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Abstract—We consider the problem of fair multi-resource
allocation for mobile edge computing (MEC). In MEC, to execute
tasks with demands on multiple types of computing resources in
the edge servers, the users must upload their tasks over a single
dedicated wireless communication link that exists outside the
servers. For this environment, we design a multi-resource allo-
cation mechanism that extends the notion of dominant resource
fairness (DRF) to accommodate an external resource, called DRF-
ER. It provides several highly desirable properties. First, DRF-
ER is envy-free, as no user prefers the allocation of another
user. Second, DRF-ER allocations are Pareto optimal, as no one
can improve its allocation without decreasing that of the others.
Finally, DRF-ER is strategy-proof, as no user has an incentive to
lie about its resource demand. Large-scale simulation driven by
Google cluster traces further shows that DRF-ER significantly
outperforms a naive extension of DRFH, which is a well-known
variant of DRF for multiple servers, leading to higher resource
utilization.

I. INTRODUCTION

User computing tasks usually require multiple types of
resources in the computing servers (e.g., memory and CPU
cores) [1]. In MEC, in addition to these computing re-
sources, the task input data and execution results are sent
through a shared wireless communication link to and from
the MEC servers. Hence, MEC requires the allocation of both
communication and computation resources. Different MEC
tasks consume vastly various amounts of these resources. For
instance, video analysis, language translation, face recogni-
tion, and augmented reality applications typically have CPU-
intensive tasks, graph analytics and data indexing may have
memory-bound tasks, and vehicle-to-infrastructure communi-
cation services can bottleneck on wireless communication link
bandwidth [2], [3]. In addition to diverse resource demand
profiles, an MEC system is possibly constructed from a variety
of server classes. These servers may have different processing
capabilities, memory sizes, and storage spaces. Moreover,
hardware upgrades, i.e., adding new servers and phasing out
existing ones, increase the server heterogeneity.

Developing a fair resource allocation mechanism is of
immense significance to guaranteeing QoE for different work-
loads in MEC. Under-allocation of resources degrades a user’s
QoE and over-allocation would adversely impact other users
in the shared MEC environment. In systems with a single
type of resource, the most popular allocation policy proposed
so far has been max-min fairness, which maximizes the
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minimum allocation received by a user in the system. In
MEC, however, server heterogeneity and diversity across the
resource demands present challenges to develop a fair resource
allocation mechanism.

To evaluate an allocation policy in a multiple-resource envi-
ronment, we check whether it satisfies several core properties
of a fair resource allocation policy [4], [5], [6], [7]:
• Envy-Freeness (EF): No user prefers the allocation of

another user.
• Pareto Optimality (PO): It should be impossible to in-

crease the resource amount of a user without decreasing
the allocation of another user.

• Strategy-Proofness (SP): Users should not be able to
benefit by lying about their resource demands. SP pro-
vides incentive compatibility, as a user cannot improve
its allocation by lying.

• Sharing Incentive (SI): The amount of resources each user
should receive is at least as much as simply splitting the
total resources equally.

These properties are trivially satisfied by max-min fairness
in systems with a single resource; however, in the multiple-
resource environment, it might not be possible to satisfy all of
them.

Ghodsi et al. [4] proposed Dominant Resource Fairness
(DRF), an allocation mechanism that describes a notion of
fairness when allocating multiple types of resources. DRF
computes the share of demanded resources for each user
and finds each user’s dominant share and the resource cor-
responding to the dominant share. Then, DRF applies max-
min fairness across users’ dominant shares. Ghodsi et al.
proved that DRF meets all four of the required properties (i.e.,
EF, PO, SP, and SI) when tasks are infinitesimally divisible.
Subsequently, Parkes et al. [5] extended DRF and studied the
problem of indivisible tasks. They proved that there is no
mechanism that satisfies PO, SI, and SP in that case.

While DRF and several subsequent works address the
demand heterogeneity of multiple resources, they all limit
the discussion to a simplified model where all resources
are concentrated into one server. In systems with multiple
heterogeneous servers, applying DRF per server may lead to an
allocation with arbitrarily low resource utilization [6]. Instead
of allocating resources separately in each server, Dominant
Resource Fairness for Heterogeneous servers (DRFH) jointly
considers resource allocation across all servers [6]. It defines
the dominant resource for a user based on the aggregate
of all the resources and then computes a max-min optimal



allocation with respect to each user’s share of such dominant
resource. DRFH satisfies EF, PO, and SP [6]. Unlike previous
mechanisms, Friedman et al. [7] directly allocated containers,
which are isolated bundles of resources. This differs from
the model in [4]-[6] as users cannot combine bundles. They
proved that in both single-server and multi-server systems,
no deterministic mechanism allocating containers to users can
satisfy PO, SP, and SI simultaneously. Instead, Friedman et al.
proposed Containerized-DRF, a randomized mechanism that
satisfies all of the desired properties on average in multiple
servers with indivisible jobs.

In this paper, we study the problem of fair resource allo-
cation in the MEC environment with heterogeneous servers.
Users have infinitesimally divisible tasks that require mul-
tiple computing resources on the MEC servers, as well as
communication bandwidth on a shared link. Although DRFH
and Containerized-DRF consider resource allocation across
heterogeneous servers, they cannot be directly applied here.
These mechanisms require a server in which every type of
resource is contained. However, in MEC, there is a single
dedicated wireless communication link that exists outside of
the computing servers.

The contribution and organization of this paper are as
follows. After describing the system model in Sec. II, we pro-
pose in Sec. III-A Dominant Resource Fairness with External
Resource (DRF-ER), a DRF generalization for environments
where a single communication channel is shared among users
and computing resources are pooled by heterogeneous servers.
In Sec. III-B we prove that DRF-ER retains most of the
desirable properties. We evaluate the performance of DRF-
ER via trace-driven simulations in Sec. IV, followed by
concluding remarks in Sec. V.

II. SYSTEM MODEL

We consider a set of mobile users that access edge comput-
ing servers over a shared communication channel. Let N be
the number of users in the system.

A. Edge Computing Servers

The number of servers and the number of resource types
in the servers (e.g., CPU and memory) are denoted by S
and R, respectively. The capacity of server s for resource
r is denoted by cs,r, and we define a capacity vector cs =
(cs,1, . . . , cs,R). The total capacity of the system is represented
by ĉ = (ĉ1, . . . , ĉR) where

ĉr =

S∑
s=1

cs,r.

The share of capacity of resource r in server s is

c̃s,r =
cs,r
ĉr

. (1)

B. Shared Communication Channel

The wireless communication link is a single dedicated
resource that exists outside of the computing servers. All users
share this link when they upload their tasks to the servers.

We denote user u’s demand per task for communication link
bandwidth by du,BW, and the total link bandwidth by cBW. It
is worth mentioning that the share of bandwidth, as defined
in (1), is c̃BW = 1.

C. Fair Resource Sharing
Let user u’s demand vector be du = (du,1, . . . , du,R, du,BW)

for each of its tasks. In this paper, we use the subscript
R+ 1 and BW interchangeably. Then, the share of demanded
resource r of user u is

d̃u,r =
du,r
ĉr

, r = 1, ..., R+ 1.

Following the terminology of DRF, we define the dominant
resource of user u as

r∗u = arg max
1≤r≤R+1

d̃u,r.

Then the dominant share of user u is d̃u,r∗u . Note that the
dominant resource for some users can be the communication
link bandwidth. For all user u and resource r, we further define

d̄u,r =
d̃u,r
du,r∗u

, r = 1, . . . , R+ 1 & u = 1, . . . , N

as the normalized demand.
Our objective is to develop a multi-resource fair allocation

scheme for this unique MEC environment, which retains the
core fairness properties that are achieved by multi-server
extensions of DRF such as DRFH. At the same time, the
proposed scheme should improve MEC resource utilization.

We note that DRFH is not directly applicable to our prob-
lem, since the shared communication bandwidth is a stand-
alone resource type separate from the computing servers. To
apply DRFH directly, we would need to consider the S com-
puting servers as servers with zero capacity for link bandwidth
and view the communication link as server S + 1 with zero
capacity for computing resources. However, DRFH cannot
support any task on any of these computing or communication
servers since users require both computing resources and link
bandwidth and no server contains these resources altogether.
Instead, in Sec. IV, we compare DRF-ER with an extension of
DRFH where each computing server is pre-assigned a portion
of the link bandwidth.

III. DRF-ER DESIGN AND PROPERTIES

A. Dominant Resource Fairness with External Resource
DRF-ER maximizes the minimum dominant share in the

system, subject to resource constraints.

max
{xu,s}

min
u

S∑
s=1

xu,s d̃u,r∗u (2a)

s.t.

N∑
u=1

S∑
s=1

xu,sd̃u,BW ≤ 1, (2b)

N∑
u=1

xu,s d̃u,r ≤ c̃s,r, r = 1, . . . , R & s = 1, . . . , S

(2c)



where xu,s is the number of tasks allocated to user u in
server s. Constraint (2b) refers to the link bandwidth capacity,
and (2c) refers to the resource capacity of each server.

Let xu = (xu,1, . . . , xu,S)T be a vector of the number
of tasks allocated to user u and x = (x1, . . . ,xN ). Further
utilizing an auxiliary variable g, the optimization problem (2)
can be re-written as follows:

max
g, {xu,s}

g (3a)

s.t.

S∑
s=1

xu,s d̃u,r∗u = g, u = 1, . . . , N, (3b)

(2b), (2c).

We can further simplify (2b) and rewrite the optimization
problem as

max
g, {xu,s}

g (4a)

s.t. g ≤ 1∑N
u=1 d̄u,BW

, (4b)

(2c), (3b).

We denote the optimal solution to problem (4) by x∗.
For every user u and server s, let Ãu,BW be the share

of link bandwidth allocated to user u, and Ãu,s =
(Ãu,s,1, . . . , Ãu,s,R) be the resource allocation vector, where
Ãu,s,r is the share of resource r allocated to user u in server
s. Let Ãu = (Ãu,1, . . . , Ãu,S) be the computing-resource
allocation matrix of user u, and Ã = (Ã1, . . . , ÃN ) be the
overall allocation for all users. Equation (5) calculates Ã∗u,s,r,
the share of resource r in server s that DRF-ER allocates to
user u:

Ã∗u,s,r = x∗u,s d̃u,r. (5)

The share of link bandwidth allocated to user u is

Ã∗u,BW =

S∑
s=1

x∗u,s d̃u,BW. (6)

B. Analysis of Core Properties

In this section, we study the four major properties as
explained in Section I. We first discuss how to determine the
number of tasks that a user can execute given some arbitrary
resource allocation that may not be optimal with respect to
problem (4). Let Xu,s(Ãu , Ãu,BW) be the number of tasks
user u can execute on each server by solving optimization
problem (7) below given Ãu and Ãu,BW:

max
{xu,s}

S∑
s=1

xu,s (7a)

s.t.

S∑
s=1

xu,s d̃u,BW ≤ Ãu,BW, (7b)

xu,s d̃u,r ≤ Ãu,s,r, r = 1, . . . , R & s = 1, . . . , S.
(7c)

Problem (7) may have multiple optimal solutions. One of the
solutions can be constructed from equation (8).

Xu,s(Ãu , Ãu,BW) =

Yu,s(Ãu , Ãu,BW)×min

{
1,

Ãu,BW∑S
s=1 Yu,s(Ãu , Ãu,BW) d̃u,BW

}
(8)

where

Yu,s(Ãu , Ãu,BW) = min
1≤r≤R

{
Ãu,s,r

d̃u,r

}
.

And the total number of tasks that user u can execute with
this arbitrary allocation matrix is
S∑
s=1

Xu,s(Ãu , Ãu,BW) = min

{
S∑
s=1

min
1≤r≤R

{
Ãu,s,r

d̃u,r

}
,
Ãu,BW

d̃u,BW

}
.

(9)
We now show that under the DRF-ER allocation, no user

prefers the allocation of another user.

Proposition 1. The DRF-ER allocation obtained by solv-
ing (4) satisfies EF.

Proof. Let us assume Ã∗ is the optimum allocation obtained
by (5) and (6). We need to show that if some user (e.g., u0)
gets another user’s (e.g., user u1) allocated resource it cannot
execute more jobs. In other words, we need to show that

S∑
s=1

Xu0,s(Ã
∗
u1
, Ã∗u1,BW) ≤

S∑
s=1

x∗u0,s.

According to equations (5), (6) and (9) we have
S∑
s=1

Xu0,s(Ã
∗
u1
, Ã∗u1,BW)

= min

{
S∑
s=1

min
1≤r≤R

{
x∗u1,s d̃u1,r

d̃u0,r

}
,

∑S
s=1 x

∗
u1,s d̃u1,BW

d̃u0,BW

}

=

S∑
s=1

x∗u1,s × min
1≤r≤R+1

{
d̃u1,r

d̃u0,r

}

=

S∑
s=1

x∗u1,s × min
1≤r≤R+1

{
d̄u1,r

d̄u0,r

}
×
d̃u1,r∗u1

d̃u0,r∗u0

.

Recall that we use BW and R+ 1 interchangeably. We know

min
1≤r≤R+1

{
d̄u1,r

d̄u0,r

}
≤

d̄u1,r∗u0

d̄u0,r∗u0

= d̄u1,r∗u0
≤ 1. Hence, we have

S∑
s=1

Xu0,s(Ã
∗
u1
, Ã∗u1,BW) ≤

∑S
s=1 x

∗
u1,sd̃u1,r∗u1

d̃u0,r∗u0

(10)

where x∗u0,s and x∗u1,s are obtained by solving (4). Further-
more, constraint (3b) implies that

S∑
s=1

x∗u1,sd̃u1,r∗u1
=

S∑
s=1

x∗u0,sd̃u0,r∗u0
. (11)

Using equations (10) and (11) together proves the claim.



We next show that under DRF-ER, no user can improve its
allocation without decreasing the allocation some other user.

Proposition 2. The DRF-ER allocation obtained by solv-
ing (4) satisfies PO.

Proof. Assume, by way of contradiction, that x∗ obtained
by solving (4) is not Pareto optimal. Thus there exists a
feasible x′ (i.e., satisfying (2b) and (2c)) such that for all
users

∑S
s=1 x

′
u,s ≥

∑S
s=1 x

∗
u,s and there exists some user u0

such that
∑S
s=1 x

′
u0,s >

∑S
s=1 x

∗
u0,s. Then, there exists some

δ > 0 such that

S∑
s=1

x′u0,s ≥
S∑
s=1

x∗u0,s + Sδ (12)

where S is the number of servers. Hence, there exists some
server s0 such that x′u0,s0 ≥ x∗u0,s0 + δ. Since x′ is feasible,
we have

N∑
u=1

S∑
s=1

x′u,s d̃u,BW ≤ 1 (13)

N∑
u=1

x′u,s d̃u,r ≤ c̃s,r, r = 1, . . . , R & s = 1, . . . , S. (14)

We construct x′′ by reducing δ tasks from user u0 in server
s0 and adding min

1≤r≤R+1
{ δd̃u0,r∑N

i=1 d̃i,r
} tasks in server s0 to each

user, including user u0. Thus,

x′′u,s =


x′u0,s0 − δ + min

1≤r≤R+1

{
δd̃u0,r∑N
i=1 d̃i,r

}
if u=u0
s=s0

x′u,s0 + min
1≤r≤R+1

{
δd̃u0,r∑N
i=1 d̃i,r

}
if u6=u0
s=s0

x′u,s0 if s6=s0
(15)

Now we check if x′′ is a feasible allocation. First, we study
constraint (2b).

N∑
u=1

S∑
s=1

x′′u,s d̃u,BW

=

(
S∑
s=1

x′u0,s − δ + min
1≤r≤R+1

{
δd̃u0,r∑N
i=1 d̃i,r

})
d̃u0,BW

+

N∑
u=1
u6=u0

(
S∑
s=1

x′u,s + min
1≤r≤R+1

{
δd̃u0,r∑N
i=1 d̃i,r

})
d̃u,BW

=

N∑
u=1

S∑
s=1

x′u,s d̃u,BW + min
1≤r≤R+1

{
δd̃u0,r∑N
i=1 d̃i,r

}
N∑
u=1

d̃u,BW

− δ d̃u0,BW

≤
N∑
u=1

S∑
s=1

x′u,s d̃u,BW +
δd̃u0,BW∑N
i=1 d̃i,BW

N∑
u=1

d̃u,BW − δd̃u0,BW

⇒
N∑
u=1

S∑
s=1

x′′u,s d̃u,BW ≤
N∑
u=1

S∑
s=1

x′u,s d̃u,BW (16)

Equations (13) and (16) show that x′′ satisfies constraint (2b).
Equation (14) and (15) imply that constraint (2c) is satisfied
in server s 6= s0. For r0 = 1, . . . , R in server s0 we have
N∑
u=1

x′′u,s0 d̃u,r0

=

N∑
u=1

x′u,s0 d̃u,r0 + min
1≤r≤R+1

{
δd̃u0,r∑N
i=1 d̃i,r

}
N∑
u=1

d̃u,r0 − δ d̃u0,r0

≤
N∑
u=1

x′u,s0 d̃u,r0 +
δd̃u0,r0∑N
i=1 d̃i,r0

N∑
u=1

d̃u,r0 − δd̃u0,r0

⇒
N∑
u=1

x′′u,s0 d̃u,r0 ≤
N∑
u=1

x′u,s0 d̃u,r0 ≤ c̃s,r.

Hence, x′′ is a feasible allocation.
For any user u 6= u0 we have
S∑
s=1

x′′u,s =

S∑
s=1

x′u,s + min
1≤r≤R+1

{
δd̃u0,r∑N
i=1 d̃i,r

}
>

S∑
s=1

x′u,s

⇒
S∑
s=1

x′′u,s >

S∑
s=1

x∗u,s ⇒
S∑
s=1

x′′u,sd̃u,r∗u > g∗

where x∗ and g∗ are obtained by solving (4). For user u0 we
have

S∑
s=1

x′′u0,s =

S∑
s=1

x′u0,s − δ + min
1≤r≤R+1

{
δd̃u0,r∑N
i=1 d̃i,r

}
. (17)

Equation (12) and (17) imply that
S∑
s=1

x′′u0,s ≥
S∑
s=1

xu0,s + (S − 1)δ + min
1≤r≤R+1

{
δd̃u0,r∑N
i=1 d̃i,r

}

⇒
S∑
s=1

x′′u0,s >

S∑
s=1

xu0,s ⇒
S∑
s=1

x′′u0,sd̃u0,r∗u0
> g∗.

Hence, for all users we have
∑S
s=1 x

′′
u,sd̃u,r∗u > g∗. This

contradicts the premise that g∗ is optimal for (4).

We next show that under the DRF-ER allocation, a user
cannot improve its allocation by lying.

Proposition 3. The DRF-ER allocation obtained by solv-
ing (4) satisfies SP.

Proof. Let g∗ and x∗ be the solution to problem (4) when
user u0 truthfully reports its demand. Let d̃ = (d̃1, . . . , d̃N )
be the share-of-demand matrix. For u 6= u0, d̃u may not be
user u’s actual share of demand vector. Similarly, let g′ and
x′ be the solution to problem (4), and Ã′u,s,r = x′u,sd̃

′
u,r and

Ã′u,BW =
∑S
s=1 x

′
u,sd̃

′
u,BW be the allocated resources when

user u0 misreports its demand. Let d̃′ = (d̃′1, . . . , d̃
′
N ) be the

misreported share-of-demand matrix. Note that d̃′u = d̃u for
all users u 6= u0 and d̃′u0

6= d̃u0
. We need to show that

S∑
s=1

Xu0,s(Ã
′
u0
, Ã′u0,BW) ≤

S∑
s=1

x∗u0,s.



Case 1. g′ ≤ g (i.e.,
∑S
s=1 x

′
u,sd̃

′
u,r′u
≤
∑S
s=1 x

∗
u,sd̃u,r∗u for

u = 1, . . . , N where r′u = arg max
1≤r≤R+1

d̃′u,r).

S∑
s=1

Xu0,s(Ã
′
u0
, Ã′u0,BW)

= min

{
S∑
s=1

min
1≤r≤R

{
x′u0,sd̃

′
u0,r

d̃u0,r

}
,

∑S
s=1 x

′
u0,sd̃

′
u0,BW

d̃u0,BW

}

=

S∑
s=1

x′u0,s min
1≤r≤R+1

{
d̃′u0,r

d̃u0,r

}

=

∑S
s=1 x

′
u0,sd̃

′
u0,r′u0

d̃u0,r∗u0

min
1≤r≤R+1

{
d̄′u0,r

d̄u0,r

}

≤

∑S
s=1 x

′
u0,sd̃

′
u0,r′u0

d̃u0,r∗u0

×
d̄′u0,r′u0

d̄u0,r′u0

≤

∑S
s=1 x

′
u0,sd̃

′
u0,r′u0

d̃u0,r∗u0

≤
∑S
s=1 x

∗
u0,sd̃u0,r∗u0

d̃u0,r∗u0

⇒
S∑
s=1

Xu0,s(Ã
′
u0
, Ã′u0,BW) ≤

S∑
s=1

x∗u0,s

Case 2. g′ > g (i.e.,
∑S
s=1 x

′
u,sd̃

′
u,r′u

>
∑S
s=1 x

∗
u,sd̃u,r∗u for

u = 1, . . . , N ).
Assume, by way of contradiction, that

S∑
s=1

Xu0,s(Ã
′
u0
, Ã′u0,BW) >

S∑
s=1

x∗u0,s. (18)

For all user i 6= u0, we have Xi,s(Ã
′
i , Ã

′
i,BW) = x′i,s. So

S∑
s=1

Xi,s(Ã
′
i , Ã

′
i,BW)d̃i,r∗i =

S∑
s=1

x′i,sd̃
′
i,r′i

= g′ > g

⇒
S∑
s=1

Xi,s(Ã
′
i , Ã

′
i,BW)d̃i,r∗i >

S∑
s=1

x∗i,sd̃i,r∗i

⇒
S∑
s=1

Xi,s(Ã
′
i , Ã

′
i,BW) >

S∑
s=1

x∗i,s. (19)

Note that d̃′i = d̃i and r′i = r∗i for i 6= u0. Equation (18)
and (19) contradict the Pareto optimality of DRF-ER.

To satisfy the SI property in conjunction with EF, SP, and
PO is non-trivial [6] and even impossible in systems with
indivisible tasks [7]. Similar to these prior designs, DRF-ER
does not satisfy SI as stated in the following proposition.

Proposition 4. The DRF-ER allocation obtained by solv-
ing (4) does not satisfy SI.

Proof. To prove this proposition, we give a counterexample.
Consider a system consisting of two users. User 1’s tasks
require < 1 CPU, 1 GB >, and User 2’s tasks require
< 3 CPU, 2 GB >. Each user requires 1/10 of the link
bandwidth to upload a task. There are two servers in the

system. Server 1 contains < 1 CPU, 2 GB > and server
2 contains < 4 CPU, 3 GB >. DRF-ER allocates 1 task to
user 1 on server 1, and 1.4 and 0.8 task to user 1 and 2 on
server 2, respectively. However, user 2 can execute more tasks
by evenly partitioning each server.

IV. EXPERIMENTAL RESULTS

In Sec. III-B, we have studied the desirable properties of
DRF-ER. In this section, we further evaluate its performance
in resource utilization and compare it with a naive extension
of DRFH. First, we study a simple scenario in which users
dynamically arrive and leave the system and demonstrate how
DRF-ER improves resource utilization in comparison with
DRFH. Then, we evaluate the performance of DRF-ER in a
more realistic setting via large-scale simulation using Google
cluster traces.

Figure 1 compares the performance of DRF-ER and DRFH
when users dynamically join and leave the system. Consider a
system with two servers. Server 1 contains 5 CPU cores and 10
GB of memory, and server 2 contains 10 CPU cores and 5 GB
of memory. Three users arrive at this system. User 1 requires
1 CPU core and 2 GB of memory per task, user 2 requires 2
CPU cores and 1 GB of memory per task, and user 3 requires
3 CPU cores and 2 GB of memory per task. The users share a
wireless communication channel to offload their tasks onto the
servers. User 1, 2, and 3 require 2/15, 1/15, and 2/15 of the
wireless communication link bandwidth per task, respectively.

Unlike DRF-ER, to apply DRFH, we need to first assign a
link bandwidth capacity to each server. Here, for the purpose
of illustration, we consider the case where each server receives
half of the link bandwidth in DRFH. The scenario under study
in Figure 1 consists of five phases. In phase one, user 1 is
the only active user in the system. In DRF-ER, user 1 runs
5 tasks on server 1 and 2.5 task on server 2. In DRFH,
however, the number of tasks on server 1 decreases to 3.75 so
that tasks on server 1 do not consume more than half of the
link bandwidth. The second phase starts after 100 seconds
when user 2 joins the system. DRF-ER allocates server 1
to user 1 and server 2 to user 2. Thus, each user can run
5 tasks. As shown in Figure 1, DRFH fails to allocate the
resources optimally and all resources are under-utilized. At
t = 200, user 3 joins the system. In this phase, all users
are active, and the performance of DRF-ER and DRFH are
identical. Similar to the first and second phases, in the fourth
phase, when user 2 leaves the system, DRFH fails to find the
Pareto-optimal solution, and all resources are under-utilized
by 8 percent. After 100 seconds, user 1 leaves the system
and the two resource allocation policies have similar perfor-
mance. We emphasize here that DRF-ER achieves improved
resource utilization while satisfying the desirable properties as
explained in Sec. III-B. It is unknown whether any division of
the communication bandwidth in applying DRFH can achieve
the same properties.

Moreover, we use Google cluster-usage traces [8] to com-
pare the performance of DRF-ER and DRFH. Each user wants
to submit a job to the servers, and each job is divided into tasks
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Fig. 1. Performance of DRF-ER and DRFH in a dynamic scenario. The
allocation derived by DRFH is not Pareto optimal in phases 1, 2, or 4.
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Fig. 2. Time series of resource utilization with Google traces.

with the same resource demand. The arrival time, duration, and
resource demand (CPU and memory) of the tasks are available
in the traces. To estimate the required bandwidth of the tasks,
we assumed that du,CPUfCPU = Xdu,bps, where du,CPU is
the CPU demand of user u, fCPU is the CPU frequency of
the server, du,bps is the required bit rate of user u and X
is a random variable with Gamma distribution [9]. In this
paper, we follow the method of [9] and use α = 4 and
β = 200 to generate X . We consider a general MEC system
with frequency division multiple access (FDMA) and estimate
d̃u,BW, the demanded link bandwidth of user u, based on du,bps.
We take the 4-hour computing demand data from the Google
traces and simulate their processing on a smaller MEC system

of three servers with a capacity of 0.125 CPU and 0.125
memory and one server with capacity 1 CPU and 1 memory.
The resource demand and capacity are normalized so that the
maximum capacity of servers is 1. Figure 2 compares the
resource utilization of DRF-ER and DRFH, where the link
bandwidth is equally distributed among servers for DRFH.
This figure illustrates that DRF-ER outperforms DRFH in
the utilization of all resources. This is mainly because the
latter is unable to dynamically compute fair allocation of the
link bandwidth over time while concurrently maintain the fair
allocation of the computing resources. In contrast, DRF-ER
is specifically designed for this purpose, to improve resource
utilization while achieving the fairness properties as proven in
Sec. III-B.

V. CONCLUSION

In this paper, we consider a system where mobile users run
their tasks on edge computing servers, where each task re-
quires a specific amount of computing resources and commu-
nication link bandwidth. Since the communication link exists
outside of the computing servers, we cannot directly apply
the conventional multi-resource fair allocation mechanisms.
The proposed scheme, DRF-ER, generalizes DRF and is
shown to satisfy important desirable properties. Notably, DRF-
ER is envy-free, Pareto optimal, and truthful. Furthermore,
our trace-driven simulation results show that, compared with
a naive extension of DRFH, DRF-ER achieves significant
improvements in resource utilization. Finally, we remark that,
although MEC serves as an important example application in
this work, DRF-ER has general applicability in multi-resource
fair allocation where there exists one type of resource that
resides external to servers containing the other resource types.
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