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Abstract— Throughput optimal scheduling policies in general
require the solution of a complex optimization problem. The
past literature has shown that the complexity of this optimization
problem can be greatly reduced, but at the expense of memory
requirement that is exponential with the number of users. In this
paper, we study the stability region of a class of linear-memory
scheduling policies for time varying channels, and investigate how
the channel memory impacts the supportable input rates. The set
of scheduling policies in this paper covers a wide spectrum of
resource allocation algorithms, which allows us to study policies
with different complexity levels. In particular, we are able to model
a class of low-complexity scheduling policies with linear memory,
which are suitable for practical implementation.

I. INTRODUCTION

Network layer capacity region is defined as the closure of
the set of all input rates that can be stably supported by the
network using any possible scheduling policy [1][2]. Obviously,
an optimally designed network controller should achieve the
highest possible throughput while ensuring network stability.
Tassiulas and Ephremides in their seminal work [1] proposed a
throughput optimal scheduling policy that stabilizes the network
for any input rate that is within the network layer capacity
region. Under time varying channel conditions, throughput
optimal policies generally require the solution of a complex
optimization problem involving access to information about
the input queue backlog and the channel states. Recently, the
authors of [3][4] showed that the complexity of throughput
optimal schemes can be greatly reduced, but at the expense
of memory requirement that is exponential with the number of
users.

In this paper, we study the stability region of a general
class of scheduling policies that have only linear memory
requirement. Such scheduling policies are more scalable, but
they generally do not achieve the throughput capacity. Hence
we ask the question, “How much sub-optimality in the network
throughput is introduced by the reduced memory requirement?”
Clearly, the answer depends on the characteristics of the time-
varying channel, as well as the complexity of the scheduling
policy.

Following the general approaches studied in [5][3][4], the
scheduling policy considered in this paper uses a randomized
algorithm to generate a candidate resource allocation vector for
the problem of throughput optimality in each timeslot. Then,
by comparing the candidate and the previously used allocation
vector, the policy utilizes an updating rule to select the most
appropriate allocation vector for the current timeslot. The set of
allocation-vector selection algorithms considered in this paper

covers a wide spectrum which contains different algorithm with
different complexity levels.

The use of randomized algorithms to reduce the complexity
of throughput optimal scheduling first appeared in [5]. How-
ever, the scheduling policy in [5] is proposed in the context of
non-time varying channels. Our focus in this paper is on the
effect of channel memory on the stability region. Furthermore,
we use a generalized version of the policy in [5]. In the
context of time varying channels, other recent proposals that
are based on the policy in [5] include [3][4]. Although they are
throughput optimal, their memory requirement is exponential
with the number of users, and thus, those proposals may not
be amenable to practical implementation in large networks.

Our main contribution in this paper is to analytically char-
acterize the stability region of the class of linear-memory
policies for time varying channels. We show that the stability
region is a scaled version of the network layer capacity region.
Our analysis quantifies the scaling factor, and characterizes
its dependence on the channel memory and the computational
efficiency of the allocation-vector selection algorithm. In ad-
dition, our analysis provides insights into the extreme case of
linear-complexity, linear-memory scheduling policies. Finally,
aside from theoretical interests, our results also quantify the
throughput gain of the linear-memory scheduling policy over
arbitrarily random scheduling, even when only an approximate
solution is available for the optimal allocation-vector selection
problem.

II. SYSTEM MODEL

We consider a one-hop wireless network consisting of N
users each associated with a separate queue holding packets to
be transmitted using a wireless link. We emphasize that our
results hold for any one-hop wireless network. In particular, if
users have multiple destinations, for each one, they create a
separate queue. In that case, N represents the number of data
flows, and corresponding to each source-destination pair, we
consider a wireless link for data transmission.

The quality of the wireless links is measured by a state vector
s(t) = (s1(t), . . . , sN(t)), where si is the channel condition
of the ith link. Let S represent the set of all possible channel
states with finite cardinality. We assume the system is time-
slotted, and the channels hold their state during a timeslot but
may change from one timeslot to another. In every timeslot
according to s(t), a controller picks a schedule vector I ∈ I,
which may include power levels as well as other physical layer
parameters. The transmission rate vector at time t is D(t) =



(D1(t), . . . ,DN(t)), where D(t) is uniquely characterized by
the channel states and the selected schedule, and hence, we
have D(t) = D(s(t), I(t)). We assume that there are a finite
number of ways to schedule users implying that I has finite
cardinality. Therefore, the controller at any time t is confined
to selecting a rate vector such that D(t) ∈ Γs(t) where Γs(t) =
{D(s(t), I)|I ∈ I}.

To avoid trivial complications, we assume that the arrival
process is i.i.d. with mean rate vector a, and is independent of
the channel process. Furthermore, we assume that the second
moment of the arrival process is finite. Assuming a timeslotted
system, the transmission queue length vector at the users is
defined by X(t) = (X1(t), . . . ,XN(t)). It evolves according
to the following equation

X(t + 1) = X(t) + A(t) − D(t) + U(t), (1)

where A(t) and D(t) are the arrival and departure vectors,
respectively. U(t) represents the wasted service vector with
non-negative elements; the service is wasted when in a queue
the number of packets waiting for transmission is less than the
number that can be transmitted, i.e., when Xi(t) < Di(t).

A. The Scheduling Policy

In [1] and recently under general conditions in [2], it has
been shown that the capacity region is given by

Γ =
∑
s∈S

π(s) Convex-Hull{D(s, I)|I ∈ I},

where π(s) is the channel state probability. It has been proved
that a control policy that at any time t selects D∗(X(t), s(t))
as the solution of the following optimization problem

D∗(X(t), s(t)) = max
I∈I

X(t)D(s(t), I)T

= max
I∈I

N∑
i=1

Xi(t)Di(s(t), I), (2)

stabilizes the network for all input rates strictly inside Γ [1][2].
This policy, which is by definition throughput optimal, can be
NP-complete due to physical layer interferences. In this work,
we consider a policy based on a randomized algorithm to solve
(2), which may be viewed as a generalized version of those
studied in [5][6][3][4]. In the following, we first provide an
abstract description of the scheduling policy and then provide
the intuition behind the policy’s operation.

1) Description of the Policy: In this paper, we assume that
the network controller uses a randomized algorithm A to select
a random candidate schedule from I at any given time t.
In general, the distribution of the randomly selected schedule
Ir(t) depends on X(t) and s(t). Let µX,s(.) denote such a
distribution for Ir. The algorithm is, therefore, characterized by
the collection of all distributions for different values of X and
s, namely {µX,s(.); s ∈ S,X ∈ ({0} ∪ Z+)N}. Let A denote
the collection of algorithms with the following properties:

P1 Assume ‖X1 −X2‖ = C, for some given constant C. Let
‖X1‖ → ∞, then |µX1,s(Ii) − µX2,s(Ii)| → 0, for all
s ∈ S and Ii ∈ I.

P2 There exists a constant 1 > ζ ≥ 0 such that, for all
X ∈ ({0} ∪ Z+)N and s ∈ S, the following holds with
probability δ > 0:

XD(s, Ir)T ≥ (1 − ζ)XD∗(X, s)T . (3)

P1 states that for A ∈ A, the distribution of Ir would
be almost the same when two queue length vectors are close
enough. P2 states that the selected schedule with probability
δ > 0 is in ζ neighborhood of the optimal solution. This
property is a generalized version of the one in [5][6].

Using algorithm A, the network controller chooses the sched-
ule at any time t, I(t), as follows:

• I(0) is selected randomly according to µX(0),s(0)(.).
• For t > 0, I(t) is determined by the following steps.

– First, Ir(t) is selected randomly following the distri-
bution µX(t),s(t)(.)

– Then, we have

I(t) =
{

Ir(t) w.p. f(ϕ(t))
I(t − 1) otherwise

,

where

ϕ(t) =
X(t)(Dr(t) − D

′
(t − 1))T

max(X(t)Dr(t)T
,X(t)D′(t − 1)T ) + α‖X(t)‖

.

In the above, Dr(t) = D(s(t), Ir(t)), D
′
(t) =

D(s(t + 1), I(t)), and α is an arbitrarily small positive con-
stant. D

′
(t) is simply the rate at the next timeslot assuming

that the controller keeps using the current schedule I(t) at
time t + 1. The continuous function f : (−1, 1) → [0, 1] has
the property that f(ϕ) = 1, for ϕ ≥ ρ > 0, and f(ϕ) = 0,
for ϕ ≤ −ρ, where ρ can be chosen arbitrarily small. The
introduction of f(ϕ) in the decision making process allows
the policy to take soft decisions when comparing two different
schedules, i.e., the policy can probabilistically choose either of
the schedules according to the value of ϕ(t). A close look at
the policy description shows that only I(t − 1) is required to
update I(t) in each timeslot. Therefore, the scheduling policy
needs to keep track of only the previously used schedule, which
results in a memory requirement that is linear with the number
of users.

2) Intuitive Explanation of the Policy: As a practical exam-
ple, consider the downlink of a CDMA network. Since power
budget is limited in CDMA networks, the scheduler in each
base station maintains the sum of the allocated power levels
less than or equal to a system dependent value. In this example,
the schedule vector I(t) is the vector of all possible power
levels. If the scheduler uses the policy given by (2), it should
find a power allocation vector I(t) that maximizes the sum-
product of backlog-rate. This optimization problem is non-
convex due to the physical layer interferences, and in general,
can be NP-complete. Thus, we assume the scheduler has access
to an algorithm that returns a power allocation vector that is
in ζ neighborhood of the optimal solution with probability δ.
Assuming different values for δ and ζ allows us to consider
algorithms with different complexity levels.



In contrast to the throughput optimal policy given by (2),
the scheduling policy in this paper uses the randomized algo-
rithm to find a candidate power allocation vector Ir(t). The
policy then compares Ir(t) with the previously used vector
I(t − 1). For the comparison, it evaluates ϕ(t) as the relative
difference of backlog-rate sum-products corresponding to Ir(t)
and (t − 1). The computation of ϕ is based on the current
channel state s(t). A positive ϕ(t) implies that the choice
should favor the selection of Ir(t). However, any selected
schedule affects future decisions, and due to channel variations
may negatively impact throughput in the subsequent timeslots.
Therefore, the value of ϕ(t), especially in the neighborhood of
zero, may not be the only measure to select Ir(t) or I(t − 1).
Thus, by introducing f(ϕ), we adopt a probabilistic approach.
In this paper, we study the stability region assuming that the
function f(ϕ) is given, and leave finding the optimal f(ϕ) as
an interesting open problem for future research. It is easy to
see that there exist instances of low-complexity algorithms that
satisfy P1 and P2, and have linear complexity in N [5].
B. Channel State Process

We assume that the channel state process satisfies the fol-
lowing properties.
A1 The channel state process is stationary and ergodic, and

for any given ε1 there exists Kε1 such that for K > Kε1

regardless of the initial state Y(t) = (X(t), I(t), s(t)),
we have

|π(s) − E[
1
K

K−1∑
k=0

1s(t+k)=s|Yt]| < ε1. (4)

A2 We show in the next section that the network stability
depends on how the policy of Section II-A.1 selects
schedules when the backlog vector is frozen at X(t) after
a particular time t.1 We use the notation EXt [.] and pXt(.)
to represent the expectation and distribution of any random
variable that is determined by the channel process and
X(t), given the hypothesis that X(t

′
) = X(t) for t

′
> t.

We assume that EXt [g(.)] is uniformly upper bounded in
t by its lim sup over t and other parameters that define the
random variable g(.). Note that if the channel process is
Markovian (or n-generalized Markovian) we do not need
this assumption.

III. NETWORK STABILITY

In this section, we study the stability region of the network
under any instance of the policies given in Section II-A.1. By
the stability region, we mean a region that provides a sufficient
condition for an input rate to be stably supported by a given
control policy. Define ΣK

Xt
as

ΣK
Xt

=
∑K−2

m=0 EXt [Xt(Dt+m − (1 − ρ)D
′
t+m)T |Yt]

KE[XtD∗(Xt, s)|Xt]
,

where E[XtD∗(Xt, s)|Xt] is computed over the steady state
distribution of the channel process. In the above, since, as
defined in Section II-A.1, D

′
t is the rate vector corresponding

1This means that after time t the backlog vector does not get updated,
however, the channel states still evolve, and the control policy selects schedules.

Fig. 1. Illustration of the stability region scaling.

to the allocation vector in the current time slot, I(t), and the
channel state in the next timeslot, s(t + 1), Dt+m − (1 −
ρ)D

′
t+m approximately shows the changes in the rate vector

Dt+m due to channel variations. Note that the sequence of
Di’s not only depends on the particular realization of channel
states but also on the randomized algorithm that finds the
candidate schedules. Therefore, when K is large, ΣK

Xt
measures

the relative change of backlog-rate product due to channel
variations over a long horizon while implicitly embedding the
effects of the randomized algorithm. It is important to note that
in the definition of ΣK

Xt
, the backlog vector is kept at Xt. This

implies that ΣK
Xt

is not affected by the arrival process. Let Σ∞

be the lim sup of ΣK
Xt

, i.e.,

Σ∞ = lim sup
t→∞,K→∞,x→∞

sup
‖Xt‖=x

ΣK
Xt

. (5)

Σ∞ measures the limiting value of the relative rate change due
to the channel variations. Our results indicate that Σ∞ directly
affects the supportable input rates. The main result of this paper
is stated in the following theorem.

Theorem 1: If the mean arrival rate vector, a, lies strictly
inside (θ − ε)Γ, under the control policy of Section II-A.1 the
system described in Section II is stable in the mean, i.e.,

lim sup
T→∞

1
T + 1

T∑
l=0

E[‖Xl‖] < ∞, (6)

where θ = 1 − ζ
′ − 1−δ

δ Σ∞, ζ
′

= (1 − (1 − ρ)(1 − ζ)), and
ε = cραδ−1 for some c > 0.
The detailed proof of the theorem is provided in [7].
A. Discussion

As the above theorem suggests, the guaranteed stability
region is a scaled version of the capacity region Γ. The stability
region scaling is illustrated in Fig 1. The theorem, moreover,
shows that the scaling factor, θ − ε, depends on the limiting
behavior of the algorithm when the queue length vector is
frozen at some specific vector. Note that since α and ρ are
very small positive numbers, and α can be chosen arbitrarily,
ε is negligible compared to θ.

This theorem also states that the stability region is affected at
most linearly with rate changes due to channel variations. This
can be easily seen from the definition of Σ∞. In particular,
when the maximum rate change is r%, we have Σ∞ ≤ r

100 ,
and therefore, θ changes at most linearly with r. One important
observation is that as r → 0, i.e., as channel states become more



correlated, θ → 1−ζ
′
. This implies that θ becomes independent

of δ, and hence, this theorem states how the channel memory
helps reduce the uncertainty of the randomized algorithm A
in selecting a candidate schedule satisfying (3). Therefore, this
general scheduling policy has the ability to take advantage of
the channel memory to compensate for the inefficiencies in the
randomized algorithm. The result is a significant expansion of
the stability region when channel states are highly correlated.
For example, consider the linear-complexity algorithm given in
[5] with ζ = 0. Assume the extreme case that the channel states
do not change with time. It can been seen that as ρ → 0, θ → 1.
Noting the fact that throughput optimality can be achieved when
θ − ε = 1, we conclude that if the channel states are fixed,
using simple linear-complexity algorithms is sufficient to attain
throughput optimality arbitrarily closely, which is reminiscent
of the results in [5].
B. A Simple Example

To gain more insights, we apply the theorem to a network
consisting of two users. Suppose there are two channel states
s1 and s2, and three different schedules I1, I2, and I3. For
simplicity, we assume that the channel process is Markovian
with symmetric transition probability tp. Table I shows the
rate vector D corresponding to each channel state and each
selected schedule. We consider a very simple algorithm that
selects one of the Ii’s with probability 1

3 . Consequently, for this
randomized algorithm we have δ = 1

3 and ζ = 0. To compute
ϕ(t), we assume α = 0.001, ρ = 0.01, and f(ϕ) = 0.5 + ϕ

2ρ

for |ϕ| < ρ.
Fig. 2 shows the numerically calculated θ−ε as a function of

tp. As tp decreases, the channels states become more correlated.
We have also shown the performance of two other related
control policies. The first policy CP1 was initially studied in
[3][5]. For all states s, CP1 records the last schedule that has
been used at the most recent instance of s, and therefore, it has
to maintain a large table with an exponential size in terms of the
number of users. This policy at any time uses the randomized
algorithm of Section II-A.1 to select a candidate schedule when
the channel is at s(t), except that it compares this schedule
with the schedule used at the last instance of s = s(t). The
control policy in Section II-A.1, however, compares with the
very immediate schedule used in the previous timeslot. Results
in [3][5] indicate that the stability region of CP1 equals to Γ.
In contrast, the second policy, CP2, simply chooses a schedule
at random, and does not do any comparisons at all. Using a
simple drift analysis, it can be shown that the stability-region
scaling factor of CP2 equals δ(1 − ζ).

This figure indicates that the linear-memory policy of Sec-
tion II-A.1 significantly outperforms CP2; even in the extreme
case when tp → 1. On the other hand, as tp decreases, the
stability region of this policy quickly expands to Γ. Therefore,
when the channels states are highly correlated, the linear-
memory policy stabilizes the network under most allowable
input rates.

IV. CONCLUSION

In this paper, we have studied the stability region of a general
class of linear-memory scheduling policies for time varying

TABLE I

RATE VECTORS CORRESPONDING TO EACH CHANNEL STATE AND

SCHEDULE

I1 I2 I3

s1 (1, 0) (0, 0) (0.5, 0.25)

s2 (0, 0) (0, 1) (0.25, 0.5)
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Fig. 2. Scaling factor of the capacity region as a function of the transition
probability (ρ=0.01, α=0.001).

channels. We have shown that this class of policies can be used
to model scheduling algorithms with different complexity levels
whose complexity can be as low as linear. We have proved
that if the mean arrival rate vector lies strictly inside a scaled
version of the network-layer capacity region, then the studied
policies are able to stabilize the network. Furthermore, we have
quantified the scaling factor of the stability region based on
the limiting behavior of rate changes due to channel variations
and the inefficiencies inherent in the scheduling policies. In
addition, our results indicate how channel memory helps reduce
the uncertainty of the scheduling policy in selecting a suitable
candidate schedule. Finally, we have shown that our results in
the extreme case of non-time varying channels reduce to the
ones in [5], where it is shown that linear complexity algorithms
can be used to attain throughput optimality.
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