer and instant messaging, remains important. In contrast
to inelastic traffic, elastic traffic is more tolerant of packet
delays, and its transmission rate can be decreased when the
network is congested. The different timing requirements of
inelastic and elastic traffic sessions add complicated temporal
randomness to the spatial randomness of HWNs.

Fig. 1 illustrates an example of a three-tier HWN in two-
dimensional space over time. The x-y plane shows the lo-
cations of BSs and UEs, as well as cell boundaries. The t-
axis indicates the temporal evolution of the HWN. We note
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Fig. 1. An example of a three-tier HWN in both spatial and temporal
dimensions. Macrocell BSs, picocell BSs, and femtocell BSs are represented
by “�”, “♢”, and “△” respectively. UEs are represented by “·”. Blue solid
lines show cell boundaries. At t1, a UE rejection is shown as “×”. At t2, a
UE arrival is shown as “+”, and its session holding time is represented as the
magenta dashed line between t2 and t4. At t3, a UE departure is shown as
“◦”, and its session holding time is represented as the magenta dashed line
between t0 and t3.

that complicated random spatial patterns are introduced by the
randomly distributed BSs and different scales of cell sizes,
and complicated random temporal patterns are introduced by
the arrivals and departures of UE sessions. Furthermore, the
mixture of elastic and inelastic traffic plays an important role
in the radio resource management, influencing the temporal
evolution of the HWN. At t1, a new arrival is rejected
because the cell is already occupied by many other active UEs,
and the corresponding BS cannot satisfy the inelastic traffic
requirement of the new arrival. At t2, a new UE session arrival
is admitted by the system, and the required radio resource at
the corresponding BS is allocated to this UE at this instant.
At t3, a UE leaves the system, releasing its allocated radio
resource to other potential users.

In the presence of the multi-tier structure in HWNs, the
expensive radio spectrum licensed by the network operator
must be shared by different tiers of BSs, each with widely
different power and coverage areas. How to optimally allocate
the radio resource among different tiers remains an open
problem. In order to avoid cross-tier interference, and the
prohibitive complexity in tracking and provisioning for such
interference especially with unplanned deployment of small-
cells, a disjoint allocation mode is commonly advocated [1]–
[4], where different tiers of BSs are allocated non-overlapping



portions of the radio resource. However, very few studies have
tackled the problem of optimal radio resource apportioning
among multiple tiers, especially when considering both spatial
and temporal patterns together with mixed inelastic and elastic
traffic.

In this work, our objective is to optimize the allocation of
radio resource across multiple tiers in an HWN that supports
mixed inelastic and elastic traffic, in order to maximize the
downlink sum throughput. Our main contributions are as
follows:

• In order to characterize the random spatial and tempo-
ral patterns of the network, we first present a multi-
dimensional stochastic analysis model, accounting for
both spatial and temporal dimensions, where each tier of
BSs and UE session arrivals form homogeneous multi-
dimensional Poisson point processes (PPPs). We allow
the UE session holding time to be generally distributed.
We then quantify the average downlink sum throughput of
the system in terms of given resource allocation factors.

• Since the derived sum throughput is not in closed form
and is non-concave, there is no efficient method to solve
the original resource optimization problem. Instead, we
further derive concave upper and lower bounds to the sum
throughput in closed form, which are used to provide
efficient approximate solutions to the original problem.
We characterize the performance gap when these bounds
are used instead of the original objective, to show that
the performance gap is below 12.6%.

• Finally, simulation experiments are conducted to validate
the correctness and usefulness of our theoretical conclu-
sions. The simulation results suggest that the proposed
solution often performs much closer to optimality than
the analytical bound.

The rest of the paper is organized as follows. In Section
II, we discuss the relation between our work and prior works.
In Section III, we describe the system model of the paper.
In Sections IV and V, we present our contributions in the
throughput performance derivation and our radio resource
allocation solution respectively. In Section VI, we present
simulation results. Finally, conclusions are given in Section
VII.

II. RELATED WORKS

Prior works on resource allocation in HWNs may be cate-
gorized based their modeling of randomness in the spatial and
temporal dimensions.

Some previous studies on resource allocation in cellular
networks, such as [5]–[7], considered only a fixed number of
BSs and UEs, without accounting for their random spatial or
temporal patterns. In other studies, such as [8], [9], the random
UE arrivals and departures in time were taken into account.
Błaszczyszyn et al. in [10] established a stochastic service
model to evaluate the quality of real-time streaming in cellular
networks, advocating a least-effort-served-first resource alloca-
tion policy. Joseph et al. in [11] studied optimal rate allocation
and admission control for adaptive video streaming in wireless

networks. However, these works still did not consider spatial
randomness in the network.

To address spatial randomness, the theory of stochastic
geometry [12]–[14] has been applied in the development of
tractable models for cellular networks and HWNs. Examples
of downlink performance analysis include [15]–[19], for either
the single-tier case or the multi-tier case. Toward resource
allocation, Cheung et al. in [3] studied optimal spectrum
sharing in two-tier cellular networks. Joint spectrum allocation
and user association were studied in [20], where the authors
analyzed the network coverage probability and data rate, but
did not provide an analytical solution to the optimization
problem. In [4], [21], [22], computationally efficient methods
were proposed to jointly optimize spectrum allocation and
user association. However, none of these works considered
temporal randomness.

More recent works have drawn attention to both spatial and
temporal randomness. Through stochastic geometric analysis,
the authors of [23]–[25] studied the outage performance of
mobile ad hoc networks considering both spatial and temporal
random patterns. In these works, the temporal randomness
arises from the temporal correlation of the interference signals,
instead of the UE traffic sessions considered in our work.
Furthermore, the derived performance metrics are generally
in non-closed forms and cannot be further optimized.

As far as we are aware, the only existing study that
jointly considers spatial and temporal randomness in resource
optimization was presented in [26]. However, that work was
limited in several aspects: (1) only inelastic traffic was consid-
ered; (2) each UE was assumed to occupy one unit spectrum
bandwidth; and (3) session holding times were assumed to
be exponentially distributed. The current work accommodates
a significantly more general system model, with both inelas-
tic and elastic traffic, multi-unit spectrum requirements, and
general session holding times.

III. SYSTEM MODEL

A. Multi-tier HWN

We consider an HWN with K tiers of BSs. In order to
capture the random spatial patterns of the network, each tier
of BSs is assumed to independently form a homogeneous
Poisson point process (PPP) in two-dimensional Euclidean
space R2. Let Φk denote the PPP corresponding to tier-k BSs,
with intensity λk. The locations of BSs do not change over
time. Two types of UEs are studied in this paper, UEs with
inelastic traffic (IUEs) and UEs with elastic traffic (EUEs). We
consider only UEs with an active traffic session. Therefore, for
brevity, we refer to UE traffic session arrivals and departures
synonymously as UE arrivals and departures. Due to dynamic
session arrivals and departures, the UEs may be viewed as
distributed randomly also in the temporal dimension. The
arrivals of IUEs and EUEs are modeled as homogeneous
PPPs ΨI and ΨE with intensities µI and µE , respectively, in
R3 (accounting for two spatial dimensions and one temporal
dimension). Note that the spatial Poisson modeling of BSs and
UEs follows conventions in stochastic geometric analysis in
HWNs [15]–[22], and the temporal Poisson arrivals of traffic



sessions have been well supported by experimental data [27]–
[30].

An arriving UE may be rejected or admitted by the system.
If it is rejected, it leaves immediately. If it is admitted, it will
stay in the system for a random duration, termed the session
holding time, which has a general distribution with mean 1

ν .
For different UEs, their session holding times are independent.
In this work we consider the scenario where all UEs remain
stationary. The additional consideration of user mobility in
the spatial and temporal dimensions will introduce substantial
difficulties to system modeling1, which is beyond the scope of
this paper.

The HWN is operated on W orthogonal resource blocks
(RBs)2 in the downlink. Without loss of generality, we assume
that the size of an RB is 1 unit time × 1 unit frequency
bandwidth in our analytical study (i.e., Section III - V).
However, we assign a practical value on the size of an RB
in our numerical study in Section VI.

In order to avoid cross-tier interference, different tiers
of BSs are operated on non-overlapping RBs [1]–[4]. The
network operator allocates Wk = ηkW to each tier-k BS,
where ηk is the resource allocation factor, and

∑K
k=1 ηk = 1.

We define η , (η1, η2, . . . , ηK). Note that BSs in the same
tier are operated on the same RBs and will interfere at the co-
tier UEs, but there is no cross-tier interference. In this work,
we aim to optimize the resource allocation factors η, in order
to maximize the normalized average downlink sum throughput
over all UEs.

B. Power, Pathloss, and Cell Splitting

Let Pk be the transmission power of tier-k BSs, which is a
given parameter. If Pt(x) ∈ {P1, . . . , PK} is the transmission
power from a BS at location x and Pr(y) is the received power
at y, we assume Pr(y) =

Pt(x)hx,y

β|x−y|γ , where β|x − y|γ is the
propagation loss function with predetermined constants β and
γ (where γ > 2), and hx,y is the fast fading term. Correspond-
ing to common Rayleigh fading with power normalization, we
assume that hx,y is independently exponentially distributed
with unit mean. Let h(·) be the probability density function
(pdf) of hx,y.

We assume that each BS is connected to the core network
by a separate high-capacity wired or wireless link that has no
influence on our performance analysis. Also, we assume that
the uplink of the system is operated in different spectrum,
so that it has no influence on the downlink analysis and
optimization. In addition, we focus on the interference limited
scenario, such that noise is negligible.

Each arriving UE requests a connection with the BS that
provides the maximum average received power, such that
BS(y) = argmaxx∈Φk,∀k Pk|x−y|−γ , where BS(y) denotes
the location of the BS that the UE attempts to connect, and
Pk|x − y|−γ is the average received power from a tier-k BS

1For example, it becomes quite challenging to track boundary crossings
(i.e., handoffs) made by UEs, due to the irregularly shaped network topologies.

2We borrow the term RB from OFDM and LTE terminology. It represents
a minimum radio resource chunk in the time-frequency space. The proposed
method is equally applicable to other means of dividing the radio resource.
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Fig. 2. An example of one cell in the HWN. The cell has 6 available RBs.
wI = 2 and wE = 2. Each admitted IUE’s RB demand is satisfied. An
EUE’s demand may be partially satisfied. If there are 3 IUEs in the system,
new IUE arrivals are rejected.

located at x.3 In this case, the resultant cell splitting on the
spatial dimensions forms a generalized Dirichlet tessellation,
or weighted Poisson Voronoi [31], and such cell splitting does

not change over time. Let Prk = λk(Pk)
2
γ∑K

j=1 λj(Pj)
2
γ

represent the

proportion of area that tier-k cells cover.

C. Inelastic and Elastic Traffic

Each IUE demands wI RBs for its inelastic traffic, and each
EUE demands wE RBs for its elastic traffic. We assume that
the total number of available RBs at one BS is much larger
than the number of RBs requested by one UE, i.e., Wk ≫ wI

and Wk ≫ wE . For admitted IUEs, their inelastic RB demands
must be satisfied4, but the RB demands of EUEs are served in a
best-effort fashion as follows. Suppose that there are M I

k active
IUEs and ME

k active EUEs in some tier-k cell. If wIM
I
k +

wEM
E
k < Wk, the cell is uncongested. In this situation, each

UE is fully allocated the number of RBs it requests. If wIM
I
k+

wEM
E
k ≥ Wk and wIM

I
k < Wk, the cell is mildly congested.

In this situation, each IUE is fully allocated wI RBs, and
all the EUEs equally share the remaining Wk − wIM

I
k RBs

not used by IUEs. In both the uncongested and the mildly
congested cases, all new arrivals are admitted. However, in
the mildly congested case, such admissions will cause RB re-
allocation from existing UEs to the new UEs. If wIM

I
k = Wk,

the cell is heavily congested. In this case, each IUE is allocated
wI RBs, and EUBs are temporarily not allocated any RBs. In
addition, all new IUE arrivals are rejected. New EUE arrivals
are admitted, but they are also temporarily not allocated any
RBs. Fig. 2 shows an example with wI = 2 and wE = 2.

We assume that Wk has a large value, and the numbers of
IUEs and EUEs in a cell M I

k and ME
k are also large.

3This model can be easily extended to accommodate a flexible user associa-
tion scheme [4], [15], [16], [21], [22], where tier-k BSs are assigned an associ-
ation bias value Bk , and a UE is associated with a BS that provides the largest
biased received power, such that BS(y) = argmaxx∈Φk,∀k BkPk|x −
y|−γ . In this case, we can simply replace Pk by PkBk , then the rest of the
paper remains the same.

4In this work, we assume that the persistent scheduling mode [32], [33]
is adopted, where BSs allocate a predefined number of RBs to IUEs with
real-time sessions.



D. Coverage Probability and Data Rate
Let T denote the minimum required Signal-to-Interference

Ratio (SIR). The coverage probability of a UE using an RB,
Pcov, is defined as the probability that its SIR is no less than
T [12]. Then, the data rate on the RB is log(1+T ) if the SIR
is no less than T , and the data rate is 0 if the SIR is less than
T (i.e., outage occurs). Thus, the overall data rate on the RB
is log(1 + T )Pcov. log is in base 2 throughout this paper.

IV. DOWNLINK THROUGHPUT DERIVATION

In this section, we present a joint spatial and temporal
stochastic analysis framework to compute the average down-
link throughput in an HWN with both IUEs and EUEs. This
will serve as the optimization objective for radio resource
allocation in the next section.

A. Interference Analysis and Coverage Probability
In this subsection, we derive the average coverage probabil-

ity of UEs in the system. An approach similar to one studied
in [22] is used. The main difference is that here not all RBs
are active, and the inactive RBs do not generate interference.
We present an outline of the derivation for completeness.

We consider a reference UE, termed the typical UE, com-
municating with its BS, termed the typical BS. The average
coverage probability of UEs in the system is the same as the
coverage probability of the typical UE. Furthermore, due to
the statistical stationarity of UEs and BSs, we can re-define
the coordinates so that the typical UE is located at 0.

We first derive the coverage probability given that the
typical UE is at distance d from its associated tier-k BS. In
this case, the overall interference, Ik(d), to the typical UE is
the sum interference from all other tier-k BSs that are actively
using the same RB as the one being used by the typical UE-
BS pair. Note that because we assume that different tiers of
BSs are working on separated RBs, the interference from other
tiers is zero.

Let Φ′
k be the point process corresponding to all tier-k BSs

other than the typical BS using the same RB, given that the
typical BS is located at distance d from the typical UE. By
standard Palm theory, Φ′

k is a PPP with intensity 0 in B(0, d)
and intensity pkλk in R2\B(0, d), where B(0, d) denotes
the disk region centered at 0 with radius d, and pk is the
probability that the same RB is actively in use at a non-typical
tier-k BS. Note that pk also depends non-trivially on other
network parameters (e.g., BS intensities, UE arrival intensities,
average session holding times, and resource allocation factors),
which will be further studied in Section IV-B.

We have Ik(d) =
∑

x∈Φ′
k

Pkhx,0

β|x|γ , and its distribution is
derived through its Laplace transform as follows:

LIk(d, ω) = E
[
e−ωIk(d)

]
= E

[
e
−

∑
x∈Φ′

k

ωPkhx,0
β|x|γ

]
=exp

(
−pkλk

∫
R2\B(0,d)

(
1−

∫
R+

e−
ωPkh

β|x|γ h(h)dh

)
dx

)
(1)

=exp

(
−2πpkλk

∫ ∞

d

ωPkr
β

ωPk

β + rγ
dr

)
, (2)

where (1) is obtained from the Laplace functional of PPP
Φ′

k [12]; and (2) is obtained by noting that the fading term
h is exponentially distributed with unit mean, and by a
transformation to polar coordinates.

Let Pcov,k(d) denote the conditional coverage probability of
the typical UE given k and d. We have

Pcov,k(d) =P
[
PkhxB ,0

βdγ
≥ TIk(d)

]
= LIk(d, ω)|ω=Tβdγ

Pk

,

=exp

(
−πpkλkT

2
γ d2

∫ ∞

( 1
T )

2
γ

1

1 + t
γ
2

dt

)
, (3)

where xB is the coordinate of the typical BS and |xB | = d.
Furthermore, the probability density function (pdf) of the

distance between the typical UE and the typical BS is known
to be [15]

gk(d) =
2πλk

Prk
d exp

(
−πd2

λk

Prk

)
. (4)

Based on (3) and (4), we can derive the coverage probability
Pcov,k of the typical UE deconditioning on d:

Pcov,k =

∫ ∞

0

gk(d)Pcov,k(d)dd =
1

1 + CPrkpk
, (5)

where we define C , T
2
γ
∫∞
( 1

T )
2
γ

1
1+tγ/2 dt.

B. Normalized Downlink Throughput

Let Nk denote the number of active RBs in a tier-k cell. Its
mean is denoted by E(Nk). Then the average throughput of a
tier-k BS is5

Rk =E(Nk) log(1 + T )Pcov,k, (6)

and the average downlink sum throughput per unit area (nor-
malized throughput) is computed as

R =

K∑
k=1

λkRk =

K∑
k=1

λkE(Nk)
log(1 + T )

1 + CPrkpk
. (7)

From (7), we observe that pk and E(Nk) are two key values to
derive R. Because E(Nk) = pkWk, we focus on the derivation
of pk, which is formally stated as the following theorem.

Theorem 1. The probability that an RB in a tier-k cell is
actively in use is

pk =
Prkµ
λkνWk

− 3.53.5

Γ(3.5)
·∫ ∞

1

(y − 1)

(
λkνWk

Prkµ

)3.5

y2.5e
−3.5

λkνWk
Prkµ y

dy, (8)

where µ , µIwI + µEwE .

Proof. Let Sk denote the cell size of the tier-k cell. In the
first step, we study the probability that an RB in the tier-k cell
is actively in use given Sk = s, which is denoted by pk(s).

5We have used an approximation that the coverage event and Nk are
independent for mathematical tractability. In reality, their dependency is
negligible, which has been verified by simulations in [16], [19]. In Section
VI, we also show via simulation that the throughput performance based on
this approximation is close to that without it.



Let N I
k = wIM

I
k , NE

k = wEM
E
k , and N IE

k = N I
k +NE

k .
Note that N IE

k and Nk are with different definitions. We have
Nk ≤ Wk, but N IE

k could be arbitrarily large. We define ρI ,
µIs
ν and ρE , µEs

ν . Let Mmax
k , Wk

wI
denote the maximum

possible number of admitted IUEs in the cell. IUE arrivals are
accepted if M I

k < Mmax
k , and are rejected if M I

k = Mmax
k .

Thus, M I
k can be equivalently regarded as the number of units

in an M/G/Mmax
k /Mmax

k queue, with arrival rate µIs, and
average service time 1

ν . Hence, we have

P1(m1) , P(M I
k = m1) =

ρ
m1
I

m1!∑Mmax
k

i=0
ρi
I

i!

, 0 ≤ m1 ≤ Mmax
k .

(9)

EUE arrivals are always accepted. Thus, ME
k can be equiva-

lently regarded as the number of units in an M/G/∞ queue,
with arrival rate µEs, and average service time 1

ν . Hence,

P2(m2) , P(ME
k = m2) =

ρm2

E

m2!
e−ρE , m2 ≥ 0. (10)

Since M I
k and ME

k do not depend on each other, their joint
distribution is

PA(m1,m2) , P(M I
k = m1,M

E
k = m2) = P1(m1)P2(m2).

(11)

If N IE
k = wIM

I
k +wEM

E
k < Wk, only a fraction NIE

k

Wk
of

the Wk RBs are active. Otherwise, if N IE
k ≥ Wk, all RBs are

active. Thus, we have

pk(s) =

Mmax
k∑

m1=0

∞∑
m2=0

min

(
1,

wIm1 + wEm2

Wk

)
PA(m1,m2).

(12)

Case 1, ρI > Mmax
k .

Because ρI and Mmax
k are large values, P1(m1) is equiva-

lent to a geometric distribution [34] as follows

P1(m1) ≃
(
1− Mmax

k

ρI

)(
Mmax

k

ρI

)Mmax
k −m1

. (13)

Let

p′k(s) =

Mmax
k∑

m1=0

wIm1

Wk
P1(m1) (14)

be the probability that an RB is actively used by some IUE.
Obviously, we have p′k(s) ≤ pk(s) ≤ 1.

Plugging (13) into (14), and after some manipulations, we
have p′k(s) ≃ 1, which implies pk(s) ≃ 1.

Case 2, ρI < Mmax
k .

In this case, the distribution of M I
k (resp. ME

k ) is equivalent
to the normal distribution [34], with mean ρI and standard de-
viation

√
ρI (resp. with mean ρE and standard deviation

√
ρE).

Therefore, N IE
k = wIM

I
k +wEM

E
k is normal distributed with

mean ρ , wIρI +wEρE = (µIwI+µEwE)s
ν = µs

ν and standard
deviation σ =

√
w2

IρI + w2
EρE . Note that σ ≪ ρ as ρI and

ρE are large values.

In this case, (12) becomes

pk(s) =

Wk∑
w=0

w

Wk
P(N IE

k = w) +

∞∑
w=Wk+1

P(N IE
k = w)

(15)

≃
∫ Wk

−∞

x

Wk

1√
2πσ

e−
(x−ρ)2

2σ2 dx+

∫ ∞

Wk

1√
2πσ

e−
(x−ρ)2

2σ2 dx.

(16)

Case 2.1, ρ ≥ Wk.
In this case, we have

∫Wk

−∞
1√
2πσ

e−
(x−ρ)2

2σ2 dx ≃∫Wk

−∞
x

Wk

1√
2πσ

e−
(x−ρ)2

2σ2 dx, leading to pk(s) ≃∫∞
−∞

1√
2πσ

e−
(x−ρ)2

2σ2 dx = 1.
Case 2.2, ρ < Wk.
In this case, we have

∫∞
Wk

1√
2πσ

e−
(x−ρ)2

2σ2 dx ≃∫∞
Wk

x
Wk

1√
2πσ

e−
(x−ρ)2

2σ2 dx, leading to pk(s) ≃∫∞
−∞

x
Wk

1√
2πσ

e−
(x−ρ)2

2σ2 dx = ρ
Wk

.
Case 3, ρI = Mmax

k .
In this case, the distribution of M I

k is equivalent to a
truncated normal distribution. Because ρI is a large value, we

have p′k(s) ≃
∫ ρI

−∞
x
ρI

2√
2πρI

e
− (x−ρI )2

2ρI dx ≃ 1, which implies
pk(s) ≃ 1.

As a consequence, by combining Cases 1-3, we have

pk(s) = min

(
µs

νWk
, 1

)
. (17)

In the second step, the cell size of a tier-k cell, Sk, is
known to have the following pdf [16], [35]:

fSk
(s) =

3.53.5

Γ(3.5)

λk

Prk

(
λk

Prk
s

)2.5

e
−3.5s

λk
Prk . (18)

Consequently, we can derive pk by deconditioning on s as
follows

pk =

∫ ∞

0

pk(s)fSk
(s)ds

=

∫ ∞

0

µs

νWk

3.53.5

Γ(3.5)

λk

Prk

(
λk

Prk
s

)2.5

e
−3.5s

λk
Prk ds

−
∫ ∞

νWk
µ

(
µs

νWk
− 1

)
3.53.5

Γ(3.5)

λk

Prk

(
λk

Prk
s

)2.5

e
−3.5s

λk
Prk ds

=
Prkµ

λkνWk
− 3.53.5

Γ(3.5)
·∫ ∞

1

(y − 1)

(
λkνWk

Prkµ

)3.5

y2.5e
−3.5

λkνWk
Prkµ y

dy, (19)

which completes the proof.

For presentation convenience, we define αk , λkνWk

Prkµ
and

f(αk) , 3.53.5

Γ(3.5)

∫∞
1

(y − 1)α4.5
k y2.5e−3.5αkydy, such that pk

can be rewritten as pk = 1
αk

− 1
αk

f(αk). Correspondingly,
E(Nk) = Wkpk = Prkµ

λkν
− Prkµ

λkν
f(αk).

Substituting pk and E(Nk) into (7), we can compute the
normalized throughput of the HWN. Note that this normalized



throughput is a function of µ, which remains the same as long
as µ , µIwI +µEwE does not change (even if the portion of
inelastic traffic demands µIwI

µIwI+µEwE
changes).

V. RADIO RESOURCE ALLOCATION

In this section, we present an efficient approximate solution
to optimal radio resource allocation in order to maximize the
average downlink throughput derived in the previous section.

A. Optimization Problem Formulation

We aim to maximize R with respect to η, with the constraint∑K
k=1 ηk = 1. We additionally consider a basic tier-level

RB allocation requirement, where the average number of RB
demands per tier-k cell, Prkµ

λkν
, is no greater than Wk, such that

the kth tier should at least support its average traffic demands
to avoid too many congestions in this tier. By doing so, we are
able to avoid unfair resource allocation when some tiers are
allocated too few RBs to support their average traffic demands
while some other tiers are allocated much more RBs than their
average traffic demands.

The optimization problem is formally stated as problem P:

maximize
η

R(η) (20)

subject to
K∑

k=1

ηk = 1, (21)

Prkµ
λkν

≤ Wk, ∀k. (22)

Note that we only need to consider the scenario where∑K
k=1

Prkµ
λkν

≤ W , i.e., the overall system has enough RBs to
support its average traffic demands, such that the optimization
problem is feasible.

Let α , (α1, α2, . . . , αK), where αk is as defined in
Section IV-B. We observe that there is a one-to-one mapping
between η and α. In this case, we can instead study the opti-
mization over α for analytical convenience. As a consequence,
the objective function (20) can be re-written as

R(α) =
K∑

k=1

Prk(1− f(αk))

1 + PrkC 1
αk

(1− f(αk))
, (23)

where log(1 + T ), µ, and ν are omitted as they are common
factors of all the summation terms. Furthermore, constraints
(21) and (22) can be re-written as

K∑
k=1

αkPrkµ
λkν

= W, (24)

αk ≥ 1,∀k. (25)

In either (20) or (23), the objective function is in non-
closed form and is non-convex. Hence Problem P cannot be
solved using a standard method. In the rest of this section, we
propose our approximate solution to Problem P, and quantify
its performance bound.

B. Bounds of the Function f(·)
In order to remove the non-closed-form expression in the

objective function, we first derive closed-from lower and upper
bounds of f(·). Let flb(α) , 3.54

3! e−3.5α
[

α2

3.52 + 4α
3.53 + 6

3.54

]
and fub(α) , 3.55

4! e−3.5α
[

α3

3.52 + 6α2

3.53 + 18α
3.54 + 24

3.55

]
. We

have the following theorem:

Theorem 2. flb(α) < f(α) < fub(α).

Proof. Let g(y) =

{
0 if y ≤ 1

1− 1
y if y > 1

, and let pdfY (y) be

the pdf of a gamma distributed random variable Y , Y ∼
Γ(4.5, 1

3.5α ). Then, according to the definition of f(·), we have

f(α) =
3.53.5

Γ(3.5)

∫ ∞

1

(
1− 1

y

)
α4.5y3.5e−3.5αydy

=

∫ ∞

0

g(y)pdfY (y)dy = E(g(Y )). (26)

Let Yu ∼ Γ(5, 1
3.5α ) and Yl ∼ Γ(4, 1

3.5α ) be two gamma
distributed random variables. According to the properties of
gamma distributions, ccdfYu(y) > ccdfY (y) > ccdfYl

(y) on
[0,∞), where ccdfYu(y), ccdfY (y), and ccdfYl

(y) are the
complementary cumulative distribution function (ccdf) of Yu,
Y , and Yl respectively.

Note that g(·) is a non decreasing function. We define a non-

negative function g0(x) ,
{
0 if x ≤ 1
1
x2 if x > 1

, such that g(y) =∫ y

0
g0(x)dx. Then we can show that

E(g(Y )) =

∫ ∞

0

g(y)pdfY (y)dy =

∫ ∞

0

g0(x)ccdfY (x)dx

<

∫ ∞

0

g0(x)ccdfYu(x)dx = E(g(Yu)).

where E(g(Yu)) can be expressed in closed form as follows

E(g(Yu)) =
3.55

4!

∫ ∞

1

(
1− 1

y

)
α5y4e−3.5αydy

=
3.55

4!
e−3.5α

[
α3

3.52
+

6α2

3.53
+

18α

3.54
+

24

3.55

]
, (27)

Similarly, we can prove E(g(Y )) > E(g(Yl)), and E(g(Yl))
can be expressed as

E(g(Yl)) =
3.54

3!
e−3.5α

[
α2

3.52
+

4α

3.53
+

6

3.54

]
. (28)

Finally, we have flb(α) < f(α) < fub(α) due to (27), (28),
and E(g(Yl)) < E(g(Y )) < E(g(Yu)).

C. Approximate Convex Optimization

Since the normalized throughput R decreases if f increases,
we have the following upper and lower bounds that envelop
the original objective function R(α):

Rub(α) =

K∑
k=1

Prk(1− flb(αk))

1 + PrkC 1
αk

(1− flb(αk))
, (29)

Rlb(α) =
K∑

k=1

Prk(1− fub(αk))

1 + PrkC 1
αk

(1− fub(αk))
. (30)



More importantly, the following theorem shows that Rub(α)
and Rlb(α) have the desirable property of being concave:

Theorem 3. Rub(α) and Rlb(α) are concave functions in α.

Proof. For presentation convenience, we use the letter b to
represent 3.5. Let A and C be arbitrary positive numbers.

(a) Let v1(x) =
A(1−flb(x))

1+AC 1
x (1−flb(x))

. Its second derivative is

v′′1 (x) = −
6Aebx

(
ACB1(x) + 6b4x5ebx

)
(AC (−b2x2 − 4bx+ 6ebx − 6) + 6xebx)

3 , (31)

where B1(x) = [b6x6+8b5x5+36b4x4+96b3x3+144b2x2+
6ebx(b4x4−4b3x3−12b2x2−24bx−24)+144bx+72e2bx+72].
It can be shown that −b2x2 − 4bx+ 6ebx − 6 is positive and
B1(x) is positive on [1,∞). Thus, v′′1 (x) is negative on [1,∞).

(b) Let v2(x) =
A(1−fub(x))

1+AC 1
x (1−fub(x))

. Its second derivative is

v′′2 (x) = (32)

−
24Aebx

(
ACB2(x) + 24b5x6ebx

)
(AC (−b3x3 − 6b2x2 − 18bx+ 24ebx − 24) + 24xebx)

3 ,

where B2(x) = [b8x8 + 10b7x7 + 62b6x6 + 264b5x5 +
768b4x4 + 1536b3x3 + 2304b2x2 + 24ebx(b5x5 − 4b4x4 −
16b3x3 − 48b2x2 − 96bx− 96)+ 2304bx+1152e2bx +1152].
It can be shown that −b3x3 − 6b2x2 − 18bx + 24ebx − 24
is positive and B2(x) is positive on [1,∞). Thus, v′′2 (x) is
negative on [1,∞).

Based on Theorems 2 and 3, instead of solving the original
problem P, we propose to solve two approximated problems,
by replacing the original objective function by its upper and
lower bounds:

PU maximize
α

Rub(α) subject to (24) and (25),

PL maximize
α

Rlb(α) subject to (24) and (25).

Since Rub(α) and Rub(α) are concave, and (24) and (25)
are linear constraints, PU and PL are convex programming
problems and can be efficiently solved by standard convex
optimization methods.

D. Quantifying the Performance Gap

In this subsection, we aim to quantify the performance gap
between the approximate solutions (of PU and PL) and the
original optimal solution. Let α∗, α̂∗, and α̃∗ denote the
optimal solutions to problems P, PU, and PL respectively.
We are interested to quantify δ1 , |Rub(α̂

∗)−R(α∗)|
R(α∗)

and δ2 ,
|Rlb(α̃

∗)−R(α∗)|
R(α∗)

as the relative performance gap corresponding
to α̂∗ and α̃∗ respectively.

Let δ , Rub(α̂
∗)−Rlb(α̃

∗)

R(α∗)
. We have δ ≥ max(δ1, δ2).

Then, we can bound the worst case performance gap δ in
the following theorem:

Theorem 4. δ ≤ maxα∈[1,∞)
fub(α)−flb(α)

1−fub(α)
.

Proof. We have

δ =
Rub(α̂

∗)−Rlb(α̃
∗)

R(α∗)
≤ Rub(α̂

∗)−Rlb(α̂
∗)

Rlb(α̂∗)
(33)

=

∑K
k=1

(
Prk(1−flb(α̂

∗
k))

1+PrkC 1
α̂∗
k
(1−flb(α̂∗

k))
− Prk(1−fub(α̂

∗
k))

1+PrkC 1
α̂∗
k
(1−fub(α̂∗

k))

)
∑K

k=1
Prk(1−fub(α̂∗

k))

1+PrkC 1
α̂∗
k
(1−fub(α̂∗

k))

≤max
k


Prk(1−flb(α̂

∗
k))

1+PrkC 1
α̂∗
k
(1−flb(α̂∗

k))
− Prk(1−fub(α̂

∗
k))

1+PrkC 1
α̂∗
k
(1−fub(α̂∗

k))

Prk(1−fub(α̂∗
k))

1+PrkC 1
α̂∗
k
(1−fub(α̂∗

k))


(34)

=max
k

 fub(α̂
∗
k)−flb(α̂

∗
k)

(1−fub(α̂∗
k))(1−flb(α̂∗

k))

1
1−flb(α̂∗

k)
+ PrkC

α̂∗
k


< max

α∈[1,∞)

fub(α)− flb(α)

1− fub(α)
, (35)

where (33) is because Rlb(α̃
∗) ≥ Rlb(α̂

∗) and R(α∗) ≥
Rlb(α̂

∗), (34) is because
∑K

k=1 xk∑K
k=1 yk

≤ maxk
xk

yk
when yk >

0, ∀k, and (35) is because PrkC
α̂∗

k
is greater than 0.

Note that (35) is an unconstrained optimization over a one-
dimensional function. Simple numerical search finds that its
maximum value is 12.6%. As a consequence, we have shown
that the proposed solutions α̂∗ and α̃∗ are near-optimal with
a worst case optimization performance gap of 12.6%.

VI. NUMERICAL STUDY

In this section, we present numerical studies on the per-
formance of the proposed resource allocation approach. We
label the solutions to problems PU and PL as η̂∗ and η̃∗,
respectively. For reference, we also obtain η∗ as the optimal
solution to the original problem P by numerical exhaustive
search. The “analytical optimal”, “analytical upper bound”,
and “analytical lower bound” labels in Fig. 3 indicate the
throughput computed from R(η∗), Rub(η̂

∗), and Rlb(η̃
∗)

respectively.
In addition to the analytical throughput performance, we

also present the simulated throughput under η∗, η̂∗, and η̃∗. In
each round of simulation, multiple tiers of BSs are generated
on a 10 km × 10 km square, according to their intensities.
UE session arrivals are generated in 10 km × 10 km × 10
minute spatial-temporal space. UEs in the central 5 km × 5
km square are selected for performance evaluation in order to
remove the edge effect. Each data point is averaged over 100
rounds of simulation. In all figures, each RB covers 10 ms
time duration and 1 MHz frequency bandwidth, and we set
T = 1, γ = 4, W = 20000 unit, wI = 10 unit, wE = 10 unit,
and 1

ν = 1 minute. All other network parameters used in the
figures are listed in Table I.

First, we present the simulated throughput performance un-
der different resource allocation factors in a two-tier scenario
(i.e., K = 2) in Fig. 3(a). The simulated results are plotted
for λ1 = 1, 2, and 3 unit/km2 respectively. The solid, dashed,
and dashed dotted vertical lines correspond to the solutions
η∗1 , η̂∗1 , and η̃∗1 respectively. The results validate the optimality
of the solution η∗1 . In addition, the optimal solution is close
to our proposed solutions, illustrating the effectiveness of our
analysis. The figure also suggests that when the intensity of



TABLE I
LIST OF PARAMETERS USED IN NUMERICAL STUDIES.

Figure Tiers K Power (dBm) λ (unit/km2) µI and µE (unit/km2·min)
Fig. 3(a) 2 (P1, P2) = (50, 40) λ2 = 5, λ1 various µI = 500, µE = 2000

Fig. 3(b)-3(c) 3 (P1, P2, P3) = (50, 40, 30) (λ1, λ3) = (1, 10), λ2 various µI = 500, µE = 2000
Fig. 3(d)-3(e) 3 (P1, P3) = (53, 30), P2 various (λ1, λ2, λ3) = (1, 4, 10) µI = 500, µE = 2000
Fig. 3(f)-3(g) 3 (P1, P2, P3) = (50, 40, 30) (λ1, λ2, λ3) = (1, 4, 10) Various with µE = 4µI

Fig. 3(h) 3 (P1, P2, P3) = (50, 40, 30) (λ1, λ2, λ3) = (1, 4, 10) Various

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

120

140

160

180

200

220

η1

N
o
rm

al
iz

ed
th

ro
u
gh

p
u
t

[M
b
p
s/

k
m

2
]

λ1 = 3 unit/km2

λ1 = 1 unit/km2

λ1 = 2 unit/km2

(a) Normalized simulated throughput under dif-
ferent η1.

1 2 3 4 5 6 7 8 9 10
190

195

200

205

210

215

220

225

230

235

λ2 [unit/km2]

N
o
rm

al
iz

ed
th

ro
u
gh

p
u
t

[M
b
p
s/

k
m

2
]

Analytical optimal

Analytical upper bound

Analytical lower bound

Simulation, η∗

Simulation, η̂∗

Simulation, η̃∗

(b) Optimal normalized throughput under differ-
ent λ2.

1 2 3 4 5 6 7 8 9 10 11 12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

λ2 [unit/km2]

V
al

u
e

η∗
1

η∗
2

η∗
3

η̂∗
1

η̂∗
2

η̂∗
3

η̃∗
1

η̃∗
2

η̃∗
3

(c) Comparison of η∗ with η̂∗ and η̃∗ under
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(d) Optimal normalized throughput under differ-
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(e) Comparison of η∗ with η̂∗ and η̃∗ under
different P2.

300 350 400 450 500 550 600 650 700 750 800
120

140

160

180

200

220

240

260

280

300

320

µI [unit/km2
·min] (µE = 4µI)

N
or

m
al

iz
ed

th
ro

u
gh

p
u
t

[M
b
p
s/

k
m

2
]

Analytical optimal

Analytical upper bound

Analytical lower bound

Simulation, η
∗

Simulation, η̂
∗

Simulation, η̃
∗

(f) Optimal normalized throughput under differ-
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(g) Comparison of η∗ with η̂∗ and η̃∗ under
different UE arrival intensities.
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Fig. 3. Numerical studies.

tier-1 BSs increases, more RBs should be allocated to this
tier, and the optimal throughput performance also increases
accordingly.

In Fig. 3(b) and Fig. 3(c), we study the optimal throughput
performance under different λ2 values, and in Fig. 3(d) and
Fig. 3(e), we study the optimal throughput performance under
different P2 values. The figures validate that the bounding
approximations provide nearly optimal throughput for a wide
range of BS intensities and BS powers. The results show that
when the intensity or the power of tier-2 BSs increases, more
portion of RBs should be allocated to this tier. In addition,
Fig. 3(b) suggests that the optimal throughput performance
keeps increasing, but the increase rate slows down, when
the intensity of tier-2 BSs increases. Fig. 3(d) suggests that
increasing the BS power in a single tier may not always bring
throughput gain. Two opposing effects arise in this situation:
(a) increasing the BS power of one tier could expand the cell

ranges in this tier, and thus more UEs are likely to locate at
cell edges in this tier, decreasing the throughput performance;
and (b) the cell ranges in the other tiers are reduced, and thus
less UEs are likely to locate at cell edges in the other tiers,
improving the throughput performance. The relative effect
between (a) and (b) varies, leading to either throughput loss
or gain.

In Fig. 3(f) and Fig. 3(g), we study the optimal throughput
performance under different UE arrival intensities. We set
µE = 4µI for these figures. The figures show (a) the
simulated optimal results agree with analytical results; (b) the
bounding approximations provide nearly optimal throughput
for a wide range of UE arrival intensities; and (c) the simulated
throughput of our proposed solutions almost overlaps that of
optimal solutions, illustrating that the proposed solutions often
perform much closer to optimality than the analytical bounds
derived in Section V-D.



In Fig. 3(h), we study the optimal throughput performance
under different µIwI

µIwI+µEwE
(which is equivalent to µI

µI+µE

as we set wI = wE = 10 unit), by fixing the value
µ = µIwI + µEwE (in unit/km2·min). This figure illustrates
that the throughput remains almost the same when µIwI

µIwI+µEwE

changes, validating our discussions in Section IV-B. Note that
under different µIwI

µIwI+µEwE
, there may be small fluctuation

in the throughput performance in Fig. 3(h). This is because
of two reasons. (a) We set a finite number for the total
available RBs in the simulation study, so (17) is slightly
inexact. (b) An approximation is made in (6), as explained
in Footnote 5. However, both of the above factors bring only
slight performance deviations.

VII. CONCLUSION

In this paper, a new radio resource allocation method
has been presented for multi-tier HWNs with inelastic and
elastic traffic. The downlink sum throughput is derived based
on a stochastic geometric framework, with consideration for
random spatial and temporal patterns of the networks. Concave
upper and lower bounds in closed-form expressions are derived
for the throughput performance, to allow efficient approximate
solutions to the resource allocation problem, with quantified
performance bound.
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