
Efficient Minimization of Sum and Differential

Costs on Machines with Job Placement Constraints

Jaya Prakash Champati and Ben Liang

Department of Electrical and Computer Engineering, University of Toronto

{champati,liang}@comm.utoronto.ca

Abstract—We revisit the problem of assigning n jobs to m

machines/servers. We study this problem under more general
settings, which capture important aspects of applications that
arise in networking and information systems. In particular, we
consider jobs that have placement constraints and machines that
are heterogeneous. The cost incurred at a machine is given by any
general convex function on the number of jobs assigned to it. We
aim to minimize the sum cost and the maximum differential cost.
Through a network-flow equivalence transformation, we observe
how these two objectives are fundamentally related, showing that
sum-cost minimization implies maximum-differential-cost mini-
mization. We propose an efficient algorithm termed Maximum
Edge-Cost Cycle Cancelling (MEC3) to solve the sum-cost mini-
mization problem with O(n2

m
2) time complexity. Furthermore,

for applications where only the maximum differential cost is of
concern, we further improve the efficiency of MEC3 by proposing
an early stop condition. We implement MEC3 and two other
algorithms from the literature. Using benchmark input instances,
we show that MEC3 has substantially lower run time than the
other algorithms.

I. INTRODUCTION

We study the problem of assigning n jobs to m machines.

For example, a machine may represent a server, sensor, or

storage unit, while a job may represent a user, sensor, or read

request. The machines are heterogeneous in the sense that each

machine is associated with a different value of some attribute,

e.g., processing speed, energy, or bandwidth. The jobs are

identical and have placement constraints, i.e., a job can only

be assigned to a subset of the machines. The cost incurred at

a machine is determined by the load, i.e., the number of jobs

assigned, on the machine.

Although the above problem setting appears simple, it arises

in a wide range of applications in networking and information

systems. For example, in [1] the problem was studied in

the context of retrieving data blocks from disks in Video on

Demand (VoD) systems. The authors of [2] and [3] considered

the problem in peer-to-peer systems. The problem also arose

in workload balancing among packet queues in [4], and sub-

carrier allocation to users in OFDMA systems [5]. More

recently, the problem was also studied for data aggregation in

wireless sensor networks [6]. Furthermore, the problem setting

is potentially useful for cloud storage systems that store data

using replication [7], [8].

The problem has received much theoretical treatment in the

literature, under different objectives [9]–[13]. In several works,

This work has been supported in part by grants from the Natural Sciences
and Engineering Research Council (NSERC) of Canada.

the makespan minimization problem was considered, which is

equivalent to assigning a cost to each machine that is linear

in its load and minimizing the maximum cost [9]–[11]. Other

works considered minimizing the average delay per job or sum

completion time [11], [12]. In this case the cost assigned to

a machine is given by a quadratic function. Minimizing the

Lp-norm of the loads on the machines was considered in [13].

Since these problem instances are known to be solvable, major

research effort has gone into designing algorithms with lower

worst-case time complexity. However, we note that very few

of these works study the actual run time performance of their

proposed algorithms.

In contrast to prior works, the authors of [14] studied the

problem under a general sum-cost objective, where the cost

incurred at any machine is given by a convex function. They

proved an interesting result, that an optimal solution for sum-

cost minimization is insensitive to the underlying convex cost

function. However, we note that in their model, all machines

are identical, i.e., the same convex cost function is used for

all machines. As a consequence, equal loads on different ma-

chines incur equal costs. Since in many practical applications

the machines are heterogeneous, the applicability of [14] is

limited. For example, quadratic cost functions with machine

specific parameters were considered for data aggregation in

wireless sensor networks in [6].

This motivates us to study the job assignment problem

under more general setting where each machine has its own

convex cost function. Under this generalization, we first aim

at minimizing the sum cost. Then, we consider the objective

of minimizing the maximum differential cost, which we will

show to be fundamentally related to sum-cost minimiza-

tion. We note that the maximum-differential-cost minimization

problem is interesting and important in its own right. In fact the

widely studied makespan minimization problem is a special

case of this general problem.

We study the sum-cost minimization problem by extending

the network-flow equivalence framework proposed in [14].

From this equivalence, we obtain the first main result in this

paper: sum-cost minimization implies maximum-differential-

cost minimization. The significance of this result is that the

network-flow equivalence, the optimality criterion, and any

algorithm proposed for minimizing the sum cost can be used

for minimizing the maximum differential cost, under any

general convex cost functions of the machines. We note that

this result has been proved previously only for specific convex

cost functions [6], [14], e.g., it is shown that minimizing the

sum completion time (a sum-cost objective) also minimizes

the makespan (a maximum-differential-cost objective).

We then propose an algorithm termed Maximum Edge-Cost

Cycle Cancelling (MEC3) to solve the sum-cost minimization

problem. We give an efficient implementation of MEC3 and

study its run time performance under the objectives of sum

completion time and makespan. For comparison purposes

we also implement two other algorithms, which have better

worst-case time complexity than MEC3 but whose run time

performance has not been studied before. Using benchmark

input instances, we show that MEC3 is significantly faster than

both algorithms. We summarize our main contributions below:

• We study the problem of assigning n jobs to m ma-

chines with the objective of minimizing the sum cost,∑
i gi(k), where gi(k) is a general convex cost function

associated with the ith machine, and k is the number

of jobs assigned to the machine. We also study the

problem of minimizing the maximum differential cost

given by maxi{gi(k) − gi(k − 1)}. Using a network-

flow transformation framework, we show that the solution

to the problem of sum-cost minimization also solves the

problem of maximum-differential-cost minimization (but

not the converse).

• We propose the MEC3 algorithm to solve the problem

of sum-cost minimization, thereby solving the problem

of maximum-differential-cost minimization as well. For

applications that require only to minimize the maximum

differential cost, we further propose an early stop condi-

tion in MEC3 that significantly improves its run time in

practice. Furthermore, we show that MEC3 has O(n2m2)
worst-case time complexity.

• Noting that the CANCELALL algorithm proposed in [15]

can be directly extended and used to solve the prob-

lem of sum-cost minimization, we compare its run

time performance with MEC3 using benchmark input

instances from [16]. Even though CANCELALL has

O(n1.5m logn) time complexity, its average run time is

longer by two orders of magnitude compared with that

of MEC3.

• Even though MEC3 is designed to solve general prob-

lems with arbitrary convex machine cost functions, for

makespan minimization, which is an important spe-

cial case of maximum-differential-cost minimization, we

show that MEC3 has much shorter run time than the well-

known Maximum-Flow based Makespan Minimization

(MFMM) algorithm [9], [11], [17].

The rest of the paper is organized as follows. In Section II

we formally define the sum-cost and maximum-differential-

cost problems, and discuss various cost functions. In Sec-

tion III we present the network flow equivalence for sum-cost

minimization and derive optimality conditions for both prob-

lems. We propose the MEC3 algorithm, prove its optimality,

and derive its time complexity in Section IV. Experimental

results are presented in Section V. We discuss the relation

between our work and prior works in Section VI, and we

conclude in Section VII.

II. PROBLEM FORMULATION AND APPLICATIONS

In this section we formulate the sum-cost and maximum-

differential-cost minimization problems. We discuss special

cost functions that have been considered in the literature.

A. Sum Cost and Differential Cost Problems

Consider n jobs and m machines. Let U represent the set of

jobs and V represent the set of machines. Let E represent the

edge set, where (uj , vi) ∈ E if job uj ∈ U can be assigned to

machine vi ∈ V . Thus, E captures the placement constraints

of the jobs. The system can be represented by the bipartite

graph G = (U ∪ V,E). We denote the degree of machine vi
by deg(vi), which is equal to the maximum number of jobs

that can be assigned to machine vi. In this work we use i to

index machine vertices in V and j to index job vertices in U .

A semi-matching M is a subset of E such that each job

vertex uj is exactly incident with one edge in M . In other

words, a semi-matching assigns each job to only one machine,

while respecting the placement constraints specified by E.

The load on machine vi under M , denoted by degM (vi), is

the number of edges incident on vertex vi, i.e., the number

of jobs assigned to vi. Let gi(degM (vi)) denote the cost

incurred at machine vi, where gi : Z
+ → R is a convex

cost function. In Section II-B, we will discuss different cost

functions that may be used in some practical applications.

Let g = {gi(.), ∀i} denote the vector of machine cost

functions. The sum cost incurred by a semi-matching M is

given by costg(M) ,
∑m

i=1 gi(degM (vi)). Given (G,g), we

are interested in the following sum-cost minimization problem

P sum
g

:

minimize
M

costg(M).

We also consider the following min-max problem that is

closely related to P sum
g

, and arises in several practical applica-

tions. Given a semi-matching M , we refer to gi(degM (vi))−
gi(degM (vi)−1) as the differential cost of vertex vi, we define

the maximum differential cost as

Γg(M) , max
vi∈V

{gi(degM (vi))− gi(degM (vi)− 1)}, (1)

and we call any vertex a maximum-differential-cost vertex in

M if it is a maximizer of (1). Given (G,g), we are inter-

ested in the following maximum-differential-cost minimization

problem Pmax
g

:

minimize
M

Γg(M).

An important result in this paper is that an optimal semi-

matching for P sum
g

is also optimal for Pmax
g

.

Remark 1: Our model can accommodate the case where

initial loads on the machines are non-zero, i.e., there are

jobs already assigned to machines. In this case we solve

the problem by simply considering the jobs that are already

assigned as part of the input job set, and restrict the placement

of each of those jobs to the machine to which it is already

assigned.

B. Example Cost Functions

The following example convex cost functions gi(.) are

widely studied in different application scenarios [1], [3], [6],

[9], [11], [13]–[15].

Sum completion time and makespan: In this case, we

consider jobs that have identical processing requirements and

the uniform machine model, i.e., the processing time of a job

on a machine is inversely proportional to the speed of the

machine. Let si denote the processing time of any job on a

machine vi. Consider the following quadratic cost function:

gi(k) =
sik(k + 1)

2
, ∀ vi. (2)

In this case the sum cost under M is given by

costg(M) =

m∑

i=1

si
2

degM (vi)(degM (vi) + 1), (3)

which represents the sum completion time, i.e,
costg(M)

n
gives

the average completion time of any job. Furthermore, the

maximum differential cost is given by

Γg(M) = max
vi∈V

sidegM (vi). (4)

Note that sidegM (vi) quantifies the time at which machine vi
completes the processing of jobs assigned to it. Therefore, in

this case Γg(M) represents the makespan.

Lp-norm: One may also consider gi(degM (vi)) =
(sidegM (vi))

p, for all vi. In this case minimizing the sum-cost

is equivalent to minimizing the Lp-norm on the completion

times of the machines [13].

III. NETWORK-FLOW EQUIVALENCE AND OPTIMALITY

CONDITIONS FOR P SUM
g

AND PMAX
g

In this section we first present the transformation of P sum
g

to

a min-cost flow problem. We then give an optimality criterion

using Cost Reducing Paths (CRPs). We finally show that an

optimal semi-matching for P sum
g

is also optimal for Pmax
g

.

A. Transformation to Min-cost Flow Problem in 5-Partite

Graph

In this section we focus on the transformation of P sum
g

to

a min-cost network flow problem. We will also discuss Pmax
g

in relation to the the network flow graph. We use a network

flow transformation framework similar to the one proposed

in [14]. However, in [14] the problem was studied for identical

machines, i.e., si = 1 and (2) becomes gi(k) = k(k + 1)/2,

for all vi. As we will see later, their framework requires a

lower number of edges with non-zero costs, and edge costs

are positive integers independent of the machine cost function.

In contrast, to accommodate the heterogeneous machine cost

functions gi(.), in our transformation we require a larger

number of edges with non-zero costs, and we also need to

design edge costs specific to the machine cost functions.

Given the bipartite graph G = (U ∪ V,E), we construct

a flow network N as shown in Figure 1. Direct all the

edges E from U to V . For each vertex vi, add vertices

{ci1, ci2, . . . , cideg(vi)} and place directed edges from vertex

vi to these new vertices. Let C = ∪m
i=1{ci1, ci2, . . . , cideg(vi)}.

They are called cost centers in this work. Add a source and

place directed edges from the source to all vertices from U .

Also, add a sink and place directed edges from all vertices in

C to the sink. The resultant graph is a 5-partite directed graph

({source} ∪ U ∪ V ∪ C ∪ {sink}, E′), where E′ is the edge

set of N .

The source vertex is assigned a supply of n units and the

sink vertex is assigned a demand of n units, while all other

nodes have a demand of zero. We set the capacity of all edges

to one. We also set all edges to have cost zero except for the

edges from V to C. The cost of edge (vi, cik) ∈ E′ is set to

βi(k) = gi(k)− gi(k − 1), 1 ≤ k ≤ deg(vi). (5)

Note that the number of edges with non-zero costs are equal

to the number of edges in G, i.e, |C| = |E|.
We note that the edge costs βi(k) are non-decreasing, i.e.,

βi(k + 1)− βi(k) ≥ 0, ∀ 1 ≤ k < deg(vi). (6)

The above property holds because gi(.) is convex. Further-

more, if gi(k) = k(k+1)/2, for all vi, then the cost βi(k) = k,

is fixed for all i. It can be shown that in this case the cost

centers can be merged, so that only maxvi deg(vi) number of

cost centers are needed, and the transformation here is reduced

to the transformation given in [14].

Next, we present the equivalence between P sum
g

and a min-

cost flow problem in N . Note that any feasible flow in N
carries n units of flow from the source to the sink. The total

capacity of edges from the source is n. Therefore, under a

feasible flow, each edge from the source should carry one

unit of flow to vertices in U . Since each job vertex uj

has demand zero, the unit of flow entering a job vertex uj

must be forwarded to some neighbor machine vertex from

V . Therefore, we can obtain a semi-matching by simply

enumerating all those edges between U and V that have a unit

flow under the feasible flow. This result is stated in Lemma 1

and is a direct consequence of Lemma 2.1 [14].

Lemma 1. If f is a feasible flow in N , then f determines a

unique semi-matching M in G.

Note that the converse of the above lemma is not true. Given

a semi-matching, there may be more than one feasible flows

that correspond to the semi-matching. These different feasible

flows will have exactly the same flow values on the edges

between the source and V but differ in the flow values on

the edges between V and C. In the following lemma, we

relate the total cost of a feasible flow in N and the sum-

cost objective achieved by the semi-matching determined by

the feasible flow.

Lemma 2. The total cost of any feasible flow f that deter-

mines a semi-matching M is lower bounded by costg(M) −∑M

i=1 gi(0). Further, there exists a feasible flow fM that

achieves this lower bound.

Proof. The proof is given in Appendix-A of [18].

0,1

0,1

0,1

0,1
0,1

0,1

0,1

0,1

0,1

0,1

β1(1),1

β1(2),1

β2(1),1

β2(2),1

β2(3),1

s
0,1

0,1

t

c11

c21

c23

U V

u1

U V

Transformation

c12

c22

C

0,1

0,1u2

u3

u4

v1

v2

u1

u2

u3

u4

v1

v2

n
-n

Fig. 1. Transformation to flow network N with costs. The parameters (cost, capacity) are labelled on each edge. The source s has n units of supply and the
sink t has n units of demand.

Noting that
∑M

i=1 gi(0) is a constant under any semi-

matching M , the following theorem immediately follows from

Lemmas 1 and 2.

Theorem 1. A semi-matching M is optimal for P sum
g

if and

only if fM is a min-cost flow in N .

Theorem 1 asserts that solving for a min-cost flow in N
is equivalent to solving P sum

g
. In Section III-B, we use this

equivalence to derive a simple optimality criterion for P sum
g

,

which will be used later to show that an optimal semi-matching

for P sum
g

is also optimal for Pmax
g

.

Relation between P sum
g

and Pmax
g

: We note that the maxi-

mum cost among all edges between V and C that have a unit

flow in fM is equal to the maximum differential cost Γg(M),
as defined in (1). To see this, note that Γg(M) can also be

expressed as follows:

Γg(M) = max
vi∈V

βi(degM (vi)). (7)

The above equation holds because, for each machine vertex vi,
fM has a unit flow on an edge from vi to cost center cideg

M
(vi),

and βi(degM (vi)) is the maximum cost among all the costs on

edges outward from vi that have a unit flow under fM . Now,

given M , the sum-cost objective is simply the sum of edge

costs that have unit flow in fM , and the maximum-differential-

cost objective is given by the maximum cost among all edges

that have unit flow in fM . This describes the fundamental

relation between P sum
g

and Pmax
g

.

In the rest of the paper we use the following terminology.

Given a semi-matching M , βi(degM (vi)) is the differential

cost of vi. Further, given a vertex set S ⊆ V , we refer to vi
as a maximum-edge-cost vertex in S, if the differential cost of

vi is larger than the differential costs of all the vertices in S,

under M . If S = V , then vi is a maximum-differential-cost

vertex.

B. Optimality for P sum
g

In the following we first define an alternating path in a

semi-matching M .

Definition 1. Given a semi-matching M , an alternating path

p from vertex v1 to vertex vr is a sequence of edges given by

p = {(v1, u1), (u1, v2), . . . , (ur−1, vr)} such that (vk, uk) ∈
M, ∀k = 0, . . . , r − 1.

Note that the edges (uk, vk+1) /∈ M . An important property

of an alternating path is that, if we switch the matching and

non-matching edges with respect to M along p, we obtain a

new semi-matching. The new semi-matching can be formally

expressed as the symmetric difference of p and M , given by

p ⊕ M = (p\M) ∪ (M\p). Furthermore, in the new semi-

matching p⊕M , the load on vertex v1 is reduced by 1 and the

load on vertex vr is increased by 1 while the loads on all other

vertices remain the same as in M . In the following we present

the definition of a CRP based on the above observations.

Definition 2. Given a semi-matching M , a Cost Reducing

Path is an alternating path p such that costg(p ⊕ M) <
costg(M).

By definition, switching the matching and non-matching

edges with respect to M along a CRP reduces the sum cost.

Since p is an alternating path, the loads on the vertices under

M and p⊕M only differ at v1 and vr. The criterion for the

existence of a CRP from v1 to vr can be expressed in terms

of the loads on the vertices v1 and vr as follows:

costg(M) > costg(p⊕M)

⇔ g1(degM (v1)) + gr(degM (vr))

> g1(degM (v1)− 1) + gr(degM (vr) + 1)

⇔ β1(degM (v1)) > βr(degM (vr) + 1). (8)

In other words, a CRP exists from v1 to vr if and only if

condition (8) is satisfied.

In the following we present some important properties

regarding the existence of a CRP, which are direct conse-

quences of the CRP criterion given in (8) and the non-

decreasing property of βi(.). Later, these properties will be

used extensively in the proofs of our results. Let M be a given

semi-matching:

Property 1. If the differential cost of vertex vr is at least

the differential cost of vertex v1, i.e., βr(degM (vr)) ≥
β1(degM (v1)), then there is no CRP from v1 to vr.

Property 2. Given a vertex set S ⊆ V , if vî is a maximum-

edge-cost vertex in S, then there is no CRP from any vertex

in S to vî.

Property 3. If vî is a maximum-differential-cost vertex, then

there is no CRP from any vertex in V to vî.

The following definition will be used extensively in this

work.

Definition 3. Let p be a CRP under M . We say that p is

cancelled, if matching and non-matching edges with respect

to M along p are switched.

In the following theorem we characterize the optimality

criterion for P sum
g

based on the notion of CRP.

Theorem 2. A semi-matching is optimal for P sum
g

if and only

if there is no cost-reducing path in it.

Proof. The proof of the theorem is based on establishing the

one-to-one correspondence between a CRP in a semi-matching

and a negative cost cycle, in the residual graph of N with

respect to a flow corresponding to the semi-matching. The

proof details are given in Appendix VIII-B of [18].

We note that the above network equivalence and the opti-

mality result are extensions to the results proved in [14] to

accommodate our machine specific cost functions. Accord-

ingly, our proof methodology closely follows [14], except with

machine specific edge costs.

Next, we show that the optimality criterion given in Theo-

rem 2 is applicable to Pmax
g

as well.

C. Optimality for Pmax
g

We note that cancelling a CRP in M does not increase

the maximum differential cost Γg(M). We state this in the

following lemma.

Lemma 3. If p is a CRP in M , then Γg(p⊕M) ≤ Γg(M).

Proof. The proof is based on the definition of the CRP, and the

fact that cancelling a CRP increases the load on one vertex by

one and decreases the load on another vertex by one, while all

other loads remain unchanged. The proof is given in Appendix

VIII-C of [18].

Next, we show that a semi-matching that minimizes the

sum-cost objective also minimizes the maximum-differential-

cost objective.

Lemma 4. All optimal semi-matchings for P sum
g

have equal

maximum differential cost.

Proof. We prove the lemma by contradiction. In particular, if

two optimal semi-matchings for P sum
g

have unequal maximum

differential costs, then we show that there exists a CRP in the

optimal semi-matching that has higher maximum differential

cost. The proof details are given in Appendix VIII-D of [18].

Lemma 5. There exists an optimal semi-matching for P sum
g

that is also optimal for Pmax
g

.

Proof. Let M̂ be an optimal semi-matching for Pmax
g

, i.e.,

Γg(M̂) is the optimal objective value for Pmax
g

. If there is

no CRP under M̂ , then from Theorem 2, M̂ is an optimal

semi-matching for P sum
g

. If there are CRPs under M̂ , then

from Lemma 3, cancelling all those CRPs does not increase

the maximum differential cost of the resulting semi-matching

beyond Γg(M̂). Also, cancelling all those CRPs cannot de-

crease the maximum differential cost of the resulting semi-

matching to below Γg(M̂), since otherwise we would have a

contradiction to our assumption that M̂ is an optimal semi-

matching for Pmax
g

. Therefore, after cancelling all CRPs, the

resultant semi-matching should have its maximum differential

cost equal to Γg(M̂). Also, the resultant semi-matching has

no CRPs, so from Theorem 2 it is an optimal semi-matching

for P sum
g

.

Theorem 3 is a direct consequence of Lemmas 4 and 5:

Theorem 3. An optimal semi-matching for P sum
g

is also

optimal for Pmax
g

.

Remark 2: Specialized versions of Theorem 3 have been

proven for specific cost functions in the literature. For iden-

tical machines, the authors of [14] proved that an opti-

mal semi-matching for sum-cost objective costM (g), where

gi(degM (vi)) = degM (vi)(degM (vi) + 1)/2 for all vi, is also

optimal for ΓM (g) = maxvi∈V degM (vi). The implication

of that result is that, for identical machines, minimizing the

sum completion time results in minimizing the makespan. This

result was generalized in [6] for solving a data aggregation

problem in wireless sensor networks, where

gi(degM (vi)) = [
si
2

degM (vi) + qi](degM (vi) + 1), ∀ vi,

and si and qi are constants specific to a machine (sensor) vi.
They showed that minimizing the sum-cost objective in this

case also minimizes maxvi∈V sidegM (vi) + qi. We note that

our result is more general and is true for any convex cost

function on vi.
Remark 3: The converse of Theorem 3 is not true. One

can find a semi-matching that is optimal for Pmax
g

but not

optimal for P sum
g

. A counter example can be constructed by

first finding an optimal semi-matching for P sum
g

, and then

inducing a CRP such that the new semi-matching has the same

maximum differential cost as the optimal semi-matching. The

new semi-matching will be optimal for Pmax
g

but not optimal

for P sum
g

. Alternatively, a counter example was given in [14]

for identical machines.

IV. MAXIMUM EDGE-COST CYCLE CANCELLING (MEC3)

In this section we present the proposed MEC3 algorithm

and analyze its run time complexity.

A. Algorithm Description

MEC3 is based on the optimality criterion that a semi-

matching is optimum if and only if there is no CRP (Theo-

rem 2). Given an initial semi-matching, MEC3 cancels all the

CRPs by enumeration. A CRP can be found by iterating over

all machine vertices and checking all alternating paths starting

from each machine vertex. However, this exhaustive search

incurs a large amount of redundant work. We incorporate the

following improvements in MEC3. Given a set of machine

vertices, search for a CRP starting from a maximum-edge-

cost vertex. If no CRP is found, then for further CRP search,

the algorithm does not consider the maximum-edge-cost vertex

or the machine vertices that have alternating paths from the

maximum-edge-cost vertex. We will prove in Section IV-C

that no CRP exists starting from those machine vertices. The

details of MEC3 are presented in Algorithm 1.

Algorithm 1: MEC3 algorithm

1: Find an initial semi-matching M .

2: S = V
3: repeat

4: Find a CRP p starting from a vertex vî, where

vî , argmax
vi∈S

{βi(degM (vi))}.

5: if a CRP is found then

6: M := p⊕M
7: else

8: Remove vî and all the vertices in S that have an

alternating path from vî.
9: end if

10: until S is empty

Given an initial semi-matching, MEC3 iteratively finds

CRPs and cancels them until there is no CRP. Finding a

CRP requires O(|E|) time and hence is a time consuming

operation. Therefore, finding an initial semi-matching with

fewer CRPs can drastically reduce the run time of MEC3.

In our implementation we use the Least-Flexible-Job/Least-

Flexible-Machine (LFJ-LFM) rule [19] for this. Our choice

is motivated by the demonstrated performance of LFJ-LFM

for identical machines [14]. We will also see in Section V

that LFJ-LFM performs well in our case. We describe the rule

below:

• List the vertices from U in the increasing order of their

degrees (“LFJ first”).

• For each vertex uj in the list, do the following:

1) Assign uj to vi if vi incurs the least cost (computed

by gi(.)), over all neighbours of uj in E.

2) If the above criterion is satisfied by multiple neigh-

bor vertices of uj , then assign uj to the neighbor

vertex with the least degree (“LFM first”). Any

further ties are broken randomly.

Next, we present the implementation details of MEC3.

B. Implementation Details

MEC3 uses the adjacency list representation of G. To find

the initial semi-matching using the LFJ/LFM rule, we sort the

degrees of the tasks in the ascending order using bucket sort.

For each task, we check all the adjacent machines to find the

one with the minimum degree. Using the loads assigned to

the machines in the initial semi-matching, we build a max

heap containing the machine vertices with the key value of a

machine vertex equal to the maximum-edge-cost associated

with it. Thus, vî in line 4 of Algorithm 1 is obtained by

extracting the unvisited machine vertex with the maximum

key value from the heap.

To find a CRP starting from vî, we build a Depth-First-

Search (DFS) tree of alternating paths rooted at vî. If a CRP

is found to start at a vertex vi, then the loads of vî and vi
are updated. We insert back vî into the heap with the new key

value. Similarly, we update the key value of vi in the heap

and perform a bubble-up operation to maintain the max heap

property. If no CRP is found from vî, then all the vertices that

are visited in the current DFS tree are marked as visited in the

heap. The above procedure is repeated until the heap is empty

or all vertices in the heap are marked visited.

C. MEC3 Optimality

In this section we show that the semi-matching output by

MEC3 does not have CRPs. To this end we show that MEC3

does not miss any CRPs by always starting from vî in line 4,

and eliminating vertices in line 8, of Algorithm 1.

Let Bî be the set of all machine vertices that have an

alternating path from vî. Note that in line 8 of Algorithm 1, we

remove Bî ∪ {vî} from S. In the following, we us the label

(l) in the superscript of the quantities to denote that these

quantities are from iteration l of Algorithm 1. The following

lemma states that, if in some iteration there is no CRP from

vî, there can be no CRP from the vertex set Bî ∪ {vî} in all

future iterations.

Lemma 6. In iteration l of MEC3, if there is no CRP starting

from vî
(l), then there is no CRP starting from any machine

vertex in Bî
(l) ∪ {vî

(l)}, in any iteration k ≥ l. Furthermore,

if S(l) = V , then Γg(M
(l)) = Γg(M

(k)), for all k ≥ l.

Proof. We first prove the result for k = l. Assume there is a

CRP starting from some vertex vi
(l) ∈ Bî

(l). The alternating

path from vî
(l) to vi

(l) appended with the CRP from vi
(l) will

be a CRP starting from vî
(l), since vî

(l) is the maximum-edge-

cost vertex in S(l). By contradiction, the lemma’s claim is true

for k = l.

Since in iteration l no CRP is found starting from vî
(l), the

differential cost of vî
(l) does not change. Therefore, in iteration

l+1 we should have the differential cost of vî
(l+1) less than or

equal to the differential cost of vî
(l). Furthermore, if S(l) = V ,

then vî
(l) is the maximum-differential-cost vertex in both M (l)

and M (l+1). Therefore, Γg(M
(l)) = Γg(M

(l+1)). We have

vî
(l+1) ∈ S(l)\{Bî

(l)∪{vî
(l)}}. We claim that no CRP starting

from vî
(l+1) will have a vertex from Bî

(l) ∪ {vî
(l)} on its

path. Clearly, any CRP starting from vî
(l+1) and has vî

(l) on

its path implies the existence of a CRP from vî
(l), because

the differential cost of vî
(l) is greater than or equal to that of

vî
(l+1). Assume some vertex vi

(l) ∈ Bî
(l) is on a CRP starting

from vî
(l+1) to a vertex vr

(l+1). Again, the alternating path

from vî
(l) to vi

(l) appended with the alternating path from

vi
(l) to vr

(l+1) will be a CRP. By contradiction, the claim is

true for k = l+1. The same arguments above can be repeated

for k > l + 1. Hence the lemma is proven.

The optimality of MEC3 is stated in the following theorem:

Theorem 4. The semi-matching output by MEC3 is optimal

for both P sum
g

and Pmax
g

.

Proof. From Lemma 6, we infer that MEC3 does not miss any

CRPs. Whenever a CRP is found, MEC3 cancels it (line 6 of

Algorithm 1). Finally, S becomes empty only when there is

no CRP found starting from any machine vertex. As the semi-

matching output by MEC3 has no CRP, its optimality follows

from Theorems 2 and 3.

Next, we use the property of MEC3 that it always searches

for a CRP starting from a maximum-edge-cost vertex to

propose another practical improvement that further reduces its

run time for solving Pmax
g

.

D. MEC3 Run Time Improvement for Pmax
g

In applications where one aims only at solving Pmax
g

, the

run time of MEC3 can be improved by imposing an early stop

condition described as follows: if no CRP is found starting

from vî in line 4 of Algorithm 1, then stop and output the

semi-matching. In Section V we will show that this early stop

condition reduces the run time of MEC3 significantly while

solving Pmax
g

for uniform machines. The optimality of MEC3

with the early stop condition is stated in the following theorem.

Theorem 5. If M̂ is a semi-matching output by MEC3 with

the early stop condition, then M̂ is optimal for Pmax
g

.

Proof. Let l denote the last iteration of MEC3 with the early

stop condition. Since MEC3 stops at the very first time a CRP

is not found on line 4 of Algorithm 1, it could not have entered

line 8 in any iteration k ≤ l. Therefore, S(l) = V . Let M∗

denote the semi-matching output by MEC3 without the early

stop condition, i.e., it continues the iterations beyond l until

no CRP is found. Then, from Lemma 6 we have Γg(M̂) =
Γg(M

(l)) = Γg(M
∗). The result follows, as M∗ is optimal

for Pmax
g

(Theorem 3).

E. MEC3 Time Complexity

In this section we present the worst-case time complexity

analysis for MEC3.

Lemma 7. The number of iterations in MEC3 is upper

bounded by |E|.

Proof. The proof is given in Appendix VIII-E of [18].

Theorem 6. The run time of MEC3 is O(n2m2).

Proof. The run time of MEC3 is given by O(α+ ηγ), where

α denotes the run time for finding the initial semi-matching, γ
denotes the run time for finding a CRP starting from a vertex

in V , and η denotes the number of CRPs cancelled by MEC3.

From Lemma 7, we infer that η ≤ |E| ≤ nm. When the LFJ-

LFM rule is used to find the initial semi-matching, its time

complexity is O(n logn +mn) [14]. Finding a CRP starting

from a vertex vi can be done by building a depth-first-search

tree of alternating paths rooted at vi. This can be achieved

in O(|E|) time. Also, switching matching and non-matching

edges along a CRP can be achieved in O(|E|) time. Note

that |E| ≤ nm. Therefore, MEC3 requires O(n logn+mn+
nm|E|) = O(n2m2) time.

V. EXPERIMENTAL RESULTS

We have implemented MEC3 and other algorithms in C.

The total number of lines in our C files exceeds 3500. We run

the programs on a t2.micro instance of Amazon Web Services

(AWS), with configuration 2.5 GHz CPU, 1 GB RAM, and

Ubuntu. In the following we describe the graph input instances

and the objectives that are used for evaluation. We then present

the average run time of the algorithms for these input instances

and objectives.

A. Graph Instances and Objectives

For problems related to bipartite graphs, the practical per-

formance of different algorithms depend on the structure of

the input graphs. In our evaluation we use instances generated

from the benchmark graph families described in [20]. These

graphs were used to evaluate bipartite matching algorithms

in [20], and semi-matching algorithms in [14]. The descrip-

tion of the graph families is given below. All graphs have

|U | = |V |.

• FewG and ManyG: The U -vertices and V -vertices are

divided into k groups of equal size. The FewG family has

k = 32 and the ManyG family has k = 256. Each vertex

in the jth group of U chooses y random neighbours from

the (i−1)th, ith, and (i+1)th groups (with wrap around)

from V , where i is chosen randomly from {1, . . . , |V |}
and y is binomially distributed with mean 5.

• Hilo: The jth U -vertex is connected to the ith V -vertex

for all max(1, j − 10) ≤ i ≤ j.

• Rope: The U -vertices and V -vertices are equally parti-

tioned into t = n
6 blocks, denoted by U0, . . . , Ut−1 and

V0, . . . , Vt−1. The blocks are connected in the following

fashion. Uk is connected to Vk+1 and Vk is connected to

Uk+1, for all k ∈ {0, . . . , t− 2}, and Ut−1 is connected

Vt−1. Thus the graph is a “rope” that zigzags between two

sides of the graph. Consecutive pairs of blocks along the

rope are connected alternately by perfect matchings and

random bipartite graphs of average degree 5.

• Zipf: The jth U -vertex is connected to the ith V -vertex

with probability roughly proportional to 1
ij

. The constants

are chosen such that the average degree is 6.

Note that m = n in all the benchmark input instances. We

further consider n ≥ m, and study the run time performance of

the algorithms by varying n using problem instances generated

as follows. Given m, for each job, the probability that it is

linked to a machine is given by q/m. Note that in these

problem instances the expected degree of any job is q. We

choose m = 4096 and q = 8. We call this graph family

RandGen.

In our experiments we assume the uniform machine model.

For each machine vi we choose a si value uniformly from

{1, . . . , 31}. We consider sum completion time, given in (3),

as a representative sum-cost objective, and makespan, given

in (4), as a representative maximum-differential-cost objective.

We compare the run time performance of CANCELALL under

both of these objectives. Further, we also use MFMM for run

time performance comparison under the makespan objective.

The implementation details of CANCELALL and MFMM are

given in Appendix VIII-F of [18]. For each data point in

the numerical results below, we average over five randomly

generated input instances from the chosen graph family.

B. Average Run Time Comparison

For the benchmark input instances, the average run times

of MEC3 and CANCELALL, under the sum-completion-time

objective, are presented in Table I. We observe that MEC3

is much faster than CANCELALL for all benchmark input

instances. Note that the run time of CANCELALL is two

orders of magnitude longer than the run time of MEC3.

Under the makespan objective, the run time comparison

between MEC3, CANCELALL, and MFMM is presented in

Table II. Again, we observe that MEC3 is much faster than

CANCELALL and MFMM for all benchmark input instances.

Note that, under the makespan objective, the run time of

CANCELALL is three orders of magnitude longer, and the

run time of MFMM is two orders of magnitude longer, than

the run time of MEC3.

Recall that minimizing the sum completion time also min-

imizes the makespan. Therefore, both MEC3 and CANCE-

LALL use the cost function in (2) for minimizing the sum

completion time thereby minimizing the makespan. As shown

in Tables I and II, the run time of CANCELALL remains

the same for both these objectives. The drastic reduction in

the run time of MEC3 is due to the early stop condition that

we use while solving the makespan minimization problem.

This demonstrates the usefulness of the early stop condition

in MEC3.

Finally, in Figure 2 we compare the run time performance of

the algorithms for problem instances generated from RandGen.

An interesting observation is that the increment in the run time

of MEC3, as the number of jobs increases, is much smaller

than that of MFMM and CANCELALL.

TABLE I
RUNTIME (SECONDS) COMPARISON FOR THE SUM COMPLETION TIME

OBJECTIVE. n = m = 65536, AND E[si] = 16.

Family MEC3 CANCELALL

FewG 0.332 15.02

ManyG 0.353 32.15

Hilo 0.496 13.08

Rope 0.724 34.69

Zipf 0.106 73.87

Discussion: As noted before, using a good initial semi-

matching that has a lower number of CRPs is crucial for the

TABLE II
RUNTIME (SECONDS) COMPARISON FOR THE MAKESPAN OBJECTIVE.

n = m = 65536, AND E[si] = 16.

Family MEC3 CANCELALL MFMM

FewG 0.042 15.02 2.42

ManyG 0.042 32.15 2.40

Hilo 0.075 13.08 3.90

Rope 0.071 34.69 3.15

Zipf 0.057 73.87 2.89

Number of jobs (n) ×10
4

2 4 6 8 10 12

A
v
er
a
g
e
ru
n
ti
m
e
(s
ec
)

0

1

2

3

4

5

6

7

CANCELALL
MFMM
MEC3

Fig. 2. Runtime comparison for makespan minimization, for m = 4096 and
expected job degree 8.

run time performance of MEC3. Recall that we use the LFJ-

LFM rule to find an initial semi-matching. From the above

results it is evident that LFJ-LFM works well in practice. In

our experiments, we have also observed that using random

initial semi-matching would drastically lengthen the run time

of MEC3. In contrast to MEC3, the run time of CANCELALL

is not affected by the initial semi-matching. The reason is

that, for a given problem instance, the number of recursions

in CANCELALL remains roughly the same irrespective of the

number of CRPs present in the initial matching.

VI. RELATED WORK

As mentioned in Section I, the problem of assigning jobs to

machines with placement constraints was studied in the liter-

ature under various settings and with different objectives [1]–

[6], [9], [11]–[13]. In this section, we present further details on

the most closely related works in the literature. We categorize

these works under the uniform and identical machine models.

A. Uniform Machine Model

The problem of scheduling identical jobs on uniform ma-

chines was studied in [9], [11] under the makespan objective.

Their network flow transformation method is different and is

specific to the makespan objective. Their algorithm, which

we call MFMM, requires solving a maximum flow problem

iteratively. In Section V, we have shown that MEC3 is much

faster than MFMM. The authors of [11] also studied the

problem under the sum completion objective and proposed

an algorithm that has O(n3m) time complexity.

B. Identical Machine Model

Under this model all machines are identical and all jobs are

identical. In [13], the authors studied the problem for the con-

vex cost function gi(k) = kp, p > 0, for all vi. They proposed

a method that has time complexity O(n3m). Later, the authors

of [14] studied the problem for gi(k) = g(k) = k(k + 1)/2
for all i. They solved the problem by transforming it to a

min-cost flow problem. An interesting result they proved is

that an optimal semi-matching for the sum-cost objective, with

g(k) = k(k+1)/2 for all vi, is also optimal with respect to any

other convex function g(.). They proposed ASM2 to solve the

min-cost flow problem and proved O(n2m2) time complexity.

Using benchmark graph input instances, the authors showed

that ASM2 is faster compared with other existing alternatives.

Our work is motivated by the work in [14]. However,

we have solved a more general problem with heterogeneous

machine cost functions gi(.). Under such generalization, we

prove that minimizing the sum cost implies minimizing the

maximum differential cost. The authors of [14] proved this

result only for the limited objectives of sum completion time

and makespan, and only for identical machines. While both

MEC3 and ASM2 are based on the principle of cancelling CRPs

through enumeration, they are substantially different in the

following aspects. First, the criterion for selecting a vertex for

finding CRPs is different in MEC3. Second, to improve speed,

MEC3 removes some vertices if a CRP is not found. Third,

MEC3 incorporates an early stop condition when minimizing

the maximum differential cost. Fourth, the arguments used to

bound the number of iterations in ASM2 are not applicable for

MEC3. We have used a novel proof technique to show that

the number of iterations in MEC3 is upper bounded by |E|.
Finally, MEC3 requires more sophisticated data structures for

implementation due to the generalization in the cost function.

Considering the same problem model as in [14], the authors

of [15] proposed a more sophisticated algorithm CANCE-

LALL and proved that it has O(n1.5m logn) time complexity.

To the best of our knowledge, CANCELALL is the only

algorithm directly applicable to solve both P sum
g

and Pmax
g

,

and it has the best worst-case time complexity. However, there

is no prior study on its average run time performance. In this

work, we have showed that the MEC3 average run time is two

to three orders of magnitude lower than that of CANCELALL.

VII. CONCLUSION

We have studied the problem of assigning n jobs to m ma-

chines, where the jobs have placement constraints, machines

are heterogeneous, and the cost incurred at a machine is a

general convex function of the number of jobs assigned to

the machine. We consider both sum-cost minimization and

maximum-differential-cost minimization. We have shown that

the former implies the latter. A special case of this result is

that minimizing the sum completion time also minimizes the

makespan. We propose MEC3 to solve the sum-cost mini-

mization problem. We further propose an early stop condition

for MEC3 when it is used to solve the maximum-differential-

cost minimization problem, which is shown to drastically

reduce the run time. We have implemented CANCELALL,

an algorithm with the best known worst-case time complexity,

and MFMM, a specialized algorithm for makespan minimiza-

tion. Using benchmark input instances we show that MEC3

outperforms both algorithms by orders of magnitude, making

it an attractive choice for solving the considered problems.

REFERENCES

[1] C. P. Low, “An efficient retrieval selection algorithm for video servers
with random duplicated assignment storage technique,” Information

Processing Letters, vol. 83, no. 6, pp. 315 – 321, 2002.
[2] S. Suri, C. D. Tóth, and Y. Zhou, Uncoordinated Load Balancing and

Congestion Games in P2P Systems, 2005, pp. 123–130.
[3] S. Suri, D. C. Toth, and Y. Zhou, “Selfish load balancing and atomic

congestion games,” Algorithmica, vol. 47, no. 1, pp. 79–96, 2007.
[4] S. Kittipiyakul and T. Javidi, “Delay-optimal server allocation in mul-

tiqueue multiserver systems with time-varying connectivities,” IEEE

Transactions on Information Theory, vol. 55, no. 5, pp. 2319–2333,
May 2009.

[5] ——, “Subcarrier allocation in ofdma systems: beyond water-filling,”
in Signals, Systems and Computers, 2004. Conference Record of the

Thirty-Eighth Asilomar Conference on, vol. 1, Nov 2004, pp. 334–338
Vol.1.

[6] M. Shan, G. Chen, D. Luo, X. Zhu, and X. Wu, “Building maximum
lifetime shortest path data aggregation trees in wireless sensor networks,”
ACM Trans. Sen. Netw., vol. 11, no. 1, pp. 11:1–11:24, Jul. 2014.

[7] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The Google file system,” in
Proceedings of the Nineteenth ACM Symposium on Operating Systems

Principles, ser. SOSP ’03, 2003, pp. 29–43.
[8] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The hadoop dis-

tributed file system,” in Proceedings of the 2010 IEEE 26th Symposium
on Mass Storage Systems and Technologies (MSST), ser. MSST ’10.
Washington, DC, USA: IEEE Computer Society, 2010, pp. 1–10.

[9] Y. Lin and W. Li, “Parallel machine scheduling of machine-dependent
jobs with unit-length,” European Journal of Operational Research, vol.
156, no. 1, pp. 261–266, 2004.

[10] F. Galčı́k, J. Katrenič, and G. Semanišin, On Computing an Optimal

Semi-matching. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011,
pp. 250–261.

[11] C.-L. Li, “Scheduling unit-length jobs with machine eligibility restric-
tions,” European Journal of Operational Research, vol. 174, no. 2, pp.
1325–1328, 2006.

[12] J. Bruno, E. G. Coffman, Jr., and R. Sethi, “Scheduling independent
tasks to reduce mean finishing time,” Commun. ACM, vol. 17, no. 7, pp.
382–387, Jul. 1974.

[13] N. Alon, Y. Azar, G. J. Woeginger, and T. Yadid, “Approximation
schemes for scheduling,” in Proceedings of the Eighth Annual ACM-

SIAM Symposium on Discrete Algorithms, ser. SODA ’97. Philadelphia,
PA, USA: Society for Industrial and Applied Mathematics, 1997, pp.
493–500.

[14] N. J. A. Harvey, R. E. Ladner, L. Lovász, and T. Tamir, “Semi-matchings
for bipartite graphs and load balancing,” J. Algorithms, vol. 59, no. 1,
pp. 53–78, Apr. 2006.

[15] J. Fakcharoenphol, B. Laekhanukit, and D. Nanongkai, “Faster algo-
rithms for semi-matching problems,” ACM Trans. Algorithms, vol. 10,
no. 3, pp. 14:1–14:23, May 2014.

[16] V. B. Cherkassky and V. A. Goldberg, “On implementing the push—
relabel method for the maximum flow problem,” Algorithmica, vol. 19,
no. 4, pp. 390–410, 1997.

[17] K. Lee, J. Y.-T. Leung, and M. L. Pinedo, “Scheduling jobs with equal
processing times subject to machine eligibility constraints,” Journal of

Scheduling, vol. 14, no. 1, pp. 27–38, 2011.
[18] J. P. Champati and B. Liang, “Efficient minimization of sum and

differential costs on machines with job placement constraints (technical
report),” 2017. [Online]. Available: http://www.comm.utoronto.ca/
%7eliang/publications/techreport/INFOCOM2017TechRepMEC3.pdf

[19] M. L. Pinedo, Scheduling: Theory, Algorithms, and Systems, 3rd ed.
Springer Publishing Company, Incorporated, 2008.

[20] B. V. Cherkassky, A. V. Goldberg, P. Martin, J. C. Setubal, and J. Stolfi,
“Augment or push: A computational study of bipartite matching and
unit-capacity flow algorithms,” J. Exp. Algorithmics, vol. 3, Sep. 1998.

