
Joint Offloading Decision and Resource Allocation
with Uncertain Task Computing Requirement

Nima Eshraghi and Ben Liang
Department of Electrical and Computer Engineering, University of Toronto, Canada

Email: {neshraghi, liang}@ece.utoronto.ca

Abstract— We study the problem of joint offloading decision
and resource allocation for mobile cloud networks with a
computing access point (CAP) and a remote cloud center. We
consider the case where the task computing requirement is not
fully known before their execution. We aim to jointly optimize
the offloading decisions as well as the allocation of computation
and communication resources, to minimize a weighted sum of
the average cost and cost variation. The problem is formulated
as a mixed-integer program. We propose an efficient algorithm,
termed Task Offloading and Resource Allocation with Uncertain
Computing (TORAUC), and show that it always converges to
a Karush-Kuhn-Tucker (KKT) point of an alternate form of
the original problem, which has its binary constraints removed
but guarantees an offloading decision solution that is arbitrarily
close to binary. We extend TORAUC to TORAUC-MP for the
case of a multi-processor CAP. Through trace-based simulation,
we study the performance of TORAUC and TORAUC-MP. We
observe that TORAUC is nearly optimal, and both algorithms
substantially outperform several alternatives.

I. INTRODUCTION

Recent advances in smart mobile devices have laid the foun-
dation to support a broad range of interactive services such as
augmented reality, online gaming, and social networking. As
mobile applications grow in complexity, so does the demand
on computing resources. The insufficient computational re-
sources and limited energy supply in mobile devices, hence,
impede the accommodation of high computation demand in
emerging resource-hungry applications. With the help of cloud
computing, mobile devices can potentially reduce their energy
consumption by offloading computation-intensive tasks to the
resource-rich cloud environment. Nevertheless, offloading to
remote cloud servers can incur significant delays, particularly
if a large amount of data needs to be communicated over
already congested backhaul links.

Different from conventional mobile cloud networks, in Mo-
bile Edge Computing (MEC) additional computing resources
are deployed in close proximity to end users [1] [2]. Therefore,
MEC serves as an attractive alternative to those offloaded
tasks that require low latency. The concept of MEC may be
abstracted by a computing access point (CAP), which is a
wireless access point, such as a cellular base station, with built-
in computation capability [3]. The computation tasks can be
processed locally at the mobile device, offloaded to the CAP,
or further forwarded by the CAP to a remote cloud center.
There is a cost, which may include delay, energy consumption,

This work has been funded in part by the Natural Sciences and Engineering
Research Council (NSERC) of Canada.

and usage charges, associated with the task execution, and it
depends on both the task and the processor where the task is
served.

While many prior studies consider task offloading when
the processing times of all tasks are available [3] - [7], the
computing cycles that a task requires is generally uncertain
until it is processed to completion [4]. Thus, in this work, we
consider task offloading when the computing cycle require-
ment is not fully known before task execution. Such a system
needs robustness to limit performance degradation despite the
processing time uncertainty.

In particular, we study the problem of joint offloading
decision and resource allocation under uncertain computing re-
quirement, for multiple competing mobile users. The presence
of uncertainty adds substantial challenge to the system design,
complicating task scheduling and user competition in the shar-
ing of communication and computation resources at the CAP.
In fact, limited available shared resources can drastically affect
task offloading decision under processing time uncertainty.
Under-allocation of resources results in excessive user delay.
Over-allocation, on the other hand, would adversely impact
other users in the shared system. Consequently, satisfactory
and sustained computation performance can only be achieved
by a careful robust design.

A resource allocation policy is robust if its performance is
not affected immensely across a wide range of operational
conditions [5]. Here, we account for robustness in terms
of maintaining a desired level of cost efficiency despite the
uncertainty involved in the task computation requirements. The
contributions of this work are as follows:
• We study joint offloading decision and allocation of com-

munication and computation resources in a computing
network with one CAP and a remote cloud server, where
the computation requirement of the tasks is uncertain.
We consider a system cost that accounts for energy con-
sumption, processing delay, and communication delay.
We formulate a robust optimization problem toward the
objective of minimizing a weighted sum of the average
cost and cost variation. It is a mixed-integer program and
is non-convex even after binary relaxation.

• For the case where the CAP has a single processor,
we propose an efficient algorithm, termed Task Offload-
ing and Resource Allocation with Uncertain Computing
(TORAUC). It is based on the construction of an it-
eratively updated sequence of locally tight approximate

geometric programming (GP) problems. We show that it
converges to a KKT point of an alternate form of the
original problem that has its binary constraints removed
but guarantees an offloading decision solution that is
arbitrarily close to binary.

• We further extend our solution to the case where the CAP
has multiple processors. We propose the TORAUC-Multi-
Processor (TORAUC-MP) algorithm. It is shown to have
the same convergence property as TORAUC.

• Through trace-based simulations with Google cluster
data [6], we study the impact of system settings on the
performance of TORAUC and TORAUC-MP. We observe
that TORAUC is nearly optimal over a wide range of
parameter settings. Both algorithms outperform several
alternatives.

The rest of the paper is organized as follows. In Sec-
tion II we present the related works. Section III describes
system model and problem formulation. We present TORAUC,
prove its optimality, and derive its complexity in Section IV.
Extension to multi-processor CAP is studied in Section V.
We evaluate the performance of TORAUC via trace-driven
simulations in Section VI, followed by concluding remarks in
Section VII.

II. RELATED WORKS

The problem of task offloading and resource allocation
has been studied in the literature under various settings with
different objectives. In this section, we summarize existing
works that investigate this problem for a three-tier cloud
computing network. We further present related works on job
assignment under processing time uncertainty.

A. Offloading and Resource Optimization in MEC with Known
Processing Times

The joint optimization of offloading decision and allocation
of communication and computation resources for a three-
tier network, consisting of mobile users, a local computing
node (e.g, cloudlet or CAP), and a remote cloud server, has
been studied in [3] - [7]. In [3], scheduling of computation
and communication resources is studied for a CAP with
multiple users, each with a single task. The multi-user multi-
task scenario is further studied in [8] [9], where upper and
lower bounds are used for the overall processing delay, to
address the complicated overlapping delays in offloading and
processing multiple tasks in a shared medium. Task offloading
with dynamic voltage frequency scaling is discussed in [10].
Fairness-aware cost minimization in a fog computing network
for a multi-user single task scenario is studied in [7]. These
works assume that the processing times of the tasks are
exactly known a priori. This assumption is impractical, since
processing requirement of a task is generally unknown until
the task is executed to completion [4]. In this work, we account
for the uncertainty of the task processing time.

B. Unknown Processing Times
Job assignment under processing time uncertainty is well

studied in theoretical computer science. In [11], an energy-
efficient scheduling policy is proposed, where tasks are sched-
uled based on an online estimation of their required compu-
tation cycle. For such estimation, the scheduler requires the
probability distribution of the computing cycle demand. The
authors of [12] consider the scheduling of dependent tasks,
with the goal of both maximizing robustness and minimizing
the makespan. The robustness metric is based on the slack
of a task, which represents the window within which the
task can be delayed without affecting the makespan. In [13],
a task scheduling problem is considered to minimize the
worst-case makespan under discrete scenario of uncertain
processing times. In [14] and [15], two different models of
partial information about task processing times are considered,
and semi-online task scheduling algorithms are proposed with
guaranteed competitive ratios on the makespan. In [16], dy-
namic job shop scheduling problem is studied under uncertain
processing times. To minimize the total flow time, a clustering
approach is proposed to classify the bottleneck machines.
The focus of all of the above works is on the design of
efficient task scheduling algorithms. They do not concern the
allocation of computation or communication resources. In this
work, we aim for robust minimization of a weighted sum
of energy consumption, processing delay, and communication
delay, through joint consideration of the offloading decision
and allocation of computation and communication resources.
To the best of our knowledge, this problem has not been
studied in the literature.

III. SYSTEM MODEL AND PROBLEM FORMULATION

A. Mobile Cloud Offloading System Model
Consider a cloud access network consisting of N mobile

users, one CAP, and a remote cloud center. The CAP is a
wireless access point (e.g., a cellular base station) equipped
with computation resources. Instead of just serving only as a
relay to forward the received tasks from users to cloud center,
the CAP also has the capability to execute users’ tasks subject
to its computation resource constraints.

1) Users and Tasks: We denote the set of all users by N =
{1, . . . , N}. Each mobile user has one computation task to be
either executed locally at the mobile device, offloaded and
served at the CAP, or sent further and processed at the remote
cloud servers. We assume that user tasks are indivisible, i.e.,
computation tasks cannot be further divided into sub-tasks, and
thus, the entire task must be executed in a single processor.
Denote the offloading decisions for user i by xli, x

a
i , x

c
i ∈

{0, 1}, indicating whether user i’s task is processed locally,
at the CAP, or at the cloud center, respectively. Then, the
offloading decisions are constrained by

xli + xai + xci = 1, i ∈ N . (1)

Note that only one of xli, x
a
i , and xci for user i can be non-zero.

Similar to existing studies [3] - [7], we assume that all tasks
are available at time zero. If the tasks arrive dynamically in

time, one can apply our model and proposed solution in a
quasi-static manner, where the system processes the tasks in
batches that are collected over time intervals [4].

The computation task of user i is represented by (Li, ωi),
where Li denotes the size of the task in bits including
programming instructions and input data, and ωi is the number
of computing cycles required to process the task. We assume
that Li are known but precise values of ωi are not available.
This represents a realistic scenario where the size of the task
can be measured but its processing time is generally uncertain
until it is processed to completion [4]. Nevertheless, given
the application type, some statistical information about the
tasks (such as expected value of the computing cycles) can
be reasonably inferred through measurements and experimen-
tal studies [17]. The revealed statistical information can be
leveraged to limit performance degradation in the presence
of uncertainty. Hence, in this work, we assume that although
ωi is random, its expected value ωi and some measure of
its uncertainty, such as standard deviation or upper and lower
bounds, are available. In particular, we consider a certain range
of ωi, denoted by ∆ω

i , which is generally defined and may
represent, e.g., the full range of possible ωi values or some
multiples of standard deviation around the mean value.

2) Local Execution Model: Denote the processing rate of
user i’s local mobile device by f li , which can be adjusted
depending on the application requirements and is limited by
the device computing capability F li

max, i.e.,

f li ≤ F li
max
. (2)

The time delay for locally processing user i’s task is
denoted by T li = ωi/f

l
i . The energy consumption model

for local processing, denoted by Eli(ωi, f
l
i), is linear in the

task computing cycle requirement ωi, and is generally a
polynomial function of f li [18]. Different mobile devices may
have different coefficients and exponents that can be captured
by the general energy model Eli(ωi, f

l
i) .

3) CAP Processing Model: To offload the computation
tasks, the data bits need to be transmitted to the CAP over
the wireless channel. For spectrum sharing among users, as
an illustrative example, we consider orthogonal frequency
devision, but this work can be extended to other sharing
methods. The data rate of user i is given by bi log(1 + hipi

σ),
where pi is the transmit power, hi is the channel power gain, σ
is the noise power at the CAP receiver, and bi is the allocated
bandwidth to user i and is constrained by the total available
bandwidth as follows:

N∑
i=1

bi ≤ B. (3)

Energy consumed by user i for wireless transmission to
the CAP is denoted by Eai = piLi/(bi log(1 + hipi

σ)). For
notational convenience we define ηi = log(1 + hipi

σ).
Since there are possibly multiple tasks offloaded to the CAP,

we need to further allocate computation resources available at
the CAP as well. Denote fai as the assigned CAP processing

rate to user i, which is constrained by the total processing rate
F a at the CAP:

N∑
i=1

fai ≤ F a. (4)

Initially, we consider a CAP model where F a is concentrated
in a single fast processor. In Section V, we will extend
our consideration to the case where the CAP has multiple
processors.

If the task is served by the CAP, the time delay is mainly
contributed by wireless communication latency and processing
time and is denoted by T ai = Li

biηi
+ ωi

fa
i

. Hence, considering
shared and limited resources, careful joint allocation of com-
munication and computation resources is necessary to improve
user latency.

4) Cloud Processing Model: We further assume that the
remote cloud center provides an essentially infinite number of
processors, each with processor rate of f c, possibly through
leasing of virtual machines. If task i is offloaded to the remote
cloud, besides the wireless communication delay, there is
an additional transmission time between the CAP and cloud
center, and the time required to complete the process at the
cloud server. Therefore, the overall delay can be expressed
as T ci = Li

biηi
+ Li

rac
i

+ ωi

fc , where raci is the rate allocated to
user i to transmit its task over the limited-capacity backhaul
link between the CAP and cloud. Let Rac be the capacity of
backhaul. We have

N∑
i=1

raci ≤ Rac. (5)

The consumed energy by user i in this case is due to wireless
transmission and is denoted by Eci = piLi/biηi.

Note that although a vast number of servers are available
at the cloud center, and each can be fully devoted to a user,
the overall delay does not only depend on the task itself as
multiple users compete to reach the cloud through a limited
backhaul link.

B. Problem Formulation

The goal is to reduce the total system cost and maintain a
desired level of performance for every potential realization of
uncertainty. The cost incurred by each user is defined as the
weighted sum of the user energy consumption and the task
processing delay as follows:

Ci = Ei + ρiTi, (6)

where Ei = Elix
l
i + Eai x

a
i + Eci x

c
i and Ti = T lix

l
i + T ai x

a
i +

T ci x
c
i , and ρi is the relative weight of time delay compared

with energy usage.
The overall system cost involves some uncertainty brought

by unknown computation cycles required for task execution.
Despite this uncertainty, statistical information provided by
experimental studies [17] can be exploited to limit the risk
of cost fluctuation. Reducing cost fluctuation is necessary to
the maintenance of a certain desired system performance for

different realizations of uncertainty. To model cost fluctuation,
we consider the effect of ∆ω

i , as defined in Section III-A.1,
on user i’s range of cost variation, denoted by ∆C

i . Since Ci
is a linear function of ωi, the relation between ∆C

i and ∆ω
i is

also given by (6) as follows:

∆C
i = ρi

[
xli

∆ω
i

f li
+ xai

∆ω
i

fai
+ xci

∆ω
i

f c

]
+ xliE

l
i(∆

ω
i , f

l
i). (7)

As a special example, if we use ∆ω
i = ωubi − ωlbi , where

ωubi and ωlbi are the upper and lower bounds of ωi, then ∆C
i

represents the maximum range of cost fluctuation.
Our objective is to minimize the expected cost as well as

the cost fluctuation by jointly optimizing the task offloading
decisions xi = [xli, x

a
i , x

c
i], and the resource allocation vec-

tor ri = [f li , f
a
i , bi, r

ac
i]. Hence, we consider the following

optimization problem

minimize
{xi,ri}

E

[
N∑
i=1

Ci

]
+ γ

N∑
i=1

∆C
i , (8)

subject to (1), (2), (3), (4), (5),

f li , f
a
i , bi, r

ac
i ≥ 0, ∀i, (9)

xli, x
a
i , x

c
i ∈ {0, 1}, ∀i, (10)

where E[.] is the expectation with respect to the required
computing cycles {ωi}, and γ is the weight on stabilizing
the system cost compared with the expected cost.

Optimization problem (8) is a mixed-integer program that is
hard to solve in general. Moreover, even if we relax the binary
constraint (1) so that the task offloading decision variables can
vary within the range [0, 1], problem (8) is non-convex due to
its non-convex objective and constraints. Next, we propose the
TORAUC algorithm, discuss its optimality, and further study
its effectiveness in solving this problem.

IV. TASK OFFLOADING AND RESOURCE ALLOCATION
WITH UNCERTAIN COMPUTING REQUIREMENT (TORAUC)

The TORAUC algorithm belongs to the general framework
of successive convex approximation (SCA). In particular,
locally tight approximate monomials are introduced to up-
perbound the offloading decision constraints. The key is to
carefully choose the approximation functions to guarantee the
convergence of the algorithm to a KKT point with offloading
decisions arbitrarily close to binary. We now present the details
of TORAUC, concluding with a discussion on its convergence
properties and computational complexity.

A. TORAUC Algorithm

TORAUC is comprised of three major steps: 1) Replace
binary constraint with relaxed constraints that provide offload-
ing decisions arbitrarily close to binary; 2) Find locally tight
upperbound approximate monomial functions; 3) Iteratively
form and solve a sequence of geometric programming (GP)
problems optimally and update the approximate functions
based on the previous solutions.

1) Alternate Problem Formulation: In order to reformulate
problem (8) in the GP form, equality constraints must be
monomials as in the standard GP format. Nevertheless, the
offloading decision constraint in (1) cannot be directly written
as a monomial. Moreover, the feasible set of problem (8)
is not continuous as the offloading decisions can only take
binary values. Therefore, we relax the offloading decisions
and introduce the equivalent constraints (15)-(17) below, to
ensure the satisfaction of offloading decision constraints (1)
and (10) in the original problem. Furthermore, we move the
energy and delay terms involved in the cost function (6), and
cost variation ∆C

i from the objective (8) to the constraints
by introducing auxiliary variables {Ei, Ti, δi} to obtain the
following problem:

minimize
{xi,ri,Ei,Ti,δi}

N∑
i=1

[Ei + ρiTi + γδi] (11)

subject to (2)− (5), (9)

xliE
l
i(ωi, f

l
i)+ xai

piLi
biηi

+xci
piLi
biηi

≤ Ei,∀i,

(12)

xli
ωi
f li

+ xai

[
Li
biηi

+
ωi
fai

]
+ xci

[
Li
biηi

+
Li
raci

+
ωi
f c

]
≤ Ti,∀i, (13)

ρi

[
xli

∆ω
i

f li
+ xai

∆ω
i

fai
+ xci

∆ω
i

f c

]
+ xliE

l
i(∆

ω
i , f

l
i) ≤ δi,∀i, (14)

0 ≤ xsi ≤ 1, for s = l, a, c, ∀i, (15)
Mxsix

t
i ≤ 1, for s, t = l, a, c, s 6= t, ∀i, (16)

xli + xai + xci ≥ 1, ∀i, (17)

where M in (16) is a parameter chosen to be sufficiently large
to have the multiplication of the decision variables arbitrarily
close to zero. Constraint (16) ensures that for every user
i, the decision tuple (xli, x

a
i , x

c
i) contains at least two zero

elements, and since each element is less than 1 by constraint
(15) and they sum to at least 1 by constraint (17), the tuple
also includes an offloading decision element with the value of
1. As M →∞, the set of constraints (15)-(17) are equivalent
to constraints (1) and (10), and so the optimization problem
(11) is equivalent to problem (8).

2) Monomial Approximate Functions: Toward the GP for-
mulation, the constraint (17) needs to be further approximated
as there is a posynomial on the right-hand side. Proper
choice of approximation functions is of high importance as
it directly affects the convergence property. The following
lemma provides monomial approximation to a posynomial.

Lemma 1. Let hj be arbitrary positive values, and βj be
positive constants that sum to one. We have∑

j

hj ≥
∏
j

(
hj
βj

)βj

.

The equality holds if βj = hj/(
∑
j hj), ∀j.

Proof. Let vj = hj/βj . By Jensen’s inequality we have

log(
∑
i

βjvj) ≥
∑
j

βj log(vj)

⇒ log(
∑
j

hj) ≥
∑
j

βj log(
hj
βj

)

⇒
∑
i

hj ≥
∏
j

(
hj
βj

)βj

. (18)

The condition of equality is obvious. �
Using Lemma 1, we have the following upperbound mono-

mial approximation for all i:

1

xli + xai + xci
≤ 1(

xl
i

βl
i

)βl
i
(
xa
i

βa
i

)βa
i
(
xc
i

βc
i

)βc
i

, (19)

where βli , β
a
i , and βci are arbitrary positive constants that sum

to one. Thus, the following monomial inequalities provide a
stronger condition than constraint (17).

1(
xl
i

βl
i

)βl
i
(
xa
i

βa
i

)βa
i
(
xc
i

βc
i

)βc
i

≤ 1, ∀i. (20)

3) GP Formulation and Update Rule: We replace the
constraint (17) by the monomial constraints in (20). This leads
to a GP formulation as follows:

minimize
{xi,ri,Ei,Ti,δi}

N∑
i=1

[Ei + ρiTi + γδi] (21)

subject to (2)− (5), (9), (12)− (16) and (20).

The optimization problem (21) is a standard GP that can be
transformed into a convex program and solved efficiently and
optimally [19].

In TORAUC, we iteratively update the approximate func-
tions and solve a sequence of GP problems of the above form.
In particular, by solving each GP, TORAUC tries to improve
the accuracy of the approximations to a distinct minimum in
the original feasible set of (8). We update parameters βli , β

a
i ,

and βci as follows:

βsi =
xsi
∗

xli
∗

+ xai
∗ + xci

∗ , s = l, a, c, ∀i, (22)

where x∗i = {xli
∗
, xai
∗, xci

∗} is the optimal decisions of the
approximated problem (21) in the previous iteration. An exact
description of TORAUC is given in Algorithm 1. We next
show that TORAUC converges to a KKT point of prob-
lem (11).

B. TORAUC Convergence Properties

In this section, we prove that the proposed TORAUC
algorithm converges to a KKT point of problem (11), with
offloading decisions arbitrarily close to binary.

Algorithm 1 TORAUC algorithm

Input: An initial feasible offloading decision {xi}; error
tolerance ε.
Output: Locally optimal offloading decision {xi} and
resource allocation {ri}.
1: Compute for each user i, βli , β

a
i , and βci using (22).

2: Solve the resulting GP problem (21) to find an optimal
solution P t.
3: Repeat from Step 1, and terminate if ||P t − P t−1|| ≤ ε.

In particular, problem (11) belongs to the following family
of non-convex programs

minimize
x

f0(x)

subject to fj(x) ≤ 1, j = 1, 2, . . . ,m,

where f0(x) is a convex function, and fj(x), ∀j,
are non-convex. Denote convex approximate functions by
f̃j(x) ≈ fj(x). It has been shown that any SCA method
guarantees to converge to a KKT point of the original if the
following properties hold in each iteration [20]:
(P1) fj(x) ≤ f̃j(x), ∀x,
(P2) fj(x∗) = f̃j(x

∗), where x∗ is the optimal solution of the
approximated problem in the previous iteration,
(P3) ∇fj(x∗) = ∇f̃j(x∗).
We next show that TORAUC satisfies all three properties.

Proposition 1. The TORAUC algorithm converges to a
KKT point of optimization problem (11).

Proof. To ensure that TORAUC converges to a KKT point,
it is sufficient to prove that the approximation functions
introduced in (19) satisfy the three properties P1-P3.

(P1) In each iteration, since βsi , for s = l, a, c, are all
positive and

∑
s β

s
i = 1 according to (22), we always have

(19) by Lemma 1.
(P2) We further show that the equality in (19) holds at the

optimal solution of the approximate problem. For s = l, a, c,
according to (22), we have(

xsi
∗

βsi
∗

)βs
i
∗

=
(
xli
∗

+ xai
∗ + xci

∗
) xs

i
∗

xl
i
∗
+xa

i
∗+xc

i
∗
.

Combining the above for different cases of s yields

xli
∗

+ xai
∗ + xci

∗ =

(
xli
∗

βli
∗

)βl
i
∗(
xai
∗

βai
∗

)βa
i
∗(
xci
∗

βci
∗

)βc
i
∗

. (23)

(P3) First we note that the gradient of xli + xai + xci is an

all-one vector. Let us define F (xi) =
(
xl
i

βl
i

)βl
i
(
xa
i

βa
i

)βa
i
(
xc
i

βc
i

)βc
i

.
Then, for s = l, a, c,

∂F (xi)

∂xsi

∣∣∣∣
x∗
i

=

(
xsi
∗

βsi
∗

)−1 [(
xli
∗

βli
∗

)βl
i
∗(
xai
∗

βai
∗

)βa
i
∗(
xci
∗

βci
∗

)βc
i
∗]
.

Replacing βsi by the updates given in (22) and using (23) we
have
∂F (xi)

∂xsi

∣∣∣∣
x∗
i

=
[
xli
∗

+ xai
∗ + xci

∗
]−1 [

xli
∗

+ xai
∗ + xci

∗
]

= 1.

Hence, one can conclude that (P3) also holds. �

C. Computational Complexity Analysis
The GP problem (21) can be solved within ε precision by

the interior point method in O(log(V/ε)/ log(µ)) time, where
V is the total number of constraints in problem (21), and µ is
the updating accuracy parameter [19]. It is easy to show that
V = 11N+3. Moreover, computations required for monomial
approximations in (19) is O(N). Therefore, the amount of
computations in each iteration is O(N log(N/ε)/ log(µ)). The
number of iterations in the algorithm required to arrive at
solution depends on the curvature of the objective function,
which is difficult to quantify. In Section VI, we will present
numerical results for the run time of TORAUC.

V. EXTENSION TO MULTI-PROCESSOR CAP SCENARIO

In this section, we further study the scenario where instead
of a single powerful processor, the CAP contains multiple
processors, each can be shared among all users.

A. Multi-Processor CAP System Model
Having multiple processors at the CAP complicates the

offloading decision. In fact, due to the task indivisibility, users
need to further decide among the available processors at the
CAP. Assume that the CAP contains K identical processors,
denoted by K, each with maximum speed Fmax

a . Denote by
yki the fraction of the CAP processor k computing rate that is
assigned to user i, and let yi = [y1i , . . . , y

K
i]. Task i can only

be executed by CAP processors if the decision is to offload to
the CAP. Thus,

K∑
k=1

yki ≤ xai , ∀i. (24)

Furthermore, the sum of the processing rate fractions assigned
to users is less than 1

N∑
i=1

yki ≤ 1, ∀k. (25)

Since the computation tasks are indivisible, each user i can
only receive computation resources from one of the available
processors at the CAP. Similar to (16), this is formulated as

Myki y
q
i ≤ 1, k, q ∈ K, k 6= q, ∀i. (26)

Note that (26) implies that for every user and for a sufficiently
large M , only one of the processing rate fractions can be non-
zero.

Furthermore, the CAP processing rate assigned to a user is
limited to the total portion of computing resources allocated
to the user, and the maximum computing capability of a
CAP processor. Thus, we introduce an auxiliary variable zi,
representing the overall portion of a CAP processor assigned
to user i, and we have

fai ≤ ziFmax
a , ∀i, (27)

zi ≤
K∑
k=1

yki , ∀i. (28)

Thus, we formulate the problem of joint offloading deci-
sion and resource allocation for a multi-processor CAP with
unknown task computing cycle as

minimize
{xi,ri,yi,zi}

E

[
N∑
i=1

Ci

]
+ γ

N∑
i=1

∆C
i , (29)

subject to (1)− (5), (10), (24)− (28),

f li , f
a
i , bi, r

ac
i , zi, y

k
i ≥ 0, ∀i,∀k.

Due to the additional CAP processors, problem (29) is more
complicated than the original problem (8). If the tasks were
divisible, a subset of the CAP processors could jointly serve
the users’ tasks, and problem (29) would be reduced to prob-
lem (8), where we only deal with the overall CAP processing
rate assignment. Nevertheless, since computation tasks are
indivisible, each user task can only be processed by one of the
processors at the CAP. In fact, in problem (29) the processing
rate of each user is constrained by the maximum speed of
one CAP processor. Hence, the feasible set of (29) is smaller
compared with that of (8), and the solution of (8) can serve as
a lower bound to (29). To tackle this problem, in the following,
we show how TORAUC can be extended for a multi-processor
CAP.

B. TORAUC-MP Algorithm

Comparing optimization problem (29) with problem (8),
we observe that they share a similar structure except that
additional multi-processor CAP processing constraints (24)-
(28) are imposed on the system. Following the procedure
in Section IV, we first replace constraints (1) and (10) by
constraints (15)-(17). We move the energy and delay and cost
variation terms from the objective of (29) to the constraints
by introducing auxiliary variables {Ei, Ti, δi} to form the
following alternate problem:

minimize
{xi,ri,yi,zi,Ei,Ti,δi}

N∑
i=1

[Ei + ρiTi + γδi] (30)

subject to (2), (3), (5), (12)− (17), (24)− (28).

In order to cast the problem in the standard GP form,
we need to further approximate constraints (17) and (28).
Therefore, Lemma 1 is used again to provide a monomial
upperbound approximation for (28) as

zi
K∑
k=1

yki

≤ zi
K∏
k=1

(
yki
αk

i

)αk
i

, (31)

where αki are arbitrary positive constants such that
∑
k α

k
i =

1,∀i.
We replace constraint (28) by its upperbound monomial

approximation given in (31). This leads to a GP formulation

Algorithm 2 TORAUC-MP algorithm

Input: An initial feasible offloading decision {xi}; An
initial feasible CAP processing rate {yi}; vector error
tolerance ε.
Output: Locally optimal offloading decision {xi} and
resource allocation {yi, ri}.
1: Compute for each user i, βli , β

a
i , and βci using (22).

2: Compute for each user i, αki , ∀k ∈ K, using (34).
3: Solve the resulting GP problem (21) to find an optimal
solution P t.
4: Repeat from Step 1, and terminate if ||P t − P t−1|| ≤ ε.

as follows:

minimize
{xi,ri,yi,zi,Ei,Ti,δi}

N∑
i=1

[Ei + ρiTi + γδi] (32)

subject to
zi

K∏
k=1

(
yki
αk

i

)αk
i

≤ 1,∀i, (33)

(2), (3), (5), (12)− (16), (20), (24)− (27),

where constraint (33) comes from (28) and (31). TORAUC-
MP iteratively solves a series of GPs given by problem (32)
and the solution at each step is leveraged to better approximate
the constraints (20) and (33) for the next round. In particular,
similar to {βsi } updates in (22), αki updates are given by

αki =
yki
∗∑

q y
q
i
∗ , ∀i, (34)

where {yki
∗} is the optimal solution at the previous iteration.

The details of TORAUC-MP are given in Algorithm 2. Similar
to TORAUC, TORAUC-MP runs in O(N log(V/ε)/ log(µ)),
where V is the number of constraints. Note that in this case
V = NK(K−1)

2 + 14N +K + 2.
Proposition 2. The TORAUC-MP algorithm converges to

a KKT point of the optimization problem (30).
Proof. It is sufficient to show that the approximations in

(20) and (33) meet properties P1-P3. It is shown in the proof
of Proposotion 1 that (20) satisfies the three properties. The
structure of the upperbound monomial approximate functions
in (33) is similar to (20). Thus, it can be shown similarly (33)
satisfies these properties P1-P3. �

VI. TRACE-DRIVEN SIMULATION RESULTS

We investigate the performance of TORAUC via extensive
simulations over a generic cloud access network, using Google
cluster traces [6].

A. Simulation Setup

We use Google cluster usage traces to extract the users’
required computing cycles. To account for the relationship
between the task computing cycle and data size, we follow the
method in [21] and assume ωifc = ΓLi, where Γ is a random
variable with Gamma distribution with parameters α = 4 and

β = 200 . We consider the full range of possible ωi values,
i.e., ∆ω

i = ωubi − ωlbi .
The mobile device’s processor speed is set to 1.2 × 109

cycles/s. The device energy consumption is modeled by
Eli(ωi, f

l
i) = αlωif

l
i
κi with parameter values αl = 10−27

and κi = 2.3, as given in [18]. In addition, the total wireless
bandwidth between mobile users and the CAP is set to 40
MHz. Processing rate assigned to each user at the remote cloud
is 10× 109 cycles/s, and the overall CAP processing speed of
10×109 cycles/s is considered. In the multi-processor scenario,
the overall computing rate is equally divided among the CAP
processors.

We further compare the performance of TORAUC with
the following alternatives: 1) Random mapping, where each
task is served on a processor chosen with equal probability;
and 2) Pessimistic scheme, which conservatively minimizes
the maximum cost using wubi as the required computing
cycle; 3) Optimistic scheme, which optimistically minimizes
the minimum cost using ωlbi as the required computing cycle;
and 4) Optimal policy, where the optimal binary decisions are
obtained by exhaustive search.

B. Single CAP Processor

In Fig. 1-3, we study the effect of various parameters on the
performance of TORAUC in terms of average cost and cost
variation. We set by default γ = 0.1, F a = 1010 (cycles/s), and
N = 6, but vary each of them in different figures. The optimal
policy is obtained by exhaustive search over the decision
space, so it has an exponential computational complexity, i.e.,
O(3N). Therefore, we only compute the optimal policy for up
to 8 users as the required run time becomes excessively high
for cases beyond 8 users.

We observe that TORAUC significantly outperforms all
alternatives, and is nearly optimal over a wide range of
parameter values. From Fig 1b, we see that naive algorithms
such as the optimistic scheme and random mapping perform
poorly. A more conservative pessimistic scheme performs
better than the other naive algorithms. However, since it only
targets the worst-case cost, it is ineffective in reducing the
average cost or cost variation. In comparison, within the range
of parameter values under consideration, TORAUC incurs up
to 15% lower cost variation and three times lower average
cost.

C. Multiple CAP Processors

In Fig. 4 we further study the performance of TORAUC-
MP, where we assume that there are K = 4 processors at the
CAP. In this case, we are unable to compute the optimal policy
because of the drastically increased decision space. We see that
TORAUC-MP remains favorable against the other alternatives.
We also observe the tradeoff between the average cost and the
cost variation as we vary γ.

D. Computation Time Complexity

In Table I, we show the run time of TORAUC for K = 1
and TORAUC-MP for K = 4, in comparison with exhaustive

10-3 10-2 10-1

Control parameter

0

5

10

15

20

25

30

35

40

45

50

A
v
e
ra

g
e
 c

o
s
t

Random Mapping

Pessimistic scheme

Optimistic scheme

TORAUC

Optimal policy

(a) Effect of control parameter γ.

10-3 10-2 10-1

Control parameter

12

14

16

18

20

22

24

26

28

30

32

C
o
s
t
v
a
ri
a
ti
o
n

Random Mapping

Pessimistic scheme

Optimistic scheme

TORAUC

Optimal policy

(b) Effect of control parameter γ.

Fig. 1: TORAUC performance vs. control parameter γ

TABLE I: Average run time (seconds) comparison

No. of users TORAUC TORAUC-MP Optimal Policy (K=1)
4 10.32 16.59 71.32
6 14.98 23.56 392.77
8 21.85 32.26 2139.62

12 29.79 49.36 N/A
20 53.09 95.17 N/A
30 93.56 171.83 N/A

searching for an optimal policy for K = 1. They are obtained
on a computer with Intel core i7-85500 4.0 GHz processor
and 16 GB RAM. This table suggests that both proposed
algorithms have nearly linear run time in the number of
users, despite the exponential search space to find an optimal
policy. Furthermore, the substantial run time improvement of
TORAUC is achieved with negligible cost penalty. Combining
this with the complexity analysis in Section IV-C and Section
V-B, we see that both algorithms converge quickly and scale
well with respect to the number of users.

VII. CONCLUSION

We have studied joint offloading and allocation of com-
putation and communication resources with unknown task
computing requirement in a three-tier computing system. The

0.4 0.6 0.8 1 1.2 1.4 1.6

Overall CAP processing rate, F
a 1010

0

10

20

30

40

50

60

A
v
e
ra

g
e
 c

o
s
t

Random Mapping

Pessimistic scheme

Optimistic scheme

TORAUC

Optimal policy

(a) Effect of CAP computing rate F a (cycles/s).

0.4 0.6 0.8 1 1.2 1.4 1.6

Overall CAP processing rate, F
a 1010

10

15

20

25

30

35

C
o
s
t
v
a
ri
a
ti
o
n

Random Mapping

Pessimistic scheme

Optimistic scheme

TORAUC

Optimal policy

(b) Effect of CAP computing rate F a (cycles/s).

Fig. 2: TORAUC performance versus the CAP rate F a.

objective is to minimize a weighted sum of expected cost and
cost variation. We propose efficient algorithms TORAUC, for
when there is a single processor at the CAP, and TORAUC-
MP, for when there are multiple processors at the CAP. They
both converge to a KKT point of an approximate problem
that is arbitrarily close to the original problem. Through
trace-driven simulation, we show that TORAUC gives nearly
optimal performance, and both algorithms outperform existing
alternatives.

REFERENCES

[1] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “A survey
on mobile edge computing: The communication perspective,” IEEE
Communications Surveys & Tutorials, vol. 19, no. 4, pp. 2322–2358,
August 2017.

[2] B. Liang, “Mobile Edge Computing,” in Key Technologies for 5G
Wireless Systems, V.W.S Wong, R. Schober, D.W.K Ng, and L.-C. Wang,
Cambridge University Press, 2017.

[3] M.-H. Chen, M. Dong, and B. Liang, “Resource sharing of a com-
puting access point for multi-user mobile cloud offloading with delay
constraints,” IEEE Transactions on Mobile Computing, vol. 17, no. 12,
pp. 2868–2881, December 2018.

[4] D. B. Shmoys, J. Wein, and D. P. Williamson, “Scheduling parallel ma-
chines on-line,” SIAM Journal on Computing, vol. 24, no. 6, pp. 1313–
1331, December 1995.

2 4 6 8 10 12 14 16

Number of users, N

0

20

40

60

80

100

120

A
v
e
ra

g
e
 c

o
s
t

Random Mapping

Pessimistic scheme

Optimistic scheme

TORAUC

Optimal policy

(a) Effect of number of users N .

2 4 6 8 10 12 14 16

Number of users, N

0

10

20

30

40

50

60

70

C
o
s
t
v
a
ri
a
ti
o
n

Random Mapping

Pessimistic scheme

Optimistic scheme

TORAUC

Optimal policy

(b) Effect of number of users N .

Fig. 3: TORAUC performance vs. the number of users N.

[5] S. Ali, A. A. Maciejewski, H. J. Siegel, and J.-K. Kim, “Measuring the
robustness of a resource allocation,” IEEE Transactions on Parallel and
Distributed Systems, vol. 15, no. 7, pp. 630–641, June 2004.

[6] J. Wilkes, “More Google cluster data,” Google research blog, Novem-
ber 2011, posted at http://googleresearch.blogspot.com/2011/11/more-
googlecluster-data.html.

[7] J. Du, L. Zhao, J. Feng, and X. Chu, “Computation offloading and
resource allocation in mixed fog/cloud computing systems with min-max
fairness guarantee,” IEEE Transactions on Communications, vol. 66,
pp. 1594–1608, April 2018.

[8] M.-H. Chen, B. Liang, and M. Dong, “Joint offloading and resource
allocation for computation and communication in mobile cloud with
computing access point,” in Proc. IEEE Conference on Computer
Communications (INFOCOM), May 2017.

[9] M. Chen, B. Liang, and M. Dong, “Multi-user multi-task offloading
and resource allocation in mobile cloud systems,” IEEE Transactions
on Wireless Communications, vol. 17, no. 10, pp. 6790–6805, October
2018.

[10] T. Q. Dinh, J. Tang, Q. D. La, and T. Q. Quek, “Offloading in mobile
edge computing: Task allocation and computational frequency scaling,”
IEEE Transactions on Communications, vol. 65, no. 8, pp. 3571–3584,
April 2017.

[11] W. Yuan and K. Nahrstedt, “Energy-efficient soft real-time CPU schedul-
ing for mobile multimedia systems,” ACM Operating Systems Review
(SIGOPS), vol. 37, no. 5, pp. 149–163, October 2003.

[12] Z. Shi, E. Jeannot, and J. J. Dongarra, “Robust task scheduling in
non-deterministic heterogeneous computing systems,” in Proc. IEEE
International Conference on Cluster Computing, September 2006.

[13] W. Naji, V.-D. Cung, and M.-L. Espinouse, “Robust preemptive schedul-
ing on unrelated parallel machines under uncertain processing times,”

10-3 10-2 10-1

Control parameter

5

10

15

20

25

30

35

40

45

50

A
v
e
ra

g
e
 c

o
s
t

Random Mapping, M=4

Pessimistic scheme, M=4

Optimistic scheme, M=4

TORAUC-MP, M=4

(a) Effect of control parameter γ.

10-3 10-2 10-1

Control parameter

0

10

20

30

40

50

60

70

C
o
s
t
v
a
ri
a
ti
o
n

Random Mapping, M=4

Pessimistic scheme, M=4

Optimistic scheme, M=4

TORAUC-MP, M=4

(b) Effect of control parameter γ.

Fig. 4: TORAUC-MP performance vs. the control parameter γ.

in Proc. IEEE International Conference on Control, Decision and
Information Technologies (CoDIT), April 2017.

[14] J. P. Champati and B. Liang, “Single restart with time stamps for
computational offloading in a semi-online setting,” in Proc. of IEEE
International Conference on Computer Communications (INFOCOM),
May 2017.

[15] J. P. Champati and B. Liang, “Semi-online algorithms for computational
task offloading with communication delay,” IEEE Transactions on
Parallel and Distributed Systems, vol. 28, no. 4, pp. 1189–1201, April
2017.

[16] D. Karunakaran, Y. Mei, G. Chen, and M. Zhang, “Toward evolving
dispatching rules for dynamic job shop scheduling under uncertainty,”
in Proc. Genetic and Evolutionary Computation Conference, July 2017.

[17] A. P. Miettinen and J. K. Nurminen, “Energy efficiency of mobile clients
in cloud computing,” in Proc. of USENIX Conference on Hot Topics in
Cloud Computing, June 2010.

[18] J. Kwak, Y. Kim, J. Lee, and S. Chong, “Dream: Dynamic resource
and task allocation for energy minimization in mobile cloud systems,”
IEEE Journal on Selected Areas in Communications, vol. 33, no. 12,
pp. 2510–2523, September 2015.

[19] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge Univ.
Press, 2004.

[20] M. Chiang, “Geometric programming for communication systems,”
Foundations and Trends in Communications and Information Theory,
vol. 2, no. 1–2, pp. 1–154, 2005.

[21] W. Zhang, Y. Wen, K. Guan, D. Kilper, H. Luo, and D. O. Wu,
“Energy-optimal mobile cloud computing under stochastic wireless
channel,” IEEE Transactions on Wireless Communications, vol. 12,
no. 9, pp. 4569–4581, August 2013.

