Mobility Modeling for Two-Tier Integrated Wireless Multimedia Networks

Ahmed H. Zahran and Ben Liang
Department of Electrical and Computer Engineering
University of Toronto
Email: {zahran,liang} @comm.utornoto.ca

Abstract

This paper presents a novel mobility modeling approach
for a two-tier integrated wireless system that accommo-
dates the system complexity represented by the residence-
time correlation between different access networks. Addi-
tionally, a novel session model is presented as an adapted
version of the proposed mobility model. Furthermore, we
develop an analytical framework using this session model
to obtain several salient performance metrics such as net-
work utilization times and handoff rates. Simulation results
demonstrate that the proposed mobility model is substan-
tially more accurate than existing modeling techniques, and
that the proposed analytical framework provide tractable
performance evaluation based on the new mobility model.

1 Introduction

The service convergence of heterogeneous radio access
technologies has been envisioned as a viable solution to
the prevalence of multimedia application over wireless net-
works in the near future, in order to improve both the
network resource utilization and user perceived quality-of-
service. The integration of wireless local area networks
(WLANSs) and 3G cellular networks is an example for this
approach [14, 3, 5], where the users will enjoy the com-
plementary advantages of both networks including the uni-
versal coverage of cellular networks and the low cost and
sufficient resources of WLANs wherever they are available.
In an integrated model, users will transfer their utilized re-
sources as they handoff from one access technology to an-
other, known as vertical handoff (VHO) [15], and between
access points or base stations of the same access technol-
ogy, known as horizontal handoff (HHO). Valid teletraffic
and mobility models are crucial for proper system design
and performance evaluation of different design alternatives.

The existing modeling and analysis methods for homo-
geneous cellular networks are not suitable in the new het-
erogeneous environment. In these methods, the mobile ter-
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Figure 1. 3G-WLAN Integrated System

minal (MT) mobility is modeled by the cell residence time,
defined as the duration spent by the MT within a cell. Vari-
ous types of random variables are used to represent the cell
residence time such as the phase-type (PH) distribution [1],
Erlang distribution [9, 8], Gamma distribution [7, 8], hyper-
exponential and hyper-Erlang [9], and SOHYP [12]. These
models are sufficient to describe the MT mobility since the
exact MT position within the cell is irrelevant. On contrary,
in heterogeneous systems, this level of granularity is not
adequate to characterize the MT mobility because the MT
uses different access technologies within the same cell. A
naive solution to model a two-tier (e.g., 3G/WLAN) het-
erogeneous system is extending the above methods to use
independent, generally distributed random variables to rep-
resent different residence times. However, as will be shown
later, this simple solution ignores the correlation between
the residence times and can lead to inaccurate performance
estimation results for many multimedia applications.

In this paper, we develop a novel model for MT mobil-
ity in an integrated two-tier heterogeneous wireless system.
For the purpose of illustration, we use the integration of
3G and WLAN as an example, as shown in Fig. 1. In this
model, we adopt a new approach that accommodates the
correlation between cell and WLAN residence times with
a physical model based on tier transition phases. It utilizes
the available data obtained from real field measurements or
topology simulation to physically represent the MT mobil-



ity rather than the simply distribution fitting used in the clas-
sical approaches. Additionally, we prove the model validity
by comparing the results of simulation and analysis based
on an adapted version of this mobility model, for a wide
range of multimedia applications.

To the best of our knowledge, this work is the first study
that addresses mobility modeling and performance analysis
in an integrated heterogeneous network. We show that the
proposed methods provide significantly improved accuracy
in mobility modeling and performance evaluation for future
wireless networks and mobile computing systems, in which
multiple types of services (voice, data, and/or multimedia)
will be supported over multiple access technologies.

2  Mobility Modeling
2.1 Two-Tier Mobility Model

In homogeneous systems, the collected mobility infor-
mation, e.g., residence cell time measurements, is fitted to
a versatile distribution such as PH, Gamma, Erlang, hyper-
Erlang, or SOHYP distributions to characterize the MT mo-
bility used in system performance analysis. A common as-
sumption in these models is the independence between dif-
ferent random variables that control the system dynamics.
However, in heterogeneous systems, more variables are re-
quired to model the MT mobility including WLAN, inter-
WLAN, and cell residence times. On contrary to the ho-
mogeneous case, the independence of these time variables
can not be assumed, since the cell residence time can be
expressed as a summation of the MT’s WLAN and inter-
WLAN residence times within the same cell. Hence, fit-
ting the available information about these variables inde-
pendently will not result in an accurate mobility model. The
proposed modeling approach considers this fact, and con-
sequently, results in better estimation for different perfor-
mance metrics using PH random variables.

Generally, a PH random variable is defined as the ab-
sorption time of an evanescent finite-state Markov process
to a single absorbent state. This process can be expressed
using an infinitesimal generator matrix, QQ, and an initial
state distribution vector v as follows [10]
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Additionally, the corresponding PH distribution can be
defined by («,T), such that if a random variable X is
PH(a,T) of order p, then its probability density function
is expressed as

f(z) = —aexp(Tz)Te, = >0, 3)

by k

Figure 2. Mobility Model

where e is a column vector of dimension p with all its ele-
ment equal one.

Generally, there are two different ways for modeling
with PH distributions [6], a fictitious approach and a phys-
ical approach. In the former, PH distributions are used as a
versatile, dense, and algorithmically tractable class of dis-
tributions defined on the non-negative real numbers; while
in the latter, the phases or blocks of phases represent a real
process in the system. In this paper, we used the latter ap-
proach to model MT mobility.

Without loss of generality, we assume that the MT
prefers WLAN due to its larger bandwidth and lower cost.
Hence, the MT will start its session in WLAN if it is avail-
able, and it will handoff to a WLAN whenever one is en-
countered. Therefore, the MT lifetime within the any cellu-
lar cell consists of consecutive durations spent in WLANs
and in between them until it eventually exits this cell to a
neighboring one. This exit may be a horizontal handoff at
the cell borders or through a WLAN that overlap with more
than one cell as shown in Fig. 1.

Thus, in our mobility model, we represent the cell resi-
dence time as a special type of PH random variable known
as the Coxian random variable [4], whose graphical repre-
sentation is shown in Fig. 2.

However, we do not simply fit the measurement to esti-
mate the parameters of this random variable. Rather, we
analogously represent the durations spent by the MT in
WLANS and in between them as the duration spent by the
random variable in different phases before being absorbed
(exiting the cell).

In Figure 2, each phase is labelled with a letter and
a number. The former represents the access technology,
and the latter represents the phase sequence. The tech-
nology labels A and B may respectively represent cellular
and WLAN or WLAN and cellular technologies depend-
ing on the accessed technology when the MT starts its cell
visit. The MT may start its cell residence within or out-
side a WLAN. Whenever the MT is exiting a specific phase
i, where ¢ = 1,2,...,k — 1, it exits the cell with proba-
bility b; or continue to the next phase with probability a;,
where a; + b; = 1. We assume that the duration spent by
the MT in phase A; or B; is exponentially distributed with
mean 1/y;'. When the MT is in the last phase k, which

"More general distributions can be used. The results show that using



may be WLAN or cellular, it exits the cell with probabil-
ity by = 1. In the rest of the paper, we will subdivide the
phases into two subsets C' and W that correspond to cellular
and WLAN phases respectively.

The proposed model represent the cell residence time as
a summation of the durations spent by the MT within the
WLANS and in between them. Hence, it accommodates the
correlation between the cell residence time and both WLAN
and inter-WLAN residence times. The proposed model is
an approximated one in the sense that it truncates the num-
ber of alternating VHOs to k, the Coxian distribution order.
However, the obtained results show it appropriately repre-
sents the system. The model order, &, is determined from
the obtained measurements such that the probability of cell
exit exceeds a pre-defined probability threshold.

2.2 Model Parameter Estimation

In this subsection, we discuss how to obtain the parame-
ters of the model shown in Fig. 2 from the collected data.
The data can be obtained from field measurements or by
simulation. In this work, we use the second approach since
field measurements are not yet available for these systems.
The following information is collected for each visited cell:

e Initial technology, defined as the access technology
used by the MT when it enters the cell,

e WLAN durations, defined as the time spent by the MT
in a WLAN,

e Inter-WLAN durations, defined as the time spent by
the MT in between WLANSs, and

e Number of WLAN boundary crossings.

The parameter estimation process will be repeated for two
different models based on the two types of initial networks.
Hence, the obtained data are first clustered into two separate
data partitions based on the initial technology. Then, for
each partition, we have

Nc(i — 1)
Z;‘)iifl Nc(]) ’

where N, (i) denotes the number of cells in which exactly 4
VHOs are performed. Furthermore, p; is calculated as the
inverse of the average duration spent by the MT in the cor-
responding physical network visit. For example 1/p;is the
mean duration spent by the MT in their first visit to network
A. Similarly, 1/ 5 is the mean duration spent by the MT in
their first visit to network B, and soon fori = 1,2, ..., k—2.
Finally,the last two phases parameters are calculated from
the information of the remaining visits for the correspond-
ing networks.

b =

exponentially distributed phases provides an acceptable tradeoff between
complexity and accuracy.

3 Session Model and Performance Analysis

In this section, we present a session model that can be
used to analyze the performance of different applications.
We study the performance within one cellular cell starting
from the moment at which the MT starts using the cell re-
sources until the session ends or handoff to a neighbor cell.

Each application S is characterized by two parameters,
which are arrival rate according to a Poisson process with
parameters A2, and holding times tCSh and tih that are ex-
ponentially distributed with parameters )\fh and )\fu ,, for cel-
lular network and WLAN respectively,

These parameters depend on the application nature; for
example, conversational applications such as voice over IP
(VoIP) and video conference (V-conf) are expected to pre-
serve the same holding time and bandwidth requirement
in both networks. On the other hand, streaming applica-
tions, such as video on demand (VoD) and radio on de-
mand (RoD), are bandwidth greedy application due to their
buffering capabilities. Hence, the WLAN session holding is
smaller than cellular session holding time, i.e., )\ih > )\fh.

In the following, we first present the session model. We
then present a framework to obtain some of the salient per-
formance metrics.

3.1 Session Model

The session model is an adapted version of the mobility
model with few modifications to the physical interpretation
of each phase and the absorbing state. In the session model,
each phase represents both MT activity status and the uti-
lized access technology. Hence, a specific phase may be
exited due to the exiting of the current access technology,
the termination of the current session (normal or forced ter-
mination), or handoff to a neighboring cell. Consequently,
different absorbing states are defined including Term state,
normal session termination, SHH state, successful horizon-
tal handoff, HHFT state, forced termination during horizon-
tal handoff, and VHFT state, forced termination during ver-
tical handoff.

Hence, the generator matrix of the session Markovian
process will have the following structure

Q. = Qrr Qrerm Qswr Quwurr QvHFT
s 0 0 0 0 0

“4)
where
—(pi+A3,) Vi=j,i€C
—(pi+Ay,) Vi=j.ieW
Qrr = [gi;] = aipi NVj=i4+1,ieC
aiui(l—Pv) ,VJ:Z+17Z€W
0 , otherwise

®)

)



Qrem == { TS
Qsuu = [gi1] = { 21518 _ ]ZZZ; ::Z E I?V ’
Quurr = [¢ia] = { ZZZ:?JL :zz E g[/ ’

Qvurr = [gi1] = { gimpv ::2 g %/

Once the session model infinitesimal generator matrix is ob-
tained, one can obtain different performance metrics using
standard Markovian analytical techniques as shown in the
next subsections.

3.2 Network Utilization Times

The utilization time of a specific network is the expected
time spent by the MT in the corresponding transient state
before being absorbed. This metric can be obtained by ana-
lyzing the Markovian session process dynamics determined
by

dm(t)
dt

where 7(t) represents the transient state probability vector
and 7, represents the initial state distribution. The expected
time spent in each state during interval [0,t), denoted as
L(t), can be expressed using the cumulative state probabil-

=7(t)Qs, 7(0) =To, (6)

ities and equals L(t) = fot m(u)du, which can be written as
(2]
dL(t)
dt
Thus, the time spent in each transient state before being
absorbed can be obtained by taking lim;_, o, L (¢), where
L (t) is a reduced version of L(t) restricted to the transient
states. This step is valid only for Markovian process whose
initial probability is limited to the transient states as in our
case. Hence, by taking the limits in (7), we have

=L(t)Q + «(0), L(0)=0. @)

Ly (00) = —m10Qopr 8)

where 7¢ is a reduced initial distribution vector restricted
to the transient phases. For handoff sessions, this distri-
bution will be equal to the initial state distribution of the
mobility model PH distribution, i.e. , while for new ses-
sions, it equals the initial state distribution of the residual
cell residence time, 719 = (T te)"taT! [10].

Consequently, the expected cellular network utilization
time in the integrated model will be L. = >, - Lz(i)
and the expected WLANSs utilization time will be L,, =
> iew L (4). Finally, the session cell dwelling time, Ly =
L.+ L,,.

3.3 Horizontal Handoff Rate

The handoff rate is defined as the expected number of
generated handoffs from a new session. In an integrated
two-tier network, the handoff rate differs from the homoge-
neous case due to session dynamics variations due to em-
bedded system heterogeneity. Let P)?B denotes the absorp-
tion probability to state X given that a session of type B
starts in network A. These prababilities can be obtained us-
ing standard Markovian analysis on Qs [13]. Additionally,
let P,, denotes the probability that the initial network is
WLAN, which equals the percentage of WLAN coverage;
similarly, P., denotes the probability that the initial net-
work is the cellular network, equals (1 — P,,). Hence,
the probability that a handoff session will normally termi-
nate within the same cell or will be blocked during vertical
handoff, P, 7, can be expressed as Pj,; = Pyo(1 — P;L"") +
Peo(1 — Ph), where PP = PYR . + Pl o and PEM =
Py 1 + P&l . Furthermore, the probability that a hand-
off session will perform exactly one successive horizontal
handoff, P, can be expresses as P, = Pwo(PﬁI’fI rr
Pgfiri Prs) + Peo(Pflyrpr + P§irpPay)- Consequently,
one can derive the marginal distribution function of hori-
zontal handoff number, H, assuming the session starts in a
WLAN as follows

P(HZO):PZ’%)S"77L+P\7/U?IFT7
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P(H = k) = PgﬁH(PwoPgI];H + Pcopglll{H)k72Pss k>2

Hence, the expected number of horizontal handoffs for a
session starting in a WLAN will be

E{H|W} i kP(H = k)
k=0

2—x
Prter + Pshin (th"‘Pss ((11,)2

where x = PwoPg’f} g+ PCOP§’}{ g7~ Similarly, the handoff
rate for a session starting in the cellular network is

cn cn 2—z
E{H|C} = PRy pr+PShn (th + Pss ((1_33)2>> :

Hence, the total handoff rate, Ny g, equals
Ny = E{H|W}Py, + E{H|C}(1 — Pyy,) .
3.4 Vertical Handoff Rates

There are two types of vertical handoffs: upward and
downward handoffs. The former is defined as the transition
from a WLAN to the cellular network, and the latter is the
reverse case. These two types are also known as move out
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(MO) and move in (MI) respectively, as shown in Fig. 1.
The latter taxonomy is based on the fact that WLAN is con-
sidered a preferred network to cellular network due to its
higher bandwidth and lower cost. In this section, we derive
the marginal distribution of the number of MIs and MOs
from which we obtain vertical handoff rates. Similar to the
horizontal handoff rate, the vertical handoff rates depend on
the initial network within the cell.

We define the phase exit probability, P.(4), as the prob-
ability that the session duration is larger than the residence
time of phase i. Hence,

1 Niel
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Additionally, we denote P,4(7) the probability of two con-
secutive successful vertical handoffs within the same cell
assuming the MT is in phase . This probability can be ex-
pressed as

va(i) = Pe(i)aiPe(i + 1)ai+1(1 — Pv) .

Using these probabilities, the distribution of the number of
MIs assuming that the session start outside a WLAN can be
derived as follows:

P(MI=0|C)=1-P.(1)ay
2k—1

I Pti)a
i=1

(1= Py(2k)] , k =1,2, ..., MI oy -

P(MI = k|C) = (1- P,

Similarly, the distribution of the number of MOs given the
session start outside a WLAN can be derived as follows:

P(MO = O|C) =1- Pe(l)a1P6(2)a2

2k
H Pe(i)ai
i=1

1= P2k +1)],k=1,2,... MIppas .

P(MO =k|C) = (1— P,k 1

The derivation for the distributions of the numbers of
MIs and MOs, given the session starts in a WLAN phase, is
similar to the above and is omitted for brevity.

Then, the MI rate N, can be calculated by

Nyr = RuoPnE{MﬂWN} + PCOP"E{MI‘CN} +

PuoP  E{MI\WH} + P,,P,E{MI|CH}

where E{M I|AB} is the expected number of Mls in a ses-
sion of type B starting in network A, P,, and P, are the
probabilities that a session is a new and a handoff session
respectively, and can be expressed as P, = m , P, =
I f ]{,IﬁH The derivation for the MO rate, N0, is similar
and is omitted. Finally, we have the vertical handoff rate

Nyrro = Nyr + Nyro.

Table 1. Application Parameters
VoIP | Vconf | RoD | VoD
1/Aeh 3 30 60 90
1/ Awh 3 30 10 15

4 Simulation Results

We perform simulation in Matlab to validate the analyti-
cal framework and demonstrate the superior accuracy of the
proposed mobility mode in comparison with the traditional
independent model.

Square cells are used for simplicity of illustration. Each
cell is sub-divided into N subdivisions, where WLANSs are
randomly located with a certain density in the interior of a
cell. The topology of WLAN:S in different cell are assumed
to be different, so that when an MT handoffs to another cell,
it experiences a new WLAN topology.

We adopt a two-dimensional Gauss-Markov movement
model from [11], as it can be easily tuned to represent
a wide range of user mobility patterns including both the
random-walk and the constant velocity fluid-flow models.
In this model, a MT velocity is assumed to be correlated in
time and is modeled by a Gauss-Markov process. In its dis-
crete version, at time n, the MT velocity in each dimension,
Up, 1S given by

Up = QpUp—1 + (]- - av)lfm + 1- a% Tn—1, )
where o, represents a past velocity memory factor such that
0 < a <1, p, is the asymptotic mean of v,,, and x,, is
an independent and stationary Gaussian process with zero
mean and standard deviation o, where ¢ is the asymptotic
standard deviation of v,,.

The mobility parameters v, (i, and o equal 0.9, 0.5, 0.5
respectively. additionally, the parameters for four common
applications are shown in Table 1 . Additionally, WLANs
are assumed to overlap with 30% of the cell area. In applica-
tion simulations, the collected results represent an average
of five thousand sessions.

The simulation results are compared with the analysis
results for the proposed physical phase-transition model
and the independent residence-time PH distribution fitting
model. Figures 3-5 illustrate the cellular and WLAN net-
work utilization times, horizontal handoff rate, and vertical
handoff rate, respectively. All figures show that the pro-
posed mobility model and analysis framework match very
well with simulation, usually with less than 10% discrep-
ancy. In comparison, the independent residence-time model
can lead to 45% discrepancy, especially in estimating the
vertical handoff rate for high-demand applications such as
video-on-demand.
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5 Conclusion

The integration of heterogeneous wireless access net-
works is envisioned as a feasible solution to the tremen-
dous resource demand by wireless multimedia applications.
This integration process requires proper mobility and traf-
fic models to allow investigation into the effectiveness of
different designs. In this paper, we develop a novel phys-
ical phase-based mobility model for an integrated two-tier
system consisting of 3G and WLAN access technologies,
which accommodates the correlation between the residence
times in different tiers. Additionally, we develop a new ses-
sion model and use it to obtain several performance metrics
including network utilization times and horizontal and ver-
tical handoff rate. Simulation and analysis results demon-
strate that the proposed model is mathematically tractable,
while significantly outperforming the traditional indepen-
dent residence-time models for a wide range of multimedia
applications.
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