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Abstract—We consider a cooperative cognitive radio system,
where a secondary user may relay data for the primary user.
Under the half-duplex assumption and packet collision model,
the primary and secondary instantaneous data rates are derived,
as a function of the power allocation factor by the secondary user
to relay the primary user’s data. We study the optimal power
allocation to maximize the secondary user’s instantaneous data
rate and long-term throughput, without degrading the primary
user’s spectrum utilization. Our numerical results suggest that
these two performance criteria entail drastically different optimal
behaviors by the secondary user. Furthermore, we observe that
employing successive interference cancellation in relaying can
significantly increase the instantaneous data rate, but after
optimizing the power allocation factor, the simple decode-and-
forward strategy almost always achieves the same throughput as
the more complicated strategies.

I. INTRODUCTION

The performance of the cooperative cognitive radio (CCR)
has been widely studied from an information theoretic per-
spective [1]–[3]. In a pioneering work, Devroye et al. [1]
studied the data rate of the non-causal CR assuming a genie
informs the secondary transmitter (ST) about the message
of the primary transmitter (PT) prior to transmission. The
causal CR model was later developed in [4], where the authors
adopted a cooperative strategy for the CR and provided an
inner bound on the joint achievable rates of the primary user
(PU) and the secondary user (SU). In this model, the SU acts
as a relay with a private message. The largest inner bound
to-date for this model is derived in [5], but it involves many
auxiliary random variables, thus making the rates intractable.

Most previous CCR performance studies are based on either
impractical assumptions or models that are hard to implement.
In an idealistic CCR, the ST can operate in full-duplex mode
[2]. However, the full-duplex transceivers are impractical with
today’s technology. The inner bounds on the half-duplex CR
was recently investigated in [6]. However, like other works
on fundamental limits of the cognitive radio, this work also
provides an intractably high-dimensional rate region that is
too prohibitive for practical design purposes. Another implicit
assumption in the aforementioned works is that two colliding
messages at the receiver can be decoded as if they are perfectly
synchronized. Holding this assumption is very cumbersome
in reality: Decoding colliding packets are possible, but it
requires highly sophisticated receivers and transmitters [7]. For
instance, in [8], a cross-layer protocol called DAC is developed

to circumvent the synchronization requirement which involves
a complicated signal processing.

In this work, we consider a CCR model in which the SU
can cooperate with the PU in half-duplex mode. Furthermore,
neither primary receiver (PR), nor the secondary receiver
(SR), can decipher two colliding packets. Hence, only one
transmitter is allowed to transmit (interleaved transmission) to
avoid collision at the receivers. Our physical channel model
resembles that in [9]. The goal for the SU is to maintain the
quality of service (QoS) of the PU, while optimizing its own
spectrum utility (data rate and throughput). In this paper, we
consider instantaneous data rate and long-term throughput as
performance metrics. An interleaved transmission is adopted
to avoid packet collision.

To best of our knowledge, this work is the first to investigate
such a problem. Nevertheless, maximizing the performance of
the SU while maintaining that of the PU has been previously
studied in various literatures. For example, [10] proposes a
distributed power/channel allocation algorithm to maximize
the down link coverage and throughput while maintaining
the interference to the PU below a certain threshold. In this
work, the ST does not cooperate in transmitting the PU data.
In [11], adaptive user cooperation in heterogeneous cognitive
relay system is considered assuming that colliding packet can
always be decoded. In [12], a CCR model is investigated
in which there are one single PT and multiple STs. In the
adopted cooperative scheme, the time is divided into three
unequal partitions. In the first time slot, the PT broadcasts
its message to STs only, and all STs are required to decode
it. In the second time slot, the PT and all STs transmit this
message simultaneously to the PR. In the third time slot, the
channel is relinquished to the SUs and each SU utilizes it
based on a pricing scheme. Unlike our model, the colliding
packets are assumed to be decoded, and only DF without SIC
is considered.

The main contributions of this work can be summarized as
follows:

∙ Decode-and-forward (DF) and amplify-and-forward (AF)
strategies for the CCR are investigated as two prevailing
strategies. Different decoders with successive interference
cancellation (SIC) and without SIC are considered. For
each cooperative strategy, analytical closed forms for the
optimal power allocation and maximum achievable rate
for the SU is obtained.

∙ The throughput of the system is investigated, and through
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simulation it is shown that in most cases, with optimal
power allocation between the superpositioned PT and ST
data, the non-sophisticated DF method performs as well
as sophisticated DF methods with SIC.

II. SYSTEM MODEL AND PROBLEM STATEMENT

We consider a CCR system as depicted in Fig. 1. In this
model, there is a PU with one transmitter and one receiver.
The PT has a message to transmit, and the PR receives and
decodes that message. There is also a SU with one transmitter,
ST, and one receiver, SR. For convenient indexing, PT, ST, PR,
SR are denoted by nodes 1, ⋅ ⋅ ⋅ , 4. When the ST cooperates,
then the time is divided into alternating slots. In odd slots,
the PT transmits its own signal whereas in even slots, the ST
transmits a superimposed signal containing its own message
and a version of what it received from the PT in the previous
slot.

To mathematically model this communication channel, let
𝑋̃𝑖 indicate the transmitted signal by node 𝑖, and 𝑌𝑖 indicate
the received signal by node 𝑖, 𝑖 = 1, 2, 3, 4. Also, let ℎ̃𝑖𝑗 be the
channel gain between nodes 𝑖 and 𝑗. The relationship between
transmitted signals and received signals can be expressed as⎡
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where 𝑍𝑖 is an additive white Gaussian noise at node 𝑖 with
power 𝐸[𝑍2

𝑖 ] = 𝑁̃𝑖. The channel gains ℎ̃𝑖𝑗 are assumed to
be real; the extension to complex channel gains is straight
forward and is ignored here. The transmitters are subjected to
the power constraint 𝐸[𝑋̃2

𝑖 ] ≤ 𝑃𝑖. The Gaussian noise requires
the transmitted signals to be Gaussian as well since the
normal distribution maximizes the entropy for a given variance
[13, Theorem 8.6.5]. We term this channel as a Gaussian
interference channel hereafter. In this model, it is assumed
that the PT can communicate with the PR with the Shannon
rate which in our model is equal to 0.5 log(1 + 𝑆𝑁𝐼𝑅) bits
per channel use where the logarithms are taken in base 2,
and the 𝑆𝑁𝐼𝑅 is the ratio of the received signal power
at the PR over the total noise and interference power, i.e.,
𝑆𝑁𝐼𝑅 = ℎ̃2

31𝑃1/(ℎ̃
2
32𝑃2 + 𝑁̃1).

To make the analysis more tractable, we now present the
notion of the standard channel. It has been shown (see [14]
for example) that by applying a scaling transformation on
the parameters and input signals, the resulting changes in
output signals can be compensated by constant scaling factors.
That is, two Gaussian interference channels related by this
scaling transformation are equivalent in terms of performance
metrics. Let (1) represent the original channel input output
relationship. The channel characterized by the following input
output relationship has the same performance metrics as that
in (1). ⎡
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Fig. 1. Mnemonic channel model for the cooperative cognitive radio. In
this figure, 𝒫𝒯 , 𝒮𝒯 , 𝒫ℛ, 𝒮ℛ represent the primary transmitter (PT),
secondary transmitter (ST), primary receiver (PR), and secondary receiver
(SR) respectively.

where

𝑎 =
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√
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and the new transmitted signals and powers are

𝑋1 =
ℎ̃31𝑋̃1√

𝑁3
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ℎ̃2
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and the noise powers are normalized to one. For convenience,
we will analyze the standard channel hereafter; nonetheless,
the results are easily transformable to the form that contains
the original channel’s parameters.

Let the 𝑅1 indicate the information theoretic rate for the PU.
Similarly, let 𝑅2 be the SU’s rate by which the ST conveys
the information to the SR. As mentioned before, the PU has
the right to use the spectrum, and its rate may not be degraded
by the interference incurred by the SU. The data rate of the
PU when it fully utilizes the channel is

𝑅★
1 = 1

2 log(1 + 𝑃1). (3)

If the ST transmits concurrently with power 𝑃2, the rate of
the PU diminishes to 𝑅1 = 0.5 log

(
1 + 𝑃1/(1 + 𝑐2𝑃2)

)
.

The SU is, however, a smart cognitive user that can co-
operate with the PU. It can play a twofold role: On the one
hand, if the ST selflessly allocates all of its power to relay the
message of the PT, it can enhance the performance of the PU
while achieving zero rate for the ST; on the other hand, if the
ST selfishly allocates all of its power to transmit its message,
the rate of the PU decreases.

III. ACHIEVABLE RATES OF THE CCR

In this section, we investigate the achievable data rates of
the CCR modeled in Section II under DF and AF schemes.

A. Decode-and-Forward Strategies

In the absence of the SU, let 2𝑛 be the number of channel
uses for a packet of data conveying 𝑏̄ bits of uncoded informa-
tion. But when the SU cooperates, the PU only transmits half
of the time, i.e., in 𝑛 channel uses, and the SU transmits in
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the second half of the time. Each half time is called one time
slot. It is noteworthy that 𝑛 is assumed to be large enough
such that the Shannon capacity results can be applied here. In
more precise words, in first time slot, PT transmits

𝑋𝑛
1 = (𝑋1,1, 𝑋1,2, ⋅ ⋅ ⋅ , 𝑋1,𝑛) (4)

where 𝑋𝑛
1 denotes the PT’s message (packet) vector with

length 𝑛, and 𝑋1,𝑖 represents the message of the PT at time
instance 𝑖. In the second time slot, the ST transmits

𝑋𝑛
2 = (𝑋2,𝑛+1, 𝑋2,𝑛+2, ⋅ ⋅ ⋅ , 𝑋2,2𝑛). (5)

When it is clear from the context we drop the time index 𝑖
for 𝑋1,𝑖 or 𝑋2,𝑖. For a given time instance 𝑖 ∈ {1, ⋅ ⋅ ⋅ , 𝑛}, let
𝑋 ′

1 be an i.i.d. normal random variable with mean zero and
unit variance. The output of the PT can be represented as

𝑋1 =
√

𝑃1𝑋
′
1. (6)

In the decode and forward (DF) scheme, the ST decodes the
message of the PT transmitted in the first time slot, i.e., 𝑋𝑛

1 .
In the second time slot, at time index 𝑗 = 𝑖+𝑛, the transmitted
symbol by the ST can be expressed as

𝑋2 =
√
𝛽𝑃2𝑋

′
1 +

√
𝛽𝑃2𝑋

′
2 (7)

where 𝑋 ′
2 is a Gaussian i.i.d. random variable with mean zero

and unit variance and 𝛽 = 1 − 𝛽. As can be seen, the ST’s
power is split into two parts: first part, 𝛽𝑃2, is used to forward
the message of PT; the second part, 𝛽𝑃2, is used to transmit the
message of the ST. The power allocation factor 𝛽 plays a rate
tuning role: intuitively, increasing 𝛽 (allocating more power to
the PT’s message and less power to the ST’s message) results
in increasing 𝑅1 and decreasing 𝑅2.

Let 𝑌 (1)
𝑘 be the received signal at node 𝑘 in the first time

slot at an arbitrary time index 𝑖, and 𝑌
(2)
𝑘 be the received

signal at node 𝑘 in the second time slot at the respective time
index 𝑖+ 𝑛. Therefore, the received signals at the PR and the
SR can be expressed as

𝑌3 =

[
𝑌

(1)
3

𝑌
(2)
3

]
=

[ √
𝑃1

𝑐
√
𝛽𝑃2

]
𝑋 ′

1 +

[
0

𝑐
√

𝛽𝑃2

]
𝑋 ′

2 +

[
𝑍

(1)
3

𝑍
(2)
3

]
,

(8)

𝑌4 =

[
𝑌

(1)
4

𝑌
(2)
4

]
=

[
𝑏
√
𝑃1√

𝛽𝑃2

]
𝑋 ′

1 +

[
0√
𝛽𝑃2

]
𝑋 ′

2 +

[
𝑍

(1)
4

𝑍
(2)
4

]
(9)

where 𝑍
(𝑖)
𝑘 is the white Gaussian noise at node 𝑘 in time slot

𝑖 with unit variance.
Since we impose the condition that the message of the PT

must be decoded at the ST, the transmission rate of the PT
should be less than the point-to-point capacity between the
PT and the ST. This capacity can be written as 1

2𝐶(𝑎2𝑃1)
where the 1

2 factor is due to the fact that the PT transmits
half of the time, and 𝐶(𝑥) = 1

2 log(1 + 𝑥). In addition, under
this cooperative scheme, we implicitly assume that the rate of
the PT is as described in (3); the following constraint must be
satisfied:

1

2
× 𝐶(𝑎2𝑃1) ≥ 𝑅★

1 ⇒ 𝑎2 ≥ 2 + 𝑃1. (10)

In the rest of this chapter we investigate three methods
of decoding: first, decoding without interference cancellation;
second, decoding with SIC at the PR; third, decoding with SIC
at the SR. Also, let the rate 𝑅1 be associated to the number
of bits per channel use that 𝑋 ′𝑛

1 conveys, and similarly, the
rate 𝑅2 be associated to that of 𝑋 ′𝑛

2 .
1) Decode-and-Forward with no SIC: In DF method with

no SIC, each receiver only decodes its intended message while
treating the message of the other transmitter as interference.
The following theorem characterizes an achievable rate region
under this scheme.

Theorem 1: In the channel described in Section II, a reliable
communication is feasible if

𝑅1 ≤ 1

4
log

1 + 𝑃1 + 𝑐2𝑃2 + 𝑐2𝛽𝑃1𝑃2

1 + 𝑐2𝛽𝑃2
, (11)

𝑅2 ≤ 1

4
log

(
1 +

𝛽𝑃2

1 + 𝛽𝑃1

)
(12)

where 0 ≤ 𝛽 ≤ 1.
Proof: Consider (4) and (5): the PR forms a augmented
codeword 𝑌 𝑛

3 which is a matrix with 2 rows and 𝑛 columns.
The first row is the 𝑛-tuple received in the first time slot,
and the second row is the 𝑛-tuple received in the second
time slot. Note that symbol 𝑖 from the first time slot and the
corresponding symbol 𝑖+ 𝑛 from the second time slot are in
the same column (column 𝑖), and 𝑖 = 1, ⋅ ⋅ ⋅ , 𝑛. Also, note that
the message of the PT is encoded in the 𝑛-tuple 𝑋 ′𝑛

1 . In each
channel use, the amount of information bits of 𝑋 ′𝑛

1 that can be
reliably decoded from 𝑌 𝑛

3 (when 𝑛 is large) is upper bounded
by the mutual information between 𝑋 ′

1 and 𝑌3, i.e., 𝐼(𝑌3;𝑋
′
1)

[15]. Here, there is a repetition: the same information bits are
conveyed in the second time slot; therefore, the actual rate for
the codeword 𝑋 ′𝑛

1 is half of this mutual information term. In
other words, under this scheme, the PR can decode 𝑋 ′𝑛

1 if

𝑅1 ≤ 1

2
𝐼(𝑌3;𝑋

′
1) =

1

2
(ℎ(𝑌3)− ℎ(𝑌3∣𝑋 ′

1))

=
1

2
ℎ

([ √
𝑃1𝑋

′
1 + 𝑍

(1)
3

𝑐
√
𝛽𝑃2𝑋

′
1 + 𝑐

√
𝛽𝑃2𝑋

′
2 + 𝑍

(2)
3

])

− 1

2
ℎ

([
𝑍

(1)
3

𝑐
√

𝛽𝑃2𝑋
′
2 + 𝑍

(2)
3

])

=
1

4
log

∣∣∣∣ 1 + 𝑃1 𝑐
√
𝛽𝑃1𝑃2

𝑐
√
𝛽𝑃1𝑃2 1 + 𝑐2𝑃2

∣∣∣∣
− 1

4
log

∣∣∣∣ 1 0
0 1 + 𝑐2𝛽𝑃2

∣∣∣∣ (13)

=
1

4
log

1 + 𝑃1 + 𝑐2𝑃2 + 𝑐2𝛽𝑃1𝑃2

1 + 𝑐2𝛽𝑃2

where 𝐼(⋅; ⋅) represents the mutual information, and ℎ(⋅) is the
differential entropy (see [13] for definitions), and [13, Theorem
8.4.1] is used to compute (13).

Using a similar argument, let the SR form a augmented
codeword 𝑌 𝑛

4 . The SR can decode the message 𝑋 ′𝑛
2 if 𝑅2 ≤

1
2𝐼(𝑌4;𝑋

′
2). This mutual information can be computed, and

(12) will be obtained. ■



4

2) Decode-and-Forward with SIC at the PR: In the second
time slot, the PT is broadcasting two messages, 𝑋 ′

1 and 𝑋 ′
2, to

the PR and the SR. When the cross channel gain 𝑐 is greater
than one, the channel formed between the ST, the PR, and
the SR is a degraded broadcast channel; that is the signal
received by the SR is a degraded version of that received by
the PR. In this case, let the term weaker receiver be used
for the SR, and the term stronger receiver be used for the
PR. Cover [16] and Gallager [17] showed that the capacity
achieving strategy for the degraded broadcast channel is as
follows: The transmitter superimposes the message of the
weaker receiver onto the message of the stronger receiver.
The stronger receiver first decodes the message of the weaker
receiver, and then utilizes this knowledge to mitigate the
interference when it decodes its own message. The weaker
receiver only decodes its intended message. When the channel
is Gaussian, the superposition coding is simply performed by
linearly combining two codewords.

Having this guide line in mind, the following scheme
utilizes the advantage of successive cancellation at the PR:
let the PR first decode the message of the ST (𝑋 ′

2) and then
subtract it from the received signal 𝑌3. In other words, the PR
decodes 𝑋 ′

2 first and then 𝑋 ′
1, and the SR decode only 𝑋 ′

2.
Theorem 2: In the channel described in Section II, a reliable

communication is possible if

𝑅1 ≤1

4
log(1 + 𝑃1 + 𝑐2𝛽𝑃2), (14)

𝑅2 ≤min
{1
4
log

(
1 + 𝑃2

1 + 𝛽𝑃2

)
, (15)

1

4
log

(
1 + 𝑃1 + 𝑐2𝑃2 + 𝑐2𝛽𝑃1𝑃2

1 + 𝑃1 + 𝑐2𝛽𝑃2

)}
(16)

for 0 ≤ 𝛽 ≤ 1.
Proof: We imitate the proving technique in the Theorem
1: First, the decoders form augmented codewords 𝑌 𝑛

3 and
𝑌 𝑛
4 . Then, the PR decodes the message of the SU reliably

if 𝑅2 ≤ 0.5𝐼(𝑌3;𝑋
′
2). Having decoded 𝑋 ′𝑛

2 , the PR can
utilize it as a known information to decode the message of
the PU. The message of the PU can be decoded without error
if 𝑅1 ≤ 0.5𝐼(𝑌3;𝑋

′
1∣𝑋 ′

2). Finally, the SR can decode the mes-
sage 𝑋 ′𝑛

2 if 𝑅2 ≤ 0.5𝐼(𝑌4;𝑋
′
2). Considering both constraints

on 𝑅2, clearly, 𝑅2 ≤ min{0.5𝐼(𝑌3;𝑋
′
2), 0.5𝐼(𝑌4;𝑋

′
2)} must

be satisfied. ■
3) Decode-and-Forward with SIC at the SR: The DF

method with SIC at the SR is analogous to that with SIC at the
PR (Section III-A2) except that the interference cancellation is
performed at the SR instead of the PR. The following theorem
states the rates achieved by this method.

Theorem 3: For the channel model described in Section II,
a reliable communication is feasible if

𝑅1 ≤min
{1
4
log

(
1 + 𝑃1 + 𝑐2𝑃2 + 𝑐2𝛽𝑃1𝑃2

1 + 𝑐2𝛽𝑃2

)
, (17)

1

4
log

(
1 + 𝑏2𝑃1 + 𝑃2 + 𝑏2𝛽𝑃1𝑃2

1 + 𝛽𝑃2

)}
, (18)

𝑅2 ≤1

4
log(1 + 𝛽𝑃2) (19)

for 0 ≤ 𝛽 ≤ 1.

𝑇

𝑆

𝑡𝑖𝑚𝑒

𝑅1(𝛽) ⋅ ⋅ ⋅PT: Idle time

𝑡𝑖𝑚𝑒

ST: ⋅ ⋅ ⋅ 𝑅2(𝛽) 𝑅2(𝛽 = 0) ⋅ ⋅ ⋅

Fig. 2. Demonstration of the channel use over time by the PU and the SU. PT
transmits only in 𝑇/𝑆 portions of time, and the rest of the time the channel
is idle for the SU’s usage. 𝑅1 and 𝑅2 are the PU and the SU rates, and 𝛽 is
the power allocation factor.

Proof: A similar proof technique to that of the Theorem 1 is
used. The PR can decode 𝑋 ′𝑛

1 if 𝑅1 ≤ 0.5𝐼(𝑌3;𝑋
′
1). The SR

can decode 𝑋 ′𝑛
1 if 𝑅1 ≤ 0.5𝐼(𝑌4;𝑋

′
1). Having the message

of the PT known, the SR can decode the message from the
ST if 𝑅2 ≤ 0.5𝐼(𝑌4;𝑋

′
2∣𝑋 ′

1). ■

B. Amplify-and-Forward Strategies

Similar to the DF scheme, in the AF scheme, the PT trans-
mits its message (6) in the first time slot. The received signal
by the ST in this time slot is 𝑌2 = 𝑌

(1)
2 = 𝑎

√
𝑃1𝑋

′
1 + 𝑍

(1)
2

where 𝑍
(1)
2 is the white Gaussian noise with unit variance. In

the second time slot at time index 𝑗 = 𝑖+𝑛, the ST transmits

𝑋2 =
√

𝛽𝑃2
𝑌2

∥𝑌2∥ +

√
𝛽𝑃2𝑋

′
2 (20)

where 𝑋 ′
2 is a Gaussian i.i.d. random variable with mean zero

and unit variance, and ∥𝑌2∥ =
√

𝐸[∣𝑌2∣2]. Similar to the DF
case, the power allocation factors 𝛽 in the interval [0, 1] is to
be determined later.

In this paper we present only the results for AF with no SIC,
AF with SIC at the PR, AF with SIC at the SR in Theorem 4,
Theorem 5, and Theorem 6, respectively. The proof techniques
are similar to those of theorems 1, 2, 3, respectively, and they
are omitted here.

Theorem 4: For the channel model described in Section II,
a reliable communication is feasible if

𝑅1 ≤ 1

4
log

(
(1+𝑐2𝑃2)((1+𝑎2+𝑎2𝑃1)𝑃1+1)−𝛽𝑎2𝑐2𝑃2

1 𝑃2

1+𝑎2𝑃1+𝑐2𝑃2+𝑎2𝑐2𝑃1𝑃2−𝛽𝑎2𝑐2𝑃1𝑃2

)
, (21)

𝑅2 ≤ 1

4
log

(
1 + 𝑃2

1 + 𝛽𝑃2

)
(22)

for 0 ≤ 𝛽 ≤ 1.
Theorem 5: A reliable communication in communication

scenario modeled in Section II is feasible if

𝑅1 ≤ 1

4
log
(

1+𝑃1+𝑎2𝑃1+𝑎2𝑃 2
1 +𝛽𝑐2𝑃2(1+𝑃1+𝑎2𝑃1)

1+𝑎2𝑃1+𝛽𝑐2𝑃2

)
,

𝑅2 = min
{

1
4 log

(
1+(1+𝑎2)(𝑃1+𝑐2𝑃1𝑃2)+𝑐2𝑃2+𝑃1+𝑎2𝑃 2

1 +𝑎2𝑐2𝑃 2
1 𝑃2𝛽

1+(1+𝑎2)𝑃1+𝑎2𝑃 2
1 +𝛽𝑐2𝑃2(1+𝑎2𝑃1+𝑃1)

)
,

1

4
log

(
1 + 𝑎2𝑃1 + 𝑃2 + 𝑎2𝑃1𝑃2

(1 + 𝑎2𝑃1)(1 + 𝛽𝑃2)

)}
for 0 ≤ 𝛽 ≤ 1.
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Fig. 3. (Legend corresponds to the strategies listed in Table I.) Throughput
versus 𝑃2 for six different strategies discussed in Sec. III-A and Sec. III-B.
The channel parameters are as follows: 𝑃1 = 3; 𝑎 = 3; 𝑏 = 2; 𝑐 = 3; the
channel utilization factor 𝜁 = 0.4. In this figure, (i) lies on top of (ii), and
(iii) lies on top of (vi).

Theorem 6: In the communication channel described in
Section II, an error-free communication is possible if

𝑅1 ≤ min
{

1

4
log

(
1+𝑃1(𝑎

2+𝑏2)(1+𝑃2)+𝑎2𝑏2𝑃2
1 +𝑃2+𝑎2𝑏2𝑃2

1 𝑃2𝛽

1+𝑎2𝑃1+𝑃2+𝑎2𝑃1𝑃2𝛽

)
, (23)

1

4
log

(
(1+𝑐2𝑃2)((1+𝑎2+𝑎2𝑃1)𝑃1+1)−𝛽𝑎2𝑐2𝑃2

1 𝑃2

1+𝑎2𝑃1+𝑐2𝑃2+𝑎2𝑐2𝑃1𝑃2−𝛽𝑎2𝑐2𝑃1𝑃2

)}
, (24)

𝑅2 ≤ 1

4
log

(
1 +

𝛽𝑃2(1 + 𝑎2𝑃1)

1 + 𝑎2𝑃1 + 𝛽𝑃2

)
(25)

for 0 ≤ 𝛽 ≤ 1.
To conclude this section, we define a special power allo-

cation factor 𝛽R that maximizes the rate and compute it for
different strategies presented in Theorems 1 to 6.

Definition 1: A rate maximizing power allocation factor
𝛽R is the power allocation factor 𝛽 adopted by the ST that
maximizes the rate achieved by the SU, 𝑅2, while maintaining
the interference-free rate for the PU as described in (3).

It can be verified that the rates 𝑅1 obtained in Theorems 1
to 6 are monotonically increasing functions of 𝛽 whereas the
ST’s rate, 𝑅2, obtained in those theorems are monotonically
decreasing functions of 𝛽. Moreover, the data rate of the PT
must at least be equal to that in (3), and the optimal power
allocation can be obtained by comparing (3) and 𝑅1 in each
scheme. These optimal power allocations 𝛽R are computed and
listed in Table I. Note that these values for 𝛽R are only valid if
they are in the interval [0, 1]; otherwise, the ST refrains from
transmitting, and the PT utilizes both time slots.

IV. THROUGHPUT ANALYSIS OF THE CCR

In the previous section, we studied the data rate of the SU
and showed how it varies with respect to different channel pa-
rameters when the SU is cooperating with the PU. An equally
important performance metric for the wireless channels is
the throughput, here defined as the time averaged number of
uncoded bits transmitted over a relatively long period of time.
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Fig. 4. (Legend corresponds to the strategies listed in Table I.) Throughput
versus the channel gain 𝑐 for six different strategies discussed in Sec. III-A
and Sec. III-B. The channel parameters are as follows: 𝑃1 = 3; 𝑃2 = 10;
𝑎 = 3; 𝑏 = 2; 𝑐 = 3; the channel utilization factor 𝜁 = 0.4. In this figure,
(iii) and (vi) lay on top of each other.

As illustrated in Fig. 2, let the time between two consecutive
messages of the PU be 𝑆. We assume the required throughput
of the PU is 𝜁𝑆𝑅★

1 bits where 0 < 𝜁 < 1 is the channel
utilization factor (duty cycle), and 𝑅★

1 is the maximum point
to point data rate obtained in (3), i.e., the PT can transmit the
message to the PR in duration 𝜁𝑆. Hence, for the rest of the
time, (1−𝜁)𝑆, the channel is idle and can be utilized by other
users.

Consider a slotted transmission as modeled in Section II. If
the ST cooperates with the PT, the rate at which the PU can
convey the data changes, and so does the time the PT requires
to transmit 𝜁𝑆𝑅★

1 bits. Let 𝑅1(𝛽) be the rate achievable by the
PU when the ST’s power allocation factor is 𝛽 (see (7), (20)).
Also, let 𝑅2(𝛽) be the rate of the SU with power allocation
factor 𝛽. Note that 𝑅2(0) is a special case meaning that the
ST is either transmitting with full rate 0.5 log(1 + 𝑃2) if the
channel is ideal or not transmitting if the PT is transmitting.

Denote by 𝑇 the time duration that the PU requires within
𝑆, to achieve the same throughput 𝜁𝑆𝑅★

1 with the rate 𝑅1(𝛽).
Then, the following constraint must hold to maintain the
throughput of the PU intact:

𝑇 𝑅1(𝛽) = 𝜁 𝑆 𝑅★
1. (26)

Depending on the chosen 𝛽, 𝑇 may be less or greater that 𝜁𝑆.
In other words, the SU can adjust the PU’s total transmission
time. Note that since 𝑇 < 𝑆, 𝑅1(𝛽) must be greater than 𝜁𝑅★

1.
The overall throughput of the SU when it cooperates with

the PU can be computed as follows:

𝛾2 =
1

𝑆
(𝑇𝑅2(𝛽) + (𝑆 − 𝑇 )𝑅2(0))

=
𝜁𝑅★

1

𝑅1(𝛽)
(𝑅2(𝛽)−𝑅2(0)) +𝑅2(0). (27)

By substituting the 𝑅1(𝛽) and 𝑅2(𝛽) expressions from The-
orems 1 to 6 into (27), a closed-form expression for the SU
throughput can be obtained.
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TABLE I
LIST OF COOPERATIVE STRATEGIES STUDIED IN THIS PAPER

Legend Cooperative Strategy Rate Maximizing Power Allocation Factor 𝛽R

(i) DF with no SIC (𝑃1 + 𝑃 2
1 + 𝑐2𝑃1𝑃2 + 𝑐2𝑃 2

1 𝑃2)/(𝑐2𝑃2 + 𝑐2𝑃1𝑃2 + 𝑐2𝑃 2
1 𝑃2)

(ii) DF with SIC st the PR (𝑃1 + 𝑃 2
1 )/(𝑐

2𝑃2)

(iii) DF with SIC at the SR min

{
𝑃1(1+𝑃1)(1+𝑐2𝑃2)

(1+𝑃1+𝑃2
1 )𝑐2𝑃2

, 1− 2𝑃1+𝑃2
1 −𝑃2−𝑏2𝑃1

𝑏2𝑃1𝑃2−𝑃2−2𝑃1𝑃2−𝑃2
1 𝑃2

}

(iv) AF with no SIC
1+(1+𝑎2)(𝑃1+𝑐2𝑃1𝑃2)+𝑐2𝑃2+𝑎2𝑃2

1 +𝑎2𝑐2𝑃2
1 𝑃2

𝑎2𝑐2𝑃2(1+𝑃1+𝑃2
1 )

(v) AF with SIC at the PR (1 + (1 + 𝑎2)𝑃1 + 𝑎2𝑃 2
1 )/(𝑐

2𝑃2(𝑎2 − 1− 𝑃1))

(vi) AF with SIC at the SR min

{
(1+𝑃2)((1+2𝑎2+𝑎2𝑃1−𝑎2𝑏2)𝑃1+2−𝑏2)

𝑎2𝑃2(1+2𝑃1+𝑃2
1 −𝑏2𝑃1)

,
1+(1+𝑎2)(𝑃1+𝑐2𝑃1𝑃2)+𝑐2𝑃2+𝑎2𝑃2

1 +𝑎2𝑐2𝑃2
1 𝑃2

𝑎2𝑐2𝑃2(1+𝑃1+𝑃2
1 )

}

Definition 2: A throughput maximizing power allocation
factor 𝛽Tp is the power allocation factor 𝛽 that maximizes
the throughput of the SU, 𝛾2 in (27), subject to maintaining
the throughput of the PU as that in (26).

It is intractable to obtain analytical forms for 𝛽Tp, since 𝛾2
contains logarithms and polynomials. However, the availability
of a closed-form formula for the SU’s throughput allows us
to compute 𝛽Tp by numerical solvers.

V. NUMERICAL ILLUSTRATIONS

In this section, we illustrate the effect of different channel
parameters on the throughput of the CCR.

Fig. 3 shows the throughput of the SU for different values
of 𝑃2 for the cooperative schemes discussed in Secs. III-A
and III-B. As shown, for all schemes, the throughput naturally
increases as 𝑃2 increases. It is interesting, however, that the
relatively more complicated DF scheme with SIC at the PR
has no advantage over the simple DF with no SIC, and
both achieved the highest throughput. The second highest
throughput is obtained by the AF with SIC at the PR scheme.
Unlike for DF, some SIC helps in AF schemes. Note that the
lowest performance is for AF with SIC at the SR together with
DF with SIC at the SR, we conclude that SIC at the SR is not
helpful.

Fig. 4 demonstrates the throughput of different strategies
versus the crossover channel gain 𝑐 when 𝑃2 is relatively high.
We note that, when 𝑐 < 1, the cross channel between the ST
and the PR is weaker than the forward channel between the
ST and the SR, and the requirement of decoding the message
of the SU at the PR is a bottleneck for the rate of the SU,
thus reducing the rate and the throughput of the SU. Again, we
observe that medium and large channel gain 𝑐 (e.g., 1 < 𝑐 < 6
in this figure), the DF with no SIC and the DF with SIC at the
PR both achieve the same throughput. Moreover, when 𝑐 < 1,
DF with no SIC performs the same as DF with SIC at the
SR in terms of throughput. Therefore, the simple DF has the
highest performance in both of those regions of 𝑐.

VI. CONCLUDING REMARKS

In this paper we studied a four-node cooperative cognitive
radio system, in which the SU is allowed to have nonzero
rate only if the performance the PU is not degraded. We
considered data rate and average throughput as performance
criteria. Under the collision model, we obtained the optimal
power allocation for the ST and formulated the conditions

under which the SU is allowed to cooperate. We then analyzed
the throughput of the SU provided that the throughput of
the PU does not degrade. As a counter intuitive observation,
we observed that a simple DF strategy with no SIC achieves
almost the same throughput as the more complicated strategies
with SIC. This phenomenon becomes more evident when the
SU transmission power increases.
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