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Abstract—In this paper, we investigate into optimal admission
control policies for Heterogeneous Wireless Networks (HWN),
considering an integration of wireless mesh networks with an
overlaying cellular infrastructure. In order to characterize the
overflow traffic from the underlaying mesh to the overlay, a
Partially-Observable Markov-Modulated Poisson Process (PO-
MMPP) traffic model is developed. This model captures the
burstiness of the overflow traffic under the imperfect observabil-
ity of the mesh network states. Then, by modeling the overlay
network as a controlled PO-MMPP/M/C/C queueing system
and obtaining structured decision theoretic results, it is shown
that the optimal control policies for this class of HWNs can
be characterized as monotonic threshold curves. Further, these
results are used to design a computationally efficient algorithm
to determine the optimal policy in terms of thresholds. Numerical
observations suggest that the proposed algorithm is efficient in
terms of time-complexity and can drastically reduce the cost of
dropped and blocked calls.

I. INTRODUCTION

Heterogeneous wireless networking is an emerging para-
digm to simultaneously provide universal coverage and high
bandwidth access where available [1]. Heterogeneous Wireless
Networks (HWN) consist of several layers of different over-
lapping wireless access technologies such as an integration
of WiMAX or 3G at the overlay with IEEE 802.11 at the
underlay [2]. This multi-layer architecture provides users with
the option of choosing between different available wireless
access technologies based on users’ traffic profile, mobility
pattern, and QoS preferences.

A major technical requirement for HWNs before they can
be fully incorporated into the future wireless communications
infrastructure is to support QoS for multimedia services.
However, QoS provisioning in these networks is challenging
due to the diversity in wireless networking technologies and
the existence of mobile users with different communication
preferences. Toward this goal, call admission control (CAC)
schemes have been used extensively in wireless networks to
achieve a desired QoS level. They are in charge of deciding
whether to accept or reject call requests and how to reserve
resources in a resource-sharing systems.

CAC schemes for homogeneous cellular networks have been
extensively studied. These schemes can be classified into near-
optimal heuristics [3] and decision-theoretic optimal meth-
ods [4]. Dynamic Programming (DP) and Markov Decision
Processes (MDP) [5] are often used in the design of optimal
CAC algorithms. However, for almost all realistic modelings
of networking systems, the computational load of finding an
optimal policy by MDP algorithms is very high. In fact,
there is no known strongly-polynomial time algorithm to solve

MDP problems [6]. This can hinder the application of optimal
CAC schemes in practical scenarios. Furthermore, in HWNs
with their increased complexity, the “curse of dimensionality”
problem [7] makes it impractical to directly apply admission
control methods that are previously used in homogeneous
wireless networks.

A more effective use of DP-based methods is to obtain
structural results for optimal control problems [7]–[9]. In
this approach, a DP formulation is used to characterize the
structure of possible optimal policies. Then, knowledge of the
policy structure can be exploited to design efficient numerical
methods to find the optimal policy [10]. As an example, in [4],
it is shown that the optimal CAC policy for a single cellular
Base-Station (BS) is the well-known guard-channel policy,
which is fully determined by a single threshold that can be
computed by an efficient algorithm. In [11], the authors study a
simple two-tier HWN with a single underlay network and show
that the optimal CAC policy has a two-dimensional threshold
structure. However, such results are not directly applicable to
HWNs with a more complex underlay architecture.

In this paper, we consider the characterization of structured
optimal CAC policies for HWNs formed by the integration of
mesh and cellular networks. An example of such networks is
shown in Figure 1. Such HWNs architectures are appealing
because mesh networks are expected to be extensively de-
ployed in urban and suburban areas to provide mobile and
roaming users with wireless networking services. However,
the multiple Access Points (AP) in the mesh underlay network
adds one more dimension to the CAC problem space, and
furthermore the user movement between different APs creates
additional complications in the problem formulation. To the
best of our knowledge, there is no known solution to the
optimal admission control problem for this architecture.

By making some practical assumptions regarding the service
model provided by this class of HWNs, we develop an scalable
approximate model to achieve near-optimal performance in the
control of these networks. The core assumption is that the
priority in modeling of different layers of a HWN should be
given to the provisioning of overflows. A new or a hand-over
call overflows to the overlay when it cannot be accommodated
by the target mesh Access Point (AP) at the underlay. It is
well known that this overflow traffic is not Poisson [12]. In
order to characterize the overflow traffic from the underlaying
mesh to the overlay, a Partially-Observable Markov-Modulated
Poisson Process (PO-MMPP) traffic model is developed. This
model captures the burstiness of the overflow traffic under
the the imperfect observability of the mesh network status.
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Fig. 1. Cluster traffic arrivals and departures.

Afterwards, the overlay network is modeled as a controlled
PO-MMPP/M/C/C queuing system, and structural optimal
control results are given. The significance of these results is
in showing that the optimal control policies for this class of
HWNs can be characterized as monotonic threshold curves.

Further, the monotonic threshold curve structure of the
optimal CAC policy is used to design a computationally
efficient Structured Coordinate Search Algorithm (SCSA) to
determine the optimal policy in terms of thresholds. Based on
this algorithm, we propose a modular CAC scheme, which can
be employed in cellular base stations and in mesh-controller
nodes to improve the system performance. Through numerical
analysis and simulations, we show that the proposed algorithm
has a convergence speed much faster than that of the Value
Iteration (VI) [13] algorithm and leads to a CAC scheme
significantly more cost efficient than the Complete Sharing
and Guard-Channel policies.

The rest of the paper is organized as follows. Related
works and their contrasts to our contributions in this paper
are discussed in Section II. In Section III, the system model
and assumptions are discussed. The general framework used
in the design of decision-theoretic optimal CAC schemes is
explained in Section IV. The development of an approxi-
mate overflow model for this HWN architecture is given in
Section V. In Section VI, structural results for the control
of overlay network are presented. The algorithm to find the
structured optimal control policy is given in Section VII.
Simulation and numerical results are presented in Section VIII,
followed by concluding remarks in Section IX.

II. RELATED WORK AND RESEARCH CONTRIBUTION

There are several studies on QoS for HWNs where the
conventional guard-channel policy is used and the available
channels are divided between handover and new calls coming
from different layers. In [14], admission control for voice
and data services in a HWNs is considered and an iterative
algorithm is proposed to find the dropping and blocking
probabilities. In [15], the minimization of linear cost functions
is used to find the number of guard channels. In both sets of
results the reservation scheme is chosen a priori. This is in
contrast to our work, in which we try to rigorously characterize
the structure of an optimal reservation policy.

Another related research direction is the modeling of
overflow traffic for hierarchical macro/micro-cellular net-
works. Different models with various complexities are studied
in [16]–[19]. These models are built upon prior research

on the the characterization of overflow processes for loss
queuing systems [20]–[22]. Initially, the overflow traffic has
been modeled as a Poisson process [23], however, it was later
shown that this approximation is inaccurate, and that by failing
to model the burstiness of the overflow traffic, it underes-
timates the blocking of overflow calls at the overlay [12].
Interrupted Poisson Processes (IPP) and Markov-Modulated
Poisson Processes (MMPP) have been used to model the
behavior of overflow processes in the context of hierarchical
cellular networks [16]–[18], [24].

A common assumption among these studies is that the
traffic statistics of all micro-cells are equal, i.e., they have
identical arrival and hand-off rates. This reduces analysis
complexity by allowing one to focus on one micro-cell, while
assuming similar results for the rest. In contrast, for the model
considered in this work, because of the asymmetric structure
of mesh networks, it is impractical to assume that traffic
arrival and handoff rates are similar at different mesh APs.
For example, consider the mesh network depicted in Fig. 1.
Mesh AP k receives handover arrivals from three neighbors,
APs i,j and l. While Mesh AP i only receives handovers
from two neighbors, APs j and k. We do not require the
assumption of having identical traffic statistics at every mesh
AP. Potentially, this can result in intractable complexity. In
this work, we propose a method to analyze and control this
non-uniform system at a reduced complexity level.

III. SYSTEM MODEL

A. Network Model and Underlying Processes

In this work, we focus on a two-tier HWN architecture
consisting of an overlay and an underlay, where the underlay
can be a mesh network with multiple wireless APs. This basic
two-tier entity will be called a cluster. An example cluster
is shown in Fig. 1. New service requests (more specifically
calls in this work) arrive according to a memoryless Poisson
process. Call holding times are memoryless with averages of
µc and µw for calls at overlay and underlay. We also assume
a memoryless mobility pattern where calls move to neighbor
clusters or different layers at exponentially distributed times
with rates as denoted in Table I. Here, ηi,j

hw denotes the rate of
handover for a call from AP i to AP j as depicted in Fig. 1.
The following relations hold between parameters defined in
Table I: ηi,j

hw = φ(i, j)ηi
h and ηi

hwc = φ(i, 0)ηi
h, where index

0 is reserved for cellular overlay. It is clear that the above
memoryless assumptions result in exponential channel holding
times [25].

In this paper, we focus on call-level QoS, which is com-
mon in CAC literature. Further, the fixed channel allocation
(FCA) scheme is used. FCA easily applies to various wireless
technologies with channel being frequency, time-slot or code
assignment. Let Cc and Cw denote the capacity of overlay BS
and underlay Mesh APs measured in basic bandwidth units
(BBU). We assume that all multimedia calls require a single
BBU. This corresponds to the single service systems studied
in [7]. In this work, we only consider multimedia call classes
which require a certain amount of bandwidth in a guaranteed-
service fashion. For data services, if they require guaranteed
bandwidth, they can be modeled along with the multimedia



TABLE I
SYMBOLS USED AND THEIR DESCRIPTION.

Symbol Description
Cc Capacity of overlay cellular BS (in BBU)
Cw Capacity of underlay mesh AP (in BBU)
µc Call holding time rate at overlay
µw Call holding time rate at underlay
λnc Arrival rate of new calls to overlay
λin

hcc Handoff arrival rate from neighboring overlay cells
λi

nw Arrival rate of new calls to underlay AP i
λi

ho Rate of handoff overflows from AP i
λi

no Rate of new call overflows from AP i
λi

hw Rate of calls leaving AP i
ηhcc Handoff rate to neighboring overlay cells
ηi

h Handoff rate out of underlay AP i
P

(i)
D Handoff calls dropping probability at AP i

P
(i)
B New calls blocking probability at AP i

φ(i, j) Fraction of calls leaving AP i, going to AP j

calls, and if they require best-effort services, they only utilize
the available unused bandwidth at any time instant, and as
such do not affect our analysis of QoS for guaranteed-service
call requests.

B. Call Handling Policy

In [11], we assumed tight coupling between different layers
of wireless network [26] in a cluster, where the management
of different layers is centralized. However, when overlay can
comprise mesh networks with multiple APs, it is impractical to
assume centralized control, because the network management
traffic overhead will be excessively high. In what follows, we
assume that there exists a control unit that makes the CAC
decision for calls coming to the overlay based on the state of
the overlay and some partial knowledge about the status of the
underlay mesh network.

We assume that once a call overflows to overlay, it stays at
that layer until its completion, i.e., repacking is not allowed.
This common assumption allows one to analyze the underlay
independently of the overlay network [17], [18]. Note that
the no-repacking policy serves as an indirect scheme for
classification and layer assignment of users with different
velocities. In particular, calls made by a highly mobile user is
more likely to request an overflow and hence more likely to
be eventually assigned to the overlay during the call period,
which clearly is a desirable outcome for system efficiency.

When a new call request arrives to the system, if it is within
the double coverage area (DBCA), it will seek admission to
the underlay network first. If it can not be accommodated by
the underlay, it overflows to the overlay network. Also, when a
handover call moves from an underlay AP to either the single
coverage area (SCA), or another underlay AP where it can not
be accommodated, it overflows to the overlay network. For a
new call, if it is initiated within the SCA, it will directly seek
admission to the overlay.

C. Underlay Mesh Network Operation

In this paper, we assume that the capacity offered by
every mesh node to its local users is fixed. For the modular
CAC scheme proposed in this paper, it is assumed that every
mesh AP makes the decision of CAC independently. As no
repacking of overlay calls are allowed, mesh APs receive no

TABLE II
REJECTION COSTS FOR NEW AND HANDOFF CALLS .

Rate Rejection Cost Description
λnc CBNC Blocking of new calls
λi

no CBNO Blocking of new call overflows
λin

hcc CDCC Dropping of cell-to-cell handovers
λi

ho CDHO Dropping of handover overflows

traffic load from the overlay, and it suffices for them to make
the CAC decision based on the traffic statistics of their own
and their immediate neighbors in the mesh topology. For this
purpose, any of the previously studied CAC schemes can be
used [3], [4].

IV. DYNAMIC-PROGRAMMING FRAMEWORK

MDP methods are used to find the optimal policy to
control a markovian random process over time to achieve a
certain optimization goal [13]. An MDP is determined by four
components: state space S, action space A, state transition
probabilities P (.) (or transition rates Q(.) in case of continues
time processes), and a cost function C(.). The solution to an
MDP is called a policy or rule. A policy maps the state space
to actions Ψ : S → A, such that the optimization goal is
achieved. A large class of policies, in which the decision is
independent of time, are called stationary policies.

In our event-based DP, we associate costs to undesirable
control decision events. These costs correspond to the drop-
ping or blocking of incoming calls. A list of rejection costs
for different call types is given in Table II. Note that the cost
of dropping an AP-to-AP handover is not considered, since a
rejected AP-to-AP handover call simply creates an overflow
handover to the overlay. Throughout the rest of this paper,
every call type is called a class.

In the study of CAC schemes, the most common perfor-
mance criterion is the minimization of a total cost (objective)
function which is referred to as MINOBJ in [4]. We formally
define MINOBJ as

MINOBJ : min
Ψ

gΨ =
L∑

l=1

C
(l)
R λlP

(l)
R (1)

where C
(l)
R is the cost of rejecting a call request of class l,

λl is the arrival rate of class l calls, P
(l)
R is the rejection

(either blocking or dropping) probability for that class and L is
the total number of call classes. Our objective is to minimize
the average cost per unit of time for an infinite-horizon non-
discounted problem. This reflects our concern about long-run
QoS performance. In addition, since the decision epochs can
be at any randomly distributed time, a Semi-Markov Decision
Process (SMDP) model is used [27].

In what follows, we present a general framework that will
be used throughout the rest of the paper. We start with a finite-
horizon optimal cost function, and we show that the solution
to the infinite-horizon problem has the same structure. Let us
denote by Vk(s) the minimum expected cost function for a
k-stage problem with the initial state s. Also, we use EA to
denote the set of arrival events which are controllable and can
potentially be rejected at the costs defined in Table II, and
EN to denote the set of internal transitions and departures for
which no action needs to be taken. Using the uniformization
technique [27], we can write Vk+1(s) recursively as



Vk+1(s) =
1

vmax

{ ∑

e∈EA

qe

[
min{∆Vk(ψes), CB(e)}+ Vk(s)

]

+
∑

e∈EN

qeVk(ψes) + (vmax − vout(s))Vk(s)
}

(2)

where vout(s) is the rate of going out of state s, and vmax

is the uniformization parameter such that vmax ≥ vout(s) for
every s. Here, operator ψe acts on state s and returns the
resultant state if event e was to be admitted. The ∆ symbol
for an operator ψ is defined as

∆VK(ψes) = VK(ψes)− VK(s). (3)

Also, qe is the rate of transition for events of type e.
Equation (2) consists of three terms, each reflecting one
possible event. The first term reflects arrivals to the cluster
and the second term accounts for departures and internal non-
controllable transitions. The last term is due to the uniformiza-
tion technique where staying in the same state is possible. Note
that overflow events despite being internal are controllable,
and as such belong to set EA. In the first term, ∆VK(ψes)
is the cost of admitting a call whose arrival is triggered by
event e. If this cost is less than blocking cost CB(e), the call
will be admitted and otherwise it gets rejected. More general
information on similar frameworks can be found in [4], [28].

It has been shown in [27] that for average-cost problems
with finite S and A, the optimal policy is stationary. Further,
we are only interested in stationary policies which result in
irreducible chains. According to Theorem (6.6.2) in [27],
for irreducible and aperiodic Markov decision processes the
difference of upper and lower bounds of Vk+1(s)− Vk(s) for
different values of s converges to the optimal average cost per
unit time when k →∞. More formally, given

Mk = max
t∈S

{Vk+1(t)− Vk(t)}, (4)

the optimal cost gΨ as defined in (1) is equal to gΨ =
lim

k→∞
Mk. Furthermore, Theorem (6.6.1) in [27] implies that

the structural results for Vk(s) as defined in (2) will hold for
the optimal per-unit-time average cost function if the underly-
ing Markov decision process is irreducible and aperiodic. This
means the structure of the optimal policy to achieve MINOBJ
is the same as the policy which minimizes Vk(s).

V. APPROXIMATE MODEL FOR UNDERLAY OVERFLOW

If we were to model the system by a global state, the
cardinality of state space S will be Cc(Cw)M , which is
excessively high. To reduce the complexity of the control
policy, we propose an approximate model which focuses on
the overflow traffic from the mesh underlay.

A. Analysis of Mesh Underlay

A conventional simplifying assumption in the analysis of
micro-cellular networks is to equate outgoing and incoming
handoff rates for every micro-cell [17]. In our model, due to
the asymmetric nature of the mesh network, we can not use
such simplifications.

Underlay
APAP

Mesh B

Mesh A

Overflow Stream MMPP(
̂
Qv,

̂
Λv)

Fig. 2. Underlay overflow model.

Let λi
T denote the total traffic arrival to underlay AP i; we

have
λi

T = λi
nw +

M∑

v=1,v 6=i

λv
hwφ(v, i). (5)

For AP i, we define the utilization factor as ρi = λi
T /(µw +

ηi
h) and δi = λi

nw/λi
T . As we have explained in Section III,

the CAC scheme at the underlay can be chosen arbitrarily
among any of the available schemes such as a guard-channel
policy or alike [3], [4]. For a guard-channel CAC policy with
g guard channels the blocking performance of AP i can be
found as [4]

P [mi = k] =
ρk

i Πk
j=1γj

k!
∑Cw

l=0(ρ
l
iΠ

l
j=1γj/l!)

P
(i)
B =

Cw∑
k=Cw−g

P [mi = k]

P
(i)
D = P [mi = Cw],

(6)

where γj = 1 − δj I{j≥Cw−g}, and the indicator function Iθ

equals 1, only if θ is true. P [mi = k] is the probability of
having k active calls in AP i. If g = 0, no control is exercised
to give priority to handover calls, and (6) reduces to the well-
known Erlang-B loss formula.

The probability that a call in AP i will require a handover
before termination is R

(i)
h = ηi

h/(ηi
h + µw). For the total rate

of calls leaving AP i due to handover, we have

λi
hw= R

(i)
h

{
(1− P

(i)
D )

M∑

v=1,v 6=i

λv
hwφ(v, i)

+(1− P
(i)
B )λi

nw

}
. (7)

This forms a set of non-linear equations, with solution being
the set of λi

hw for all APs. Due to possible existence of loops in
the network topology, the determination of P

(i)
B , P

(i)
D and λi

T

may involve iterations. For example, the Erlang Fixed-Point
approximation has been used to find the traffic intensities and
blocking probabilities in loss networks [22], [29]. We start
with a set of values for P

(i)
B and P

(i)
D , and solve (7) to find

the set of λi
hw. Then, (6) is used to recompute a new set of

P
(i)
B and P

(i)
D . This iteration is repeated until desired accuracy

is reached. The proof for uniqueness and convergence of this
iterative technique to the proper solution is given in [22].

In the rest of this paper, for illustration simplicity, we
assume that no CAC scheme (e.g., guard-channel policy)
is used in the underlay, which implies that P

(i)
D = P

(i)
B .

It is notable that the framework presented below can be
easily extended to accommodate a wide set of underlay CAC
schemes.



B. Analysis of Overflow Traffic

Three events trigger the overflow of a call from an underlay
AP to overlay: 1)when an active call (mobile station) associ-
ated with an AP leaves the double-coverage area (DBCA),
2)when a new call arrives to a blocking AP and 3)when a
handover call comes to an AP that drops it. The overflow
generated by the events of the first type forms a Poisson stream
with a total rate of

λpo =
M∑

v=1

λv
hwφ(v, 0). (8)

However, for events of types two and three, the overflow
is not uniformly distributed over all AP states, and as studied
previously it has a bursty nature [16]–[19]. The Interrupted
Poisson Process (IPP) and Markov Modulated Poisson Process
(MMPP) traffic models have been used to deal with such
streams. As a first approximation, we use an MMPP model.
The overflow modeling is depicted in Fig. 2. If AP i is in
the blocking states, e.g., mi ∈ {Cw − g, . . . , Cw}, new calls
coming with rate λi

no = λi
nw, will overflow. If the AP is in

dropping mode, e.g., mi = Cw, then in addition to the new
call’s overflow, incoming handovers will also overflow. The
rate of handover overflow from AP i when it is in the dropping
mode is

λi
ho =

M∑

v=1,v 6=i

λv
hwφ(v, i). (9)

An MMPP(Q, Λ) with N states is identified by two para-
meters, Q an N × N matrix, and Λ = diag(λ1, . . . , λN ),
a diagonal matrix of size N × N . Q is the infinitesimal
generator for the MMPP underlying process, and Λ determines
the rate generated at each state. Let MMPP(Qi, Λi) denote
the model for the bursty overflow from AP i. Here, traffic
overflows with rate λi

ho + λi
no whenever the system is at

state mi = Cw. At other states the overflow rate is zero, i.e.,
Λi = diag(0, . . . , 0, λi

ho + λi
no).

We adapt the technique of representing every of these
MMPPs with an equivalent IPP. An IPP(λ, α, β) has three
parameters. It is either in state ON or in state OFF. If it is in
state ON, it generates a Poisson stream with rate λ. 1/α is
the mean of on-time period, and 1/β is the mean of off-time
period. An IPP can be expressed as an MMPP with two states
as

QIPP =
[−β β

α −α

]
, ΛIPP =

[
0 0
0 λ

]
. (10)

To find the equivalent IPP of an MMPP, we employ the
technique used in [21]. The method is to match the first two
noncentral moments of the arrival rate of the MMPP and
an appropriately chosen time constant. Let us denote by πQi

the stationary probability vector associated with Qi such that
πQiQi = 0 and πQie = 1. The nth noncentral moment of
the instantaneous rate of MMPP(Qi, Λi) is m(n) = πQiΛ

n
i e,

which gives us the variance as v = m(2) − (m(1))2 and the
time constant τc as

τc = v−1

[
πQiΛi(e πQi −Qi)−1Λie− (m(1))2

]
. (11)

Now, the parameters for the equivalent IPP(λi, αi, βi) can
be determined as

λi = λi
ho+λi

no

αi = [1− πQi
(Cw)]/τc, βi = πQi

(Cw)/τc. (12)

The total overflow from underlay can be modeled as the
superposition of these M independent IPPs. If we cast the ith
IPP as a two state MMPP as given in (10) with (Q̃i, Λ̃i), the
aggregate model can be represented by an MMPP(QT , ΛT )
with

QT = Q̃1 ⊕ Q̃2 ⊕ · · · ⊕ Q̃M

ΛT = λpoI + Λ̃1 ⊕ Λ̃2 ⊕ · · · ⊕ Λ̃M (13)

where operator ⊕ is the Kronecker sum [21]. Here, QT has
the size of 2M × 2M ; two states for every IPP being ON or
OFF. Note that if the underlay APs had similar statistics, as
assumed in almost all previous studies, this MMPP could be
simplified to an MMPP with M+1 states. However, this is not
the case here.

The large size of the system state space as shown above
would render an exact control algorithm prohibitively complex
for practical applications. For example, to fully utilize QT , the
system would need, at every decision epoch, the exact status
of every underlay AP, which clearly is not a scalable approach.

In what follows, we adopt a state-space reduction approach,
to consider only the total number of dropping/blocking APs. In
practice, this may correspond to an overlay controller that has
only a partial view of the underlay mesh network, such that it
is made aware of dropping/blocking APs due to overflow new
and handover calls but otherwise has no additional information
on the state of all APs. Formally, if the state of the ith IPP
is denoted by xi (with xi = 1 when IPP is ON), then the
underlay state can be expressed as ~u = (x1, x2, . . . , xM ). We
define the degree operator on ~u as ω(~u) =

∑M
i=1 xi. At state

~u, the overlay controller only knows the total count of ON
IPPs, which we denote by random variable N = ω(~u).

We define U =
{
~u |xi ∈ {0, 1}, i = 1, . . . , M

}
as the state

space of the underlay network. U can be partitioned into M+1
disjoint and exhaustive subsets U(k) based on our observation
of N = k. We have

U(k) =
{
~u ∈ U | ω(~u) = k

}
. (14)

Given that the control decision has to be made based on
the observation of N , and not ~u, we can derive a new PO-
MMPP(Q̂v, Λ̂v) model based on MMPP(QT ,ΛT ). In this
new model, states are associated with observations of N , and
hence, the resultant MMPP has M+1 states. We note that at
every transition of ~u, ω(~u) only changes by one. Therefore,
{N(t)} is a birth-death Markov chain. In order to characterize
Q̂v and Λ̂v , let us denote the birth rates by vector ~αv =
[α(1)

v , . . . , α
(M)
v ], the death rates by ~βv = [β(1)

v , . . . , β
(M)
v ]

and the arrival rates as λ̂k
v for k = 0, . . . , M .

Let us denote by λ~u the rate of MMPP(QT , ΛT ) at state
~u. Let πt be the stationary probability vector associated with
QT such that πtQT = 0 and πte = 1, and πU(k) be the lump
sum probability of being in aggregate state N = k, given
as πU(k) =

∑
~v∈U(k) πt(~v). If we observe that N = k, the

expected instantaneous overflow rate is



λ̂k
v = E[λ~u|~u ∈ U(k)] =

∑

~u∈U(k)

λ~u
πt(~u)
πU(k)

. (15)

We also have to determine what fraction of λ̂k
v is new calls

and what fraction is formed by handover calls, as these streams
have different rejection costs. Let us denote by λho(~u), the
total rate of handover overflows and λno(~u) the total rate of
new calls overflow at state ~u. We have

λho(~u) = λpo +
M∑

i=1

xi λi
ho, λno(~u) =

M∑

i=1

xi λi
no. (16)

The total overflow rates for new and handover calls for when
PO-MMPP(Q̂v, Λ̂v) is in state k can now be calculated as

λ
(k)
(h\n)v =

∑

~u∈U(k)

λ̂k
vλ(h\n)o(~u)/(λho(~u) + λno(~u)). (17)

To find birth-death rates, we use the Markov chain state
aggregation method proposed in [30]. The transition rate from
subset U(i) to U(j) denoted by qv(i, j) can be found as

qv(i, j) =
∑

~x∈U(i)

∑

~y∈U(j)

qt(~x, ~y)
πt(~x)
πU(i)

(18)

where QT = [qt(~x, ~y)]. The birth-death rates can be calculated
as

α(k)
v = qv(k − 1, k), β(k)

v = qv(k, k − 1). (19)

Equations (15) and (19) completely determine the underlay
overflow process as PO-MMPP(Q̂v, Λ̂v).

VI. STRUCTURED CONTROL OF OVERLAY BS

In this section, we study structural results for optimal
control of the overlay cellular BS and model the overlay
network as a controlled PO-MMPP/M/C/C queuing system.

In this system model, controlled transitions at the overlay
are 1)new call arrivals to overlay, 2)new call overflows from
underlay, 3)handover call arrivals to overlay from neighbor
clusters, and 4)handover call overflows from underlay to
overlay. With the rejections costs of CBNC, CBNO, CDCC and
CDHO, respectively. We refer to each of these request types as
a call class. We define the system state as s = (i, n), where i
is the number of calls at the overlay and n is the total number
of dropping/blocking APs at the underlay. We also define state
operators of

As : s = (i, n) → s′ = (i + 1, n)
Ds : s = (i, n) → s′ = (i− 1, n)
Qs : s = (i, n) → s′ = (i, n + 1)
Rs : s = (i, n) → s′ = (i, n− 1).

(20)

These operators are boundary sensitive, which means that
they do not map a state to a point outside the system state
space. For example, if s+(0, 1) /∈ S, then Qs is not a proper
operation. Here, the state space S is defined as

S =
{
s = (i, n) : 0 ≤ i ≤ Cc, 0 ≤ n ≤ M

}
. (21)

Extending the framework presented in Section IV, we can
write the optimal cost function Vk(s) for this system as

Vk+1(s) =
1

vmax

{
λin

hcc min[∆Vk(As), CDCC]

+ λ
(n)
hv min[∆Vk(As), CDHO]

+ λ(n)
nv min[∆Vk(As), CDNO]

+ λnc min[∆Vk(As), CBNC]
+α(n)

v ∆Vk(Qs) + β(n)
v ∆Vk(Rs)

+ i(µc + ηhcc)∆Vk(Ds) + vmaxV (s)
}

(22)

where vout(s) = is the sum of all transition rates (qe) out of
state s

vout(s)= λnc + λ(n)
nv + λ

(n)
hv + λin

hcc

+ i(µc + ηhcc) + α(n)
v + β(n)

v . (23)

The following Lemmas are required to obtain structural re-
sults for Vk(s), where Lemma 1 is needed to prove Lemma 2.
The proofs are omitted in this version due to lack of space;
interested readers are referred to the authors’ supplemental
technical report available online.

Lemma 1: λ
(n)
nv and λ

(n)
hv are both monotonically non-

decreasing in n.
Lemma 2: Vk(s) has the following properties:
A) ∆Vk(As) ≥ 0
B) ∆Vk(A2s) ≥ ∆Vk(As)
C) ∆Vk(AQs) ≥ ∆Vk(As).
In the above, Property A is needed to prove properties B and

C. Intuitively, Property B states that the cost function of the
system, and its differences, monotonically increase with the
number of calls being accommodated by the system. Property
C states that the differences of cost function monotonically
increase with the number of dropping/blocking APs at the
underlay.

Definition 1: A threshold policy is a CAC policy in which
resource requests of class r are admitted if and only if, the
system state is not greater than the threshold for class r, i.e.,
si ≤ Th[r].

We denote by Π = {Th(L,W )} the class of threshold
polices. Here, L = 4 is the number of controlled call classes
entering overlay, and W is number of possible states the un-
controllable variable can assume. In this scenario, W = M+1.
A policy Ψ ∈ Π fully determines the CAC algorithm in terms
of thresholds.

Theorem 1: The optimal control policy for the system
model given in (22) is a threshold policy.

Proof: Let us assume that a call of class l arrives to the
system with the rejection cost of C

(l)
R , when the system state

is s = (i, n). If the new call is admitted, the increase in the
optimal cost function is ∆Vk(A(i, n)). We show that the CAC
decision can be expressed in terms of thresholds determined
by ∆Vk(A(i, n)) and C

(l)
R .

If ∃i0 such that ∆Vk(A(i0, n)) < C
(l)
R and

∆Vk(A(i0, n)) ≥ C
(l)
R , then Lemma 2.B asserts that

for all i ≤ i0 we have ∆Vk(A(i, n)) < C
(l)
R , and for all

i ≥ i0 we have ∆Vk(A(i, n)) ≥ C
(l)
R . This means that

i0 is the state after which the cost of admitting a call of
class l becomes more than rejecting it at the cost of C

(l)
R .

Therefore, Th(l, n) = i0. If such i0 does not exist, either for
all 0 ≤ i ≤ Cc we have ∆Vk(A(i, n)) ≥ C

(l)
R and calls of

class l are rejected in all states, or for all 0 ≤ i ≤ Cc we
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Fig. 3. 2D Markov chain model for overlay analysis.

have ∆Vk(A(i, n)) < C
(l)
R and calls of class l are admitted

in all states.
In the next theorem, we claim that for every call class,

the threshold is a monotonic curve. It is monotonic in that
it decreases with an increase in n.

Theorem 2: The optimal threshold policy for the system
model given in (22) belongs to the class of monotonic thresh-
old curves.

Proof: We have to show that if n2 ≤ n1, then Th(l, n1) ≤
Th(l, n2). Defining i1 = Th(l, n1) and i2 = Th(l, n2), we
have

∆Vk(A(i1, n1)) < C
(l)
R ≤ ∆Vk(A(i1 + 1, n1)) (24)

∆Vk(A(i2, n2)) < C
(l)
R ≤ ∆Vk(A(i2 + 1, n2)) (25)

We want to show that i1 ≤ i2. For contradiction, assume
i1 > i2; then Lemma 2.B gives us ∆Vk(A(i1, n2)) ≥
∆Vk(A(i2, n2)), because (i1, n2) = Ak(i2, n2) where k =
i1 − i2 > 0. Knowing i1 ≥ i2 + 1 and comparing with (25)
and applying Lemma 2.B, we have ∆Vk(A(i1, n2)) ≥ C

(l)
R .

Also, from (24) we have ∆Vk(A(i1, n1)) < C
(l)
R . Which

together gives us ∆Vk(A(i1, n2)) ≥ ∆Vk(A(i1, n1)). Given
Lemma 2.C, this implies that n2 ≥ n1 which contradicts our
initial assumption.

Definition 2: A threshold policy is an ordered threshold
policy when we have

Th(l, n) ≤ Th(l′, n) If C
(l)
R ≤ C

(l′)
R .

Theorem 3: The monotonic threshold curves from Theo-
rem 2 are ordered.

The proof is omitted due to space limitation. In the next
section, we use the above structural properties to design an
efficient computational algorithm.

VII. STRUCTURED COORDINATE SEARCH ALGORITHM

Depending on the system size, the computation cost of
finding an optimal CAC policy can be very high. The optimal
policy can be computed either by using any of Value Itera-
tion (VI), Policy Iteration (PI), or Linear Programming (LP)
techniques, or directly, through explicit formulation of cost
criterion and combinatorial search. In this section, we propose
an efficient algorithm which determines the parameters of an
optimal threshold policy using combinatorial localized search
algorithms [31].

Given a CAC policy Ψ, the system can be analyzed as a
Markov chain with states (i, n) as depicted in Fig. 3. This
Markov chain still has a large state space. However, observing
the separation between its two dimensions, we can simplify the
computation of the stationary state distribution

πs(f, k) = P [i = f |n = k] P (n = k). (26)

Let us first find P (n = k). From Section V, we know that
the PO-MMPP model of the overflow traffic is a birth-death
process. We have

P (n = k) =
Πk

i=1
α(i)

v

β
(i)
v

1 +
∑M

j=1 Πj
i=1

α
(i)
v

β
(i)
v

. (27)

It can be seen from Fig. 3 that conditioned on n the
transitions for i form a birth-death process. We have

P [i = f |n = k] =
Πf

h=1
qs|n(h−1,h)

qs|n(h,h−1)

1 +
∑Cc

j=1 Πj
h=1

qs|n(h−1,h)

qs|n(h,h−1)

. (28)

For the system model given in (22), qs|n can be found as
qs|n(i, i + 1)= λncIth(i, n, 1) + λ(n)

nv Ith(i, n, 2)

+ λin
hccIth(i, n, 3) + λ

(n)
hv Ith(i, n, 4)

qs|n(i, i− 1)= i(µc + ηhcc) (29)

where call classes l = 1, 2, 3, 4, are enumerated according
to Table II, and Ith(i, n, l) is the admission region indicator
function given as

Ith(i, n, l) =
{

1 if i ≤ Th(l, n)
0 otherwise. (30)

To determine gΨ in (1), we have to calculate P
(l)
R and λl.

For call classes associated with CBNC and CDCC which arrive
according to a Poisson process, the rejection probability can
be directly computed as P

(l)
R =

∑
(i,n)∈S

[1−Ith(i, n, l)]πs(i, n).

For the overflow processes which arrive according to an
MMPP, we have

P
(l)
R

=
∑

(i,n)∈S

λ
(n)
hv

[1−Ith(i,n,l)]πs(i,n)/
∑

(i,n)∈S

λ
(n)
hv

πs(i,n) (31)

Furthermore, overflows λl can be calculated as λ2 =
En[λ(n)

nv ] and λ4 = En[λ(n)
hv ]. We next propose an algorithm

to find the optimal Ψ∗ that minimizes gΨ.
Without loss of generality, we may sort the the labels of

call classes such that if l ≤ l′ then C
(l)
R ≤ C

(l′)
R . Then,

Theorems 3 asserts that the optimal policy is an ordered
monotonic threshold curve. For Th(l, n), this implies the
following relations

Monotonicity : Th(l, n) ≤ Th(l, n− 1)
Ordered : Th(l, n) ≤ Th(l + 1, n). (32)

Let us define the fictitious call classes of 0 (lowest priority)
and 5 (highest priority) to set boundary conditions. We have

Th(L + 1, n) = Cc − 1, Th(0, n) = 0 (33)
Th(l,−1) = Cc − 1, Th(l, M + 1) = 0 (34)



TABLE III
SIMULATION PARAMETERS.

Parameter Value Parameter Value
Cc 50 calls µc 0.01
Cw 20 calls µw 0.01
λc 0.4 calls/sec CBNC 5
λw 0.2 calls/sec CBNO 10
ηhcc 5× 10−3 CDCC 30
ηi

h 0.01 CDHO 40

We propose an iterative algorithm that is referred to as
Structured Coordinate Search Algorithm (SCSA). SCSA per-
forms a local search in the state space confined by our struc-
tural results. Its is given in Algorithm 1. The loop invariant is
that, at the start of every iteration, Ψr is an ordered monotonic
threshold policy (OMTP). Then through greedy selection of
the threshold level at each point, a new OMTP is found that
results in a lower cost. After a finite number of steps the
OMTP can not be improved any further and the algorithm
converges. In the next section, the convergence and the quality
of the policies generated by SCSA will be studied through
numerical experiments.

Algorithm 1 Structured Coordinate Search Algorithm (SCSA)
1: Initialize Ψ0

such that: ∀(l, n) ThΨ0(l, n) = Cc − 1
r := 0

2: r = r + 1, Ψr = Ψr−1

3: For l := 1, . . . , L
For n := 0, . . . ,M

bl = max [ThΨr (l − 1, n), ThΨr−1(l, n + 1)]
bu = min [ThΨr−1(l + 1, n), ThΨr (l, n− 1)]
ThΨr (l, n) = argmin

bl≤t≤bu

gΨr [Th(l, n) = t]

4: if Ψr = Ψr−1 then
5: Return Policy Ψr

6: else
7: Go to step 2
8: end if

VIII. NUMERICAL RESULTS

We conduct extensive simulation experiments to study the
performance of structured admission control. For each set
of system parameters, the simulation has two stages. First,
SCSA, implemented in Matlab, is used to obtain an optimal
policy. Then, this policy is fed into a discrete-event simulator,
built in C++, to find the resultant QoS performance. For each
data point in the following, a total of 2 × 105 seconds are
simulated. All parameters take their default values shown in
Table III unless otherwise stated. We consider the underlay
mesh topology given in Fig. 1, consisting of four APs. We
assume φ(n1, n2) = 1/6 for every pair of adjacent APs.
A. Optimality of Structured Admission Control

We have conducted an extensive number of experiments to
compare the result of SCSA with Value Iteration (VI) [13]
under the approximate model of Section V. All threshold levels
obtained by using SCSA and VI showed complete matching.
These observations suggest that, for all practical parameter

TABLE IV
THRESHOLD POLICY Th(l, n)

TH(l, n) n=0 1 2 3 4
l=1 43 36 20 19 19
2 49 45 43 41 40
3 49 49 49 49 47
4 49 49 49 49 49

TABLE V
SCSA CONVERGENCE SPEED, COMPARED WITH VI.

SCSA VI ES
M Time (sec) Time (sec) Order
4 12 483 2200

8 59 5685 2400

16 307 À5685 2800

sets, the proposed structured algorithm can be considered as a
highly efficient yet reliable method to perform CAC in HWNs.
As an example, for the system model in Fig. 1, the computed
threshold policy is given in Table IV. Intuitively, due to the
smooth and monotonic nature of the optimal threshold curves
proved in Theorems 1–3, SCSA gradually converges to the
optimal policy, rather than sub-optimal solutions.

B. Convergence Speed

The convergence speed, in CPU time, of SCSA is compared
against VI in Table V under the approximate model of Sec-
tion V. Also, the size of the state space of an exhaustive search
(ES) for the optimal policy, which is of order O(2M.Cc), is
given in the last column. It can be seen that knowledge of the
policy structure allows us to compute the optimal policy in a
much shorter time than either VI or ES.

C. SCSA vs. Complete Sharing and Guard-Channel Policies

The Complete Sharing (CS) policy refers to the admission
policy in which Ψ(s) = 1, regardless of the system state as
long as it remains within system capacity boundaries. The
Guard-Channel (GH) policy is a simplified form of SCSA
where the threshold is estimated based on arrival and handover
rates, regardless of the state of other parts of network. To
compute the parameters of the GH policy we use the fact
that the optimal threshold for calls of class l, if we have no
observation of n, is the expected value of Th(l, n) with regard
to n, i.e., Th(l) = En[Th(l, n)].

In Fig. 4 and 5, the performance gΨ of SCSA, CS, and GH
policies are compared for two different loading conditions over
a range of ηh. In Fig. 4, we have λnc = 0.4 and λnw = 0.2
and in Fig. 5, we have λnc = 0.6 and λnw = 0.3. Here, ηh is
the intensity of mobility as it measures the rate of leaving an
underlay AP due to handover.

These figures show that, even though SCSA operates over
a reduced state space, it can significantly improve system
performance. It can be seen that in all cases the SCSA policy
result in a lower total cost. However, its effect become more
significant when the system load increases. Comparison of
GH and SCSA policies shows that partial observation of
mesh status allows us to considerably improve the system
performance.
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IX. CONCLUSION

In this paper, we characterize the structure of optimal ad-
mission control policies for Heterogeneous Wireless Networks
(HWN), consisting of an integration of wireless mesh networks
with an overlaying cellular infrastructure. A new bursty PO-
MMPP traffic model is developed. This model captures the
burstiness of the overflow traffic under the imperfect observ-
ability of the mesh network states.

For this system, structural optimal control results are pre-
sented. These results are used to design an efficient com-
putational algorithm to determine the call admission policy.
The performance of this algorithm is compared against the
well-know Value Iteration technique, as well as the Complete
Sharing and Guard-Channel policies. Discrete-event call-level
simulations confirm that the obtained policy is effective in
maintaining the desired QoS performance.
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