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Abstract

While momentum-based accelerated variants of stochastic gradient descent (SGD)
are widely used when training machine learning models, there is little theoretical
understanding on the generalization error of such methods. In this work, we first
show that there exists a convex loss function for which the stability gap for multiple
epochs of SGD with standard heavy-ball momentum (SGDM) becomes unbounded.
Then, for smooth Lipschitz loss functions, we analyze a modified momentum-based
update rule, i.e., SGD with early momentum (SGDEM) under a broad range
of step-sizes, and show that it can train machine learning models for multiple
epochs with a guarantee for generalization. Finally, for the special case of strongly
convex loss functions, we find a range of momentum such that multiple epochs of
standard SGDM, as a special form of SGDEM, also generalizes. Extending our
results on generalization, we also develop an upper bound on the expected true
risk, in terms of the number of training steps, sample size, and momentum. Our
experimental evaluations verify the consistency between the numerical results and
our theoretical bounds. SGDEM improves the generalization error of SGDM when
training ResNet-18 on ImageNet in practical distributed settings.
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1 Introduction

Stochastic gradient descent (SGD) and its vari-
ants are the most popular algorithms for training
deep neural networks due to their support of
efficient parallel implementations and excellent
generalization performance (Krizhevsky et al.,
2012; Wilson et al., 2017). To accelerate the
convergence of SGD, a momentum term is often
added in the iterative update of the stochastic
gradient (Goodfellow et al., 2016). This approach
has a long history, with proven benefits in vari-
ous settings. The heavy-ball momentum method
was first introduced by Polyak (1964) where a
weighted version of the previous update is added
to the current gradient update. Polyak (1964)
motivated his method by its resemblance to a
heavy ball moving in a potential well defined by
the objective function. Momentum methods have
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Figure 1: Validation loss and gener-
alization error of SGDEM when train-
ing ResNet-18 (He et al., 2016) on
ImageNet (Deng et al., 2009) in a
distributed setting with 4 GPUs un-
der tuned step-size and global mini-
batch size of 128. For each tg, the
momentum is set to puqg = 0.9 in the
first tq epochs and then zero for the
next 90 — ty epochs. SGDM is a spe-

ctal form of SGDEM with tq = 90.
The details are provided in Section 5
and Appendiz L .

been used to accelerate empirical risk minimiza-
tion when training neural networks (Rumelhart
et al., 1986). In particular, momentum meth-
ods are used for training deep neural networks with complex and nonconvex loss
landscapes (Sutskever et al., 2013). Intuitively, adding momentum accelerates con-
vergence by circumventing sharp curvatures and long ravines of the sub-level sets of
the objective function (Wilson et al., 2021). Ochs et al. (2015) present an illustrative
example to show that the momentum can potentially avoid local minima.

Beyond convergence, the generalization of machine learning algorithms is a
fundamental problem in learning theory. A classical framework used to study the
generalization error in machine learning is PAC learning (Vapnik and Chervonenkis,
1971; Valiant, 1984). However, the associated bounds using this approach can
be conservative. The connection between stability and generalization has been
studied in the literature, which captures how the learning algorithm explores a
hypothesis class (Bousquet and Elisseeff, 2002; Shalev-Shwartz et al., 2010; Hardt
et al., 2016). According to the definition of Bousquet and Elisseeff (2002), uniform
stability requires the algorithm to generate almost the same predictions for all
datasets that are different in only one example. Recently, this notion of uniform
stability is leveraged to analyze the generalization error of SGD (Hardt et al., 2016).
Hardt et al. (2016) have derived the stability bounds for SGD and analyzed its
generalization for different loss functions. This is a substantial step forward, since
SGD is widely used in many practical systems. However, the algorithms studied in
these works do not include momentum.
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In this work, we study SGD with momentum (SGDM). Although momentum
methods are empirically observed to accelerate training in deep learning (Goodfellow
et al., 2016), their effect on the generalization error is not well understood. Even
though momentum is not studied in (Hardt et al., 2016), it is conjectured therein
that momentum might speed up training but adversely impact generalization.

By providing a counter example, we show that the stability gap for multiple epochs
of SGDM can become unbounded even for convex loss functions. This motivates us to
consider a modified momentum-based update rule, called SGD with early momentum
(SGDEM) where a momentum term is added in the earlier training steps. We show
that SGDEM is guaranteed to generalize for smooth Lipschitz loss functions and any
momentum. To the best of our knowledge, stability and generalization of SGDEM
have not been considered in the existing literature. As Fig. 1 shows in a practical
and distributed setting on ImageNet, while validation loss remains unaffected, the
minimum generalization error happens if the momentum is applied for 50 epochs,
which indicates that tuning momentum is useful to achieve the best generalization
error.

We study the generalization error and true risk of SGDEM. In order to find an
upper bound on the expected generalization error of SGDEM, we use the framework
of uniform stability (Bousquet and Elisseeff, 2002; Hardt et al., 2016).

1.1 Main Contributions

In Section 3, we show that there exists a convex loss function for which the stability
gap for multiple epochs of SGDM becomes unbounded. We introduce SGDEM
and show that it is guaranteed to generalize for smooth Lipschitz loss functions.
We obtain a bound on the generalization error of SGDEM that decreases inversely
with the size of the training set. Our results show that the number of iterations
can grow as n! for a small [ > 1 where n is the sample size, which explains why
complicated models such as deep neural networks can be trained for multiple epochs
of SGDEM while their generalization errors are limited. We also establish an explicit
convergence rate for SGDEM and smooth Lipschitz loss functions under a broad
range of hyperparameters including a general step-size rule that covers popular
step-sizes in the optimization literature. Our convergence and generalization bounds
capture the inherent trade-off between optimization and generalization.

In Section 4, we focus on the special case of strongly convex loss functions. In this
case, we show that one can obtain a bound on the generalization error of standard
SGDM, which suggests that this special form of SGDEM suffices for generalization.
Our bound is independent of the number of training iterations and decreases inversely
with the size of the training set. Finally, we establish an upper bound on the expected
true risk of SGDM as a function of various problem parameters.

Our generalization bounds for both strongly convex and smooth Lipschitz loss
functions tend to zero as the number of samples increases. In addition, our results
confirm that using a momentum parameter, y &~ 1, for the entire training improves
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optimization error under certain settings. However, it adversely affects the general-
ization error bounds. Hence, it is crucial to establish an appropriate balance between
the optimization error associated with the empirical risk and the generalization error.

Finally, our experimental results show that SGDEM outperforms both vanilla
SGD and SGDM in terms of test error on CIFAR10 and generalization error on
ImageNet.

1.2 Related Work

Studies on the generalization of momentum methods are scarce in the literature.
As explained above, momentum is not considered in (Bousquet and Elisseeff, 2002;
Hardt et al., 2016). While the generalization error of SGDM is studied in (Ong,
2017) and (Chen et al.), their analysis is limited to the special case of quadratic loss
functions. In this work, we show that unlike SGDM, multiple epochs of SGDEM
is guaranteed to generalize for smooth Lipschitz loss functions. A similar hybrid
method has been shown to generalize better than both vanilla SGD and Adaptive
Moment Estimation (Adam) in deep learning practice (Keskar and Socher). However,
it remains unclear why such hybrid methods generalize better. Our work sheds
theoretical light on this question.

Convergence of first-order methods with momentum has been studied in (Polyak,
1964; Ochs et al., 2014, 2015; Ghadimi et al., 2015; Lessard et al., 2016; Yan et al.,
2018; Wilson et al., 2021; Gadat et al., 2018; Orvieto et al., 2020; Can et al., 2019).
Most of these works consider the deterministic setting for gradient update (Polyak,
1964; Ochs et al., 2014, 2015; Ghadimi et al., 2015; Lessard et al., 2016; Wilson et al.,
2021). Only a few works have analyzed convergence in the stochastic setting (Yan
et al., 2018; Gadat et al., 2018; Orvieto et al., 2020; Can et al., 2019). In (Yan et al.,
2018), a unified convergence analysis of SGDM has been studied for both convex
and nonconvex loss functions with bounded variance. Gadat et al. (2018) have
studied the almost sure convergence results of the stochastic heavy-ball method with
nonconvex coercive loss functions and provided a complexity analysis for the case
of quadratic strongly convex. In (Orvieto et al., 2020), differential equation-based
analysis is used to study convergence of SGDM. Can et al. (2019) have obtained
linear convergence rates for SGDM under a particular momentum for the special
case of quadratic loss functions. In this paper, we introduce early momentum for the
class of smooth Lipschitz loss functions, which requires unique convergence analysis
as shown in Section 3.

We further note that Lessard et al. (2016) have provided a specific loss function
for which the heavy-ball method does not converge. This loss function does not
contradict our convergence analysis. The loss function in (Lessard et al., 2016) has
been carefully constructed and does not satisfy the assumptions considered in this
paper.

In addition to Polyak’s heavy-ball momentum method, Nesterov (1983) has pro-
posed an accelerated gradient descent, which converges as O(1/k?) in a deterministic
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and convex setting where k is the number of iterations. Convergence rates are ob-
tained for Nesterov’s accelerated gradient method in various settings (Su et al., 2014;
Laborde and Oberman, 2020; Assran and Rabbat, 2020). However, the Netstrov
momentum does not seem to improve the rate of convergence for stochastic gradient
settings (Goodfellow et al., 2016, Section 8.3.3). Therefore, in this work we focus on
the heavy-ball momentum.

High-probability bounds on the generalization error of uniformly stable algorithms
over the random choice of the dataset have been recently established in (Feldman
and Vondrak, 2018, 2019; Bousquet et al., 2020; Klochkov and Zhivotovskiy, 2021).
Momentum-based methods have not been considered in these works. In this paper,
we establish generalization errors for momentum-based methods with a focus on the
randomness of the algorithm.

Our results complement the recent results of Attia and Koren (2021), which
show exponential growth in uniform stability bounds of accelerated gradient descent
methods. We focus on stochastic gradient descent with heavy-ball momentum for
possibly nonconvex problems under nonconstant step-sizes, while Attia and Koren
(2021) focus on convex problems with full-batch Nesterov’s accelerated gradient
under a fixed step-size.

Notation: We use E[-] to denote the expectation and || - || to represent the
Euclidean norm of a vector. We use lower-case bold font to denote vectors. We
use sans-serif font to denote random quantities. Sets and scalars are represented by
calligraphic and standard fonts, respectively.

2 Problem and Assumptions

We consider a general supervised learning problem, where S = {z,...,2,} denotes
the set of samples of size n drawn i.i.d. from some space Z with an unknown
distribution D. We assume a learning model described by parameter vector w € (2.
Let ¢(w;z) denote the loss of the model described by parameter w on example z € Z.

The ultimate goal of learning is to minimize the true or population risk given by

R(w) :=E, p[l(w;2z)]. (2.1)
Since the distribution D is unknown, we approximate this objective by the empirical
risk during training, i.e., Rs(w) := 1 37| f(w;z;). We assume w = A(S) for some

potentially randomized algorithm A.

2.1 Generalization Error and Stability

In order to find an upper bound on the true risk of algorithm A, in this work, we
consider the generalization error, which is the expected difference of empirical and
true risk:

€g = Es a[R(A(S)) — Rs(A(S))]. (2.2)
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In order to find an upper bound on the generalization error of algorithm A, we
consider the uniform stability property.

Definition 1 Let S and 8" denote two datasets from space Z™ such that S and S’
differ in at most one example. Algorithm A is es-uniformly stable if for all datasets
S and 8, we have

sup EA[U(A(S); z) — ((A(S);2)] < €. (2.3)

It is known that uniform stability implies generalization in expectation:

Theorem 2 (Hardt et al. 2016) If A is an es-uniformly stable algorithm, then
the generalization error of A is upper bounded by €.

Theorem 2 suggests that it is enough to control the uniform stability of an algorithm
to bound the generalization error.

2.2 SGDM
The update rule for SGDM is given by

Wit = Wy + M(Wt - Wt—l) - atvwﬁ(wt; Zit) (SGDM)
where a; > 0 is the step-size, p € (0,1] is the momentum parameter, i; € {1,...,n}
is a selected index drawn uniformly at random at each iteration, and ¢(wy;z;,) is the

loss evaluated on sample z;,.! In SGDM, we run the update iteratively for 7" steps
and let wp denote the final output.

In the case where the parameter space €2 is a compact and convex set, we consider
the update rule for projected SGDM:

Wil = P(Wt + [L(Wt — Wt—l) — atvwﬁ(wt; Zit)) (P—SGDM)

where P denotes the Euclidean projection onto €2. The key quantity of interest in
this paper is the generalization error given by

€g = E&A[R(WT) — RS(WT)] = IES,io,...,iT,l [R(WT) - RS(WT)]

since the randomness in A arises from the choice of ig,...,i7_1.

1. Another variant to select iz is to permutate {1,...,n} randomly once and then select the examples
repeatedly in a cyclic manner. Our stability analysis in Sections 3.2 and 4 holds under both
variants, i.e., uniformly at random with replacement and random permutation.
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2.3 Assumptions on Loss Function

Let z € Z. In our analysis, we will assume that the loss function ¢(-; z) satisfies the
following properties, which are used also in (Hardt et al., 2016).

Assumption 1 (Lipschitzness & smoothness) Let z € Z. The loss function
((-;z) satisfies the following properties: 1) L-Lipschitzness: There exists some L > 0
such that [((u;z) — (v;z)| < L||lu — v|| for all u,v € Q; 2) 5-smoothness: There
exists some > 0 such that |VL(u;z) — VE(v;z)| < Bllu—v| for allu,v € Q.

Our assumptions hold for neural networks with smooth activation functions such
as smooth approximations of ReLLU including softplus or Gaussian error Linear Units
(GeLU) (Dugas et al., 2000; Hendrycks and Gimpel). We note that softplus and
GeLU typically match and exceed performance compared to ReLU (Clevert et al.,
2016; Xu et al.).

3 Smooth Lipschitz Loss

We first show that there exists a convex loss function for which the stability gap for
multiple epochs of SGDM becomes unbounded. For the case of smooth Lipschitz
loss functions, we introduce SGDEM and show that machine learning models can be
trained for multiple epochs of SGDEM while their generalization errors are bounded.

In SGDEM, the momentum y is set to some constant ug € (0, 1] in the first ¢4
steps and then zero for t =t4;+1,...,T. Thus, the update rule for SGDEM is given
by

W =Wy + pgl(t < tg)(wy —wi_1) — ar Vi l(wy; zi,) (SGDEM)

where 1 denotes the indicator function, and the projected version can be similarly
defined based on P-SGDM.

3.1 Uniform Stability Bounds for SGDM and SGDEM

Example 1 Let w € [—1,1] denote a parameter. Consider the one-dimensional and
convez loss function {(w;z) = Lyw + ¢, where L, € {L,—L} depending on z € Z
and ¢, > 0 is constant w.r.t. w. For a specific choice of S with

Rs(w) = — Z(Lw +¢) = Lw + Z =,
n - —~ n
=1 =1
the optimal parameter minimizing the empirical risk is wg = —1.

Both SGDM and SGDEM can find the optimal solution of our convex empirical
risk minimization problem. We first establish a lower bound on the stability gap
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when SGDM is run for multiple epochs, which shows that the gap can be unbounded.?
In our analysis of the stability, our goal is to track the divergence of two different
iterative sequences of update rules with the same starting point.

Theorem 3 Letz € Z. Suppose that the SGDM update is executed for T steps with
constant step-size a > 0 and p € (0,1] on Example 1. There exist datasets S and
S’ such that Ea[0(A(S);z) — L(A(S');2)] is lower bounded by Q(L (1 + ku*)) with
k = [log(T)].3

Proof We consider two neighbouring datasets S and &’ with

1 n
Rs(w) = — Z(Lw +¢)=Lw+¢
n
=1
and
1 4 1 & -2 f—
Rs(w)=—~Lw+ %+ = 3 (Lw+e)="—"Lw+ %% 4z
n noon n

where ¢ = %Z?:l ¢;. Suppose we select an index i uniformly at random from
{1,...,n}. Then we have E;[V{(w;z;,)] = VRs(w) = L and E;, [Vl(w;z])] =
VRs/(w) = (n — 2)L/n, which holds for all w € Q. Let wp and w/. denote the
outputs of SGDM on S and &', respectively. Suppose wy = wj,. We can follow the
steps of SGDM on S and obtain*

Eigpig_yWr] = —(T + (T = D+ (T = 2)p* + -+ p' "ol + Efwo].
Similarly, we have

Tfl) (n — 2)aL

Eigpoir_y Wrl = =(T + (T = D+ (T = 2)p* + - + + E[wo).

n
Hence, we have

20

Ealwr —wr] = = =(T+ (T = D+ (T =2)p* + -+ ).

Let z € Z. Using Jensen’s inequality, we can show that
Eallt(wr;z) — ((wr;2)[] > [Eall(wr;z) — £(wr;z)]]
202 =1

= D (T = ).

n =0

2. If we set T = n' for some [ > 1, the stability gap will become unbounded as n — co regardless
of p. If we set T = kn with k > 1, there will still be a nonvanishing gap regardless of u (the gap
does not blow up but it does not vanish).

3. We note that the lower bound in Theorem 3 matches an upper bound for SGD with smooth and
convex losses, and early-stopped SGDM will be stable by setting 7" sublinearly in n.

4. We assume wo, o, ¢ are set such that the updated parameter remains in the parameter space.
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Hence, E4[|/¢(wr;z) — £(w); 2)|] is lower bounded by Q(T'/n(1+ku*)) where k = o(T).
]

Note that the stability lower bound increases monotonically with p. For the same
example, we can show that the stability gap for multiple epochs of SGDEM goes to
Zero.

Theorem 4 Let pg € (0,1). For Example 1 and datasets described in Theo-
rem 3, the stability gap for SGDEM and SGDM goes to zero as n — oo as long as

Z;“le aj = o(n).

Furthermore, under T = n' with some | > 1 and td(z;‘rzl 04]2-)1/3 = O(T%), the
stability gap for SGDEM goes to zero for any uq € (0,1].

Proof Let wp and w/. denote the outputs of SGDEM on S and &', respectively.
Following the steps of SGDEM on S, we have
Ei,...ip_2[wr] = —L(ay + -+ ar) — a1 L(pg + -+ + plf ") — aeL? (g + - - + plf )

— - — oy, 1Lpg + Elwg].
Similarly, we have
Eiy,..jr Wyl = =((n = 2)/n)L(ca1 + - + ar) = ((n = 2)/m)ar L{pa + - + i ")
(0= 2)/m)asl2(pa + -+ i) = - = (0 — 2)/m)gy—1Lyta + Elwo)].
Let z € Z. For this particular example, we have E[|¢(wr; z) —(W/p; z)|] = LE z|lwp —
W
Lemma 5 w/}, —wp > 0 everywhere.

Proof Let wy and w/. denote a realization of wy and w/,, respectively. Let wy
denote a realization of wp, and fix (ip, ..., ir—1) where the differing index between S
and &’ happens at steps in J = {j1,...,jm}. Then we have

wp = —L{ag + -+ ap) — a1 L(pg + -+ i) — aoL?(pa + - - + plf )
_"'_atd—lLMd+wO

and

wp=-L Y aj+LY aj—-L Y aj(pa+ -+ pf™)

J€T|T JjeJ J€Ta/Ja
+ LY ajpat--+ ™) +wo
Jj€Ja
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where T ={1,...,T}, Ta={1,...,tq}, and Ty ={j € J : j < tq}. This shows
wh > wyp. We note that the set of realizations with w/. < wr is empty. [ |

This lemma shows E 4wy — w/p| = E4z[w/| — Eawr]. We first note that

21,2 T 1.2 lq t
Ball(wri) = i) = 32 = S+ )
j=1

2Md d
S o o
Z I ) jz::l ’
2025 o
< 2]71 J (1 + Hd )
n 1 — pg
Finally, we have
, 2L2 2 tq ;
Ealll(wr;z) — €(wp; z) Za] - Zaj(ﬂd‘i‘ + pla” J)
202 & L2 s

<

M“’+W«wwmﬂw

2
o E o
J J
n = n 6 =

where the last inequality holds due to Cauchy-Schwarz. This completes the proof. B

For constant step-size, we can show an Q(%) lower bound on the stability gap
for SGDM even when we set momentum to zero. However, this does not explain what
happens if we use another step-size. To highlight the importance of early momentum
on bounding the stability gap, in Appendix A, we show that the stability gap for
multiple epochs of SGDM may become unbounded for any step-size schedule. This
includes a1 = 1 and o; = 0 for j > 1, i.e., the gradient term is added only in the first
iteration. We also establish an (%) lower bound for SGDM on Example 1 even with
a time-decaying step-size, which shows that it is important to control both step-size
and momentum to establish uniform stability.® In Section 4, we show that SGDM
with fixed step-size is stable for strongly convex loss functions.This demonstrates
the role of the loss function.

Corollary 6 For Example 1 with datasets described in Theorem 3 and for time-
decaying step-size, the stability gap for SGDM is lower bounded by Q(%) for any
momentum p > 0.

5. Time-decaying step-size is required to establish uniform stability for multiple epochs of SGD
without momentum in the convex case (Hardt et al., 2016, Theorem 3.8).

10
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Proof It follows immediately from the proof of Theorem 4. |

Remark 7 As shown in Section 3.2, unlike SGDM, SGDEM is stable and thus
guaranteed to generalize for smooth Lipschitz loss functions and any momentum. We
remark that, since uniform stability is only a sufficient condition for generalization,
our result here does mot necessarily imply that SGDM does not generalize. Our
results highlight that step-size schedule, momentum, and the structure of the loss play
roles in establishing uniform stability. In Section 5, we show an empirical example
that SGDM does not generalize in a nonconvex problem.

3.2 Generalization Analysis of SGDEM

Since generalization is predicated on the convergence of a learning algorithm, we
first show that SGDEM is guaranteed to converge to a local minimum for general
and possibly nonconvex problems. Then, we show that SGDEM is guaranteed to
generalize for any ug, when t; is chosen appropriately. Our analysis captures the
inherent trade-off between optimization and generalization.

Let ¢ € [%, 1). We establish an explicit convergence rate for SGDEM and a
general step-size ay = ag/t?, which includes as special cases popular choices of
step-sizes in the optimization literature. Together with the generalization bounds,
our analyses characterize the optimization error in terms of the expected norm of
gradients of empirical risk and generalization error for stochastic gradient descent
with heavy-ball momentum under a broad range of hyperparameters and smooth
Lipschitz loss functions. To the best of our knowledge, this is the first work providing
such results.

Theorem 8 Let g € [%, 1). Suppose that ¢ satisfies Assumption 1 and that the SG-
DEM wupdate is executed for T  steps with step-size ay = ap/t? and any 1 <tq <T.
Then we have

2(R5 (wg) —infy Rs (W))

T
Zt:l Qi

. 2] <
1%21TEA[||VRS(Wt)|| 1<

P {afi s 5} Sl of
Zthl o
In particular, SGDEM achieves the rate of O(T9~Y) for any t4.
Proof See Appendix B. [ |

Remark 9 Convergence of SGDEM with constant step-size and another time-
dependent step-size are provided in Appendiz C and Appendiz D, respectively. In Ap-
pendiz E, we provide a sufficient condition for the optimization bound to become a

11
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momnotonically decreasing function of tq. In Appendix F, we study the convergence
bound for a special form of SGDEM and show the benefit of using momentum. We also
provide a simple sufficient condition for the non-vanishing term in the convergence
bound to become a monotonically decreasing function of pg.

We first show that for a; = ag/t and carefully designed t;, SGDEM updates
satisfy uniform stability, and the number of stochastic gradient steps can grow as n'
for a small [ > 1 while the generalization error is limited. We note that SGDEM
is guaranteed to generalize for any pg. Then we establish an upper bound on the
generalization error of SGDEM for a general step-size ay = a/t? with ¢ € [%, 1).

Theorem 10 Suppose that £ satisfies Assumption 1 and that the SGDEM update is
executed for T steps with step-size oy = g/t and some constant pg € (0,1] in the
first ty steps. Then, for any 1 <t <ty <T, SGDEM satisfies es-uniform stability
with

2040L2 5

tM
€s < T"h(pa,ta) + o +

S

2L T\u
m(—) (3.2)

t
where h(pa,tq) = exp(2pata) (Br (2pal) — Br(2uata)). Ei(z) = [ 220 dt, u =
(1- %)aoﬂ, and M = supy, , U(w;z).

Proof Let S and S’ be two sets of samples of size n that differ in at most one example.
Let wy and w/, denote the outputs of SGDM on S and &', respectively. We consider
the updates wip1 = Gy(wy) + pe(wy — wy—q) and wi ;= Gi(w}) + (W) — wj_;)
where py := pugl(t < tq) with Gi(wy) = wy — oV l(wy; zi,) and Gi(wy) = wj —
' Vwl(wy; zi,), respectively, for t = 1,...,T. We denote d; := ||w; — wy||. Suppose
wo = wy, i.e., oo = 0.

First, as a preliminary step, we observe that the expected loss difference under
wr and w/. for every z € Z and every t € {1,...,T} is bounded by

E[|t(wr;z) — d(wW/p;2)]] < E‘;\f + LE[67|0; = 0]. (3.3)

This follows from the argument for a similar claim in (Hardt et al., 2016) and applying
it to our expression of SGDEM parameter update.

Now, let us define A, ; := E[d|d; = 0]. Our goal is to find an upper bound on
Az and then minimize it over £.

At step t, with probability 1 — 1/n, the example is the same in both S and §’.

Hence, we have

1 = [[(1 4 pe) Wy — wi) — pe(wi—1 — wy_y) — b |
< (1 pe)[Jwe — wi ]| + poefwe—1 — wi_q || 4+ | o | (3.4)
< (1 + pt + o 5)0¢ + p1e6e—1

12
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where ¢1 = Vwl(wy; zi,) — Vywl(wj; zi,). Note that the last inequality in (3.4) holds
due to the -smooth property. With probability 1/n, the selected example is different

in § and &’. In this case, we have

1 = [1(1+ pe) (Wy — wi) — pe(wy—y — wi_y) — oo

< (1+ )b + b1 + ul| Tullws )| + el Volwiszi) | (35)
< (1 pg)0p + pgdp—1 + 204 L
where ¢z = Vwl(wi; zi,) — Vwl(wy; zi,).
After taking expectation, for every ¢t > ¢, we have
A< (T+pe+ (1= 1/n)auB) Ay g+ mdy_y g+ 204 L/n.
Let us consider the recursion
Azt+1,{f =1+ + (11— 1/n)atﬁ)At,£ AV 2a¢L/n.
Note that we have At 172 At,f' Then, we have the following inequality:
2a L
At+1 < (+2m+(1- 1/“)0%/3) it ——— !
Noting that At,f > A, ; for all t > #, we have E[Ar;] < S3+ S4 where
tg T
1 CK(),B 2040L
Ss = 142 1——)—
3 Zﬂ<+ﬂp+( n>p>nt
t=t+1p=t+1
and
1« 2a0L
Z H (1 + 2 + ( 177)L5) =
t=tg+1p=t+1 n.p n
Substituting p, = pq for p =1,...,t4, we can find an upper bound on S3 as follows:

Z H (1+ 2 + ( 1_1)M)Q%L

t=F+1p=t+1 ntop /ot
taq T
1 0405 2040L
<55 T (om0 H?)
t=t+1p=t+1 nop nt
tq
1 T\ 2a0L
< _ _ =z l
< Z exp (2,ud(td )+ (1 n)QOBIH(t)> -~
t=t+1
2c0L ta
< aTOT(l_%)ao’geXp(Q,U«dtd)ﬁ hl(t)t_(l_%)aoﬁdt
i
2a L ta
< TR PO=30008 exp(2pugta) | ha(t)dt
n t
2@0[4 _ 1 ~
= = =T exp(2pata) (Br (2uaf) — By (2uata))

13
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where hy(t) = eXp(ftM and the exponential integral function E; is defined as
% exp(—t
Bi(z) = / eXpi) dt. (3.6)
T

Note that the following inequalities hold for the exponential integral function for
t > 0 (Abramowitz and Stegun, 1972):

Lexp(—t)In (1+2) < Ey(t) < exp(—t)In (1+1) . (3.7)

Applying both upper bound and lower bound in (3.7), we have

20éoL

S0P (g, 1) (3.8)

S3 <

where h(pg,tq) = exp (2ua(ts —t)) In (1 + 2M1dt~) —Iln(14+2-).

We can also find an upper bound on Sy as follows:

Si= > ] (1+(1—1)%)20‘0L

t=tq+1p=t+
2L T (1-1)aosB (3.9)
Bn—1) <td)
2L T (1= )aofs
= Bn—1) (7) ‘
Replacing A ; with its upper bound in Eq. (3.3), we obtain Eq. (3.2). [ |

Theorem 10 suggests that the stability bound decreases inversely with the size of
the training set. It increases as the momentum parameter pg increases. By setting
ty = t in Theorem 10 and comparing with (Hardt et al., 2016, Theorem 3.12), we note
that we slightly improve the exponent of T'. We can also establish a simpler but looser

bound by noting h(q, tq) < h(pa,ty) = exp (2ua(ta—1)) In (1+ Q;df) — % In (1+ ﬁ).

Remark 11 We can show that our stability bound in Theorem 10 holds for the
projected SGDEM since Fuclidean projection does not increase the distance between
projected points.

Corollary 12 For SGDEM with the step-size ay = v /t, suppose we set ty =t*+ K

- 1w
where t* = (%) wHTu+1 for some constant K. Provided that a8 < 1, d.e., u < 1,
the generalization error of SGDEM for T steps with ay = g/t is upper bounded by
@) M), and the number of stochastic gradient steps can grow as n' for a small

[ > 1 while still allowing e, — 0 as n — 0.

14
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~ u
Proof Note that we can minimize the expression % + B(ZnL_Ql) (%) in Eq. (3.2) by

optimizing ¢, where the optimal £ is given by ¢* as defined in the theorem statement.
After substituting the optimal ¢* into Eq. (3.2) and setting ty = t* + K for some
constant K, we obtain

20(0[/2
€s <

Ty + ——228 (a0 L?) 71 (MT) 71 (3.10)
n —

where x1 = exp(2p¢K) In (1 + 2#25*) —iln(1+ m)
Note that by substituting £ = T' into Eq. (3.3), for any training algorithm, we

have

TM
E[[{(wr:2) — {(wh; )] < — + LE[or|ér = 0]

_TM
==

(3.11)

Combining the above bounds, an upper bound on the generalization error of SG-

DEM is given by O(min{%, %}) Here, we consider a nontrivial case

where u is small enough, i.e., the generalization error is bounded by the first term. B

We obtain ¢* in Corollary 12 by optimizing over the second and third terms of
the upper bound in Theorem 10.

High-probability bounds. In Appendix G, we establish high-probability bounds
for generalization error of SGDEM along the lines of (Feldman and Vondrak, 2018).

To complete our generalization analysis, in the following, we further show that SG-
DEM updates may not satisfy uniform stability depending on how ¢4 is set.

Corollary 13 Suppose, in Theorem 10, we set tqg = pT and t = pT — K for some
0<p<1and K < pI'. Then SGDEM updates do not satisfy uniform stability
for multiple epochs T = kn and the asymptotic upper bound on the penalty of
generalization error is given by pkM, i.e.,

lim ¢ < prM.

n—oo:T'=kn

Proof Substituting ty = pT and £ = pT — K into Eq. (3.2), we obtain

20 L2 (pT — K)M 212 T \u
< T 3.12
fo = X2t n +B(n—l)(,aT—K) (312)
where
(2ugK) In (1 + ! ) L) (1+ ! )
= €X n — ) — < 1n .
X2 P \4ld 2a(pT — K) 5

15
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We can derive the asymptotic penalty by substituting 17" = xkn into the upper
bound (3.12), letting n — oo, and using Theorem 2. [ |

Corollary 13 suggests that increasing t; worsens the generalization penalty when ¢4
is linear in 7T'. Furthermore, increasing 1" improves the convergence bound. However,
the stability upper bound increases as 1" increases, which is expected.

Let q € [%, 1). In the following, we establish an upper bound on the generalization
error of SGDEM for a general step-size ay = «a/t?, which includes as special cases
popular choices of step-sizes whose convergence are studied in the optimization
literature (Bubeck, 2015).

Theorem 14 Let q € [%, 1). Suppose that € satisfies Assumption 1 and that the SG-
DEM wupdate is executed for T steps with step-size oy = ag/t? and some constant
pa € (0,1] in the first tq steps. Then, for any 1 <t < tq < T, SGDEM satisfies
es-uniform stability with

y tM 217 .
exp(ugT' ") h(pa, ta) + W + Bn—1) exp (Uq (179 — # q))

Bln—1
(3.13)

QOLQﬁ
~ ny2ua(1 = q)

€s

where ﬁ(ud,td) = eXp(Qudtd‘FUQ/(Sﬂd))(q)(\/T( +4ud)) O(v/2pq(t i q+4ud)))

O(z) = erf(x) := \ffO exp(—t?) dt, u; = (1 — f)'f‘oi, and M = supy, , {(W; z).

Proof Similar to the proof of Theorem 10, we have the following inequality:

- ~ 204 L
AVERI S (14 2p + (1 - 1/71)041&3)A1t,t~ + ==

n

Noting that At,{ > A, ; for all t > #, we have E[Ap;] < S3+ 54 where

S T (et b (1- 1))l

n q
t=t+1p=t+1 p

and

20[0[/

S T (1o - Ly =

q
t=tq+1p=t+1 nop
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Substituting pu, = pgq for p =1,...,t4, we can find an upper bound on S3 as follows:
ta T
1, « 2a0L
So= Y T (e (- 5)00) %0
— 4 n’ pl ntd
t=i+1p=t+1
ta T 1. apB\ 2a0L
<3 IT e (2 (1= 5%
— 4 n’ pl nt4
t=t4+1p=t+1
lq
2a9 L
_ l—q _ 41—¢ 0
< > e (201a(ta — 1) + ug (T 77 = £79)) r
t=t+1
209 L ta —ut —u 9
S (7)) eXp(un17q+2lLLdtd)\/ eXp( lu’dtq uq )dt
i
2a0L ta —2u,t2(0=9) _ 4, 14
< 2o eXP(“qu_qu?Mdtd)ﬁ exp(—244 . ugt'™?)
i
209L _ ta exp (— 2pq(t1 = + uy/(4pq))?
< 20 ey 4 2pata 4 (o) [ 022 T

(DTt + YY) — (g + L))

4pq 4p1d
where the fifth step holds since 2(1—¢) < 1 and the last inequality follows (Gradshteyn

and Ryzhik, 2014, Eq. 3.321).
We can also find an upper bound on Sy as follows:

Si= XT: ﬁ (1+(1—1)M)20‘0L

t=tg+1 p=t+1 n’ p? / ntd
2040L T 1— - B
= > exp (ug(TH77—t17) )t
n t=tg+1 ( ) (314)
2L - .
< — q_ 41-q
= Bn-1) P (uq(T tq ))
2L - o
< — q _ -y
= Bn-1) 7P (uq(T t ))

Replacing A7 with its upper bound in Eq. (3.3), we obtain Eq. (3.13).

By its definition, we have ®(z) < 1. We also note that 1 — exp(—z?) < ®(z)
for > 0 following the upper bound developed for 1 — erf in (Chiani et al., 2003).
Applying both lower bound and upper bound on @ in Eq. (3.13) and after rearranging
the terms, we have

aoLQﬁ 2(1—q)
< | _
€ < (n 5 —q) exp (2uq(tg — 1 ) +

o) () O

(3.15)
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We now find a simpler expression for the generalization bound in Theorem 14 by
substituting ¢4 and optimizing over £.

Corollary 15 Let g € [%, 1). For SGDEM with a general step-size oy = ap/t4,

suppose we set tg = r21-9) + K for some constant K where t* satisfies Eq. (3.16).
Then the generalization error of SGDEM for T steps with oy = ag/t? is upper

bounded by (’)(min {eXp(UTliq/(uHH“d) M})

n ’on

Proof Note that we can minimize:

tM aoL?\/m 2172 g A
min — + ( —————exp (2uqK) + ——— ) exp (u (T 71— 1
1<i<ty n (n 2uq(1 —q) xp (214K5) B(n — 1)) Xp( al ))

by optimizing t after setting t; = ¢ + K where the objective is the upper bound
in Eq. (3.13). We note that an optimal #* satisfies

uqao L2/
V21

Note Eq. (3.16) does not have an analytic solution but can be solve numerically.

Instead, we consider a suboptimal solution by taking In on both sides of Eq. (3.16)
and applying the well-known inequality In(z + 1) < x, Vo > —1, which leads to:

Mexp(uqf*lfq)f*q = ( + 2L2a0) exp(u,TH9). (3.16)

In ((B20l2VT 4 1200) /M
7ma— ( V24 ) y U g (3.17)
u+1 u+1

Substituting Eq. (3.17) into Eq. (3.13) and combining with the upper bound
in Eq. (3.11) complete the proof. |

As an important special case the problem considered in Theorem 14, we provide
an uppe-bound on the generalization error of SGDEM with the larger step size
o = ag/+/t, which is a common choice in the optimization literature (Bubeck, 2015).
See Appendix K for the exact expression of .

Corollary 16 For SGDEM with the step-size oy = aig/\/t, suppose we setty = t*+K
for some constant K under an optimized t*, which satisfies Eq. (3.16) with q = %
Then the generalization error of SGDEM for T steps with oy = ag/\/t is upper

bounded by O(min {eXp("ﬁ/(“H)Jr“d) w})

n ’on
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The bounds in Corollaries 15 and 16 complement the results of Attia and Koren
(2021) by showing exponential growth in uniform stability bounds for stochastic
gradient descent with heavy-ball momentum for possibly nonconvex problems under
nonconstant step-sizes. The bound in Corollary 16 shows that as long as T =
o(log(n)"/(1=9)), SGDEM is guaranteed to generalize.

Remark 17 (Stability of SGDEM does not follow that of SGD) As shown
in Theorem 4 and Corollary 12, tq can grow with T, i.e., two iterative sequences
of rules with the same starting points on two meighboring datasets can be possibly
arbitrarily far after applying momentum for ty iterations. Then even a contraction
map does not make the algorithm stable. In other words, the stability of SGDEM
does not directly follow the stability of SGD.

4 Strongly Convex Loss

While we have discussed in the previous section the generalization of SGDEM for
smooth Lipschitz loss functions, in this section, we focus on the important class of
strongly convex loss functions. We show that it suffices to consider the case t; =T,
i.e., where SGDEM becomes SGDM, to achieve generalization.

Assumption 2 (Strong convexity) Let z € Z and u,v € Q. The loss function
0(-;z) is y-strongly convex: there exists v > 0 such that

((u;z) > U(v;2) + Vl(viz) (u—v) + %Hu — v

An example for y-strongly convex loss function is Tikhonov regularization, where
the empirical risk is given by Rs(w) = Y1, £(w;2;) + 3||w||* with a convex £(-; z)
for all z. In the following, we assume that ¢(w;z) is a y-strongly convex function of
w for all z € Z.

To satisfy the L-Lipschitz property of the loss function, we further assume that
the parameter space 2 is a compact and convex set. Since €} is compact, the SGDM
update has to involve projection.

We present a bound on the generalization of P-SGDM for ~y-strongly convex loss.

Theorem 18 Suppose that ¢ satisfies Assumptions 1 and 2 and that P-SGDM is
executed for T steps with constant step-size o and momentum p. Provided that

g—ﬁ — % <p< 3(%7% and a < ﬁ, P-SGDM satisfies es-uniform stability where

20L*(5 +7)
n(aBy = 3u(B +7))
Proof sketch: the update rule in the strongly convex case is a contraction, which

is not the case in the convex case. In particular, the contraction term due to -
strong convexity can be leveraged to control the additional expansion term due to

(4.1)

€s >
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momentum. The overall update remains a contraction assuming the momentum is
not too large. See Appendix H for the complete proof.

Theorem 18 implies that the stability bound decreases inversely with the size
of the training set. It increases as the momentum parameter p increases. These
properties are also verified in our experimental evaluation.®

The theoretically advocated momentum parameters in (Polyak, 1964; Nesterov,
1983) are based on convergence analysis of gradient descent with momentum, and do
not account for generalization. Depending on the condition number of the problem,
these values may not satisfy the range of momentum in Theorem 18. These values are
not necessarily optimal for P-SGDM, in terms of our objective of true risk. Our goal
in Theorem 18 is to show nontrivial cases that P-SGDM satisfies uniform stability.

Remark 19 Compared with the stability bound in (Hardt et al., 2016) for SGD,
both bounds are in O(1/n). Our bound in Theorem 18 holds for o < %, which is
slightly less restrictive than the range of step-size in (Hardt et al., 2016, Theorem
3.9). By substituting p = 0 in Eq. (4.1), we note that the constant term of our bound,
’BB—T, is slightly larger than that of (Hardt et al., 2016, Theorem 3.9), which is 1/~.
Compared with (Chen et al.), our bound is independent of T and our work analyzes
the case of strongly convez loss.

Classical generalization bounds using Rademacher complexity, which measures
the rate of uniform convergence, are obtained for linear predictors with various norm
constraints (Shalev-Shwartz and Ben-David, 2014). Those classical generalization
bounds are typically O(1/y/n). For linear predictors with a Lipschitz loss and a
strongly convex regularizer, by bounding Rademacher complexity, it has been shown
that with high probability, the generalization error is bounded by O(1/+/n) for
all parameters in a certain bounded set (Kakade et al., 2008).  The fast rates
by Sridharan et al. (2008) for regularized linear prediction are built based on the
notion of localized Rademacher complexity (Bartlett et al., 2002), which requires an
additional boundedness on the dual norm of data mapping. Our high-probability
generalization bound for general smooth Lipschitz loss functions in Appendix G is
O(1/n).

Our stability analysis captures how the learning algorithm explores the hypothesis
class, in particular, how the generalization gap depends on the momentum. More
broadly, unlike stability, uniform convergence is not necessary for learning (based on
the learnability definition in (Shalev-Shwartz et al., 2010)) in the general learning
setting (Shalev-Shwartz et al., 2010).

Finally, in the case of strongly convex loss, we can further consider the minimiza-
tion of the true risk as defined in Eq. (2.1), since we are able to derive an upper
bound on the optimization error (shown in Appendix I). In Appendix J, we study

6. Our purpose in this work is not to show the superiority of SGDM or SGDEM, in terms of the
stability bound, over SGD. Given the known advantage of SGDM in terms of speeding up training,
our purpose is to further analyze the stability/generalization properties of SGDM and SGDEM.
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Figure 2: Test error (left) and test accuracy (middle) of ResNet-20 on CIFAR10. Test
error of a feedforward fully connected neural network for notMNIST dataset (right).

how the uniform stability results in an upper bound on the true risk of P-SGDM.
We first show that stability results similar to Theorem 18 hold even if the average
parameter W is considered as the output of algorithm A. We then decompose the
expected true risk into a stability error term and an optimization one. We also
compare the final results with SGD with no momentum, and we show that one can
achieve tighter bounds by using P-SGDM than vanilla SGD.

5 Experimental Evaluation
5.1 Nonconvex Loss

In this section, we validate the insights obtained in our theoretical results using
experimental evaluation. Our main goal is to study how adding momentum affects
the generalization and convergence of SGD.

We first investigate the performance of SGDEM when applied to both CIFAR10
(Krizhevsky) and notMINIST datasets for nonconvex loss functions. We set T to
50000 and 14000 for CIFAR10 and notMNIST experiments, respectively. For each
value of p14, we add momentum for 0-10 epochs. For each pair of (g, tq), we repeat
the experiments 10 times with random initializations. SGDM can be viewed as a
special form of SGDEM when the momentum is added for the entire training (i.e.,
tqg = T). For 10 epochs and without data augmentation, we train ResNet-20 on
CIFARI10 and a feedforward fully connected neural network with 1000 hidden nodes
on notMINIST. For the feedforward fully connected neural network, we use ReLLU
activation functions, a cross-entropy loss function, and a softmax output layer with
Xavier initialization to initialize the weights (Glorot and Bengio, 2010).” We set the
step-size & = 0.01. The minibatch size is set to 10. We use 10 (SGDEM) realizations
to evaluate the average performance. We compare the test performance of SGD
without momentum with that of SGDEM under pg = 0.5, ug = 0.9, and pg = 0.99.

Outperforming both SGD and SGDM. We show the test error and test
accuracy versus tqy under SGDEM for CIFAR10 dataset in Fig. 2 (left and middle).
We observe that adding momentum for the entire training (i.e., t; = T or SGDM) is

7. We observe similar results for smooth activation functions.
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Table 1: Ablation studies where we optimize performance of SGD and SGDM by obtaining
the minimum test error over step-sizes « € {0.1,0.01,0.001,0.0001} and momentum parame-
ters p € {0,0.5,0.9,0.99}. We do not tune t; and used the fixed t; = 3000. The rest of the
setup is similar to Fig. 2 (right).

SGD SGDEM SGDM
Test error 0.3596 + 0.0142 0.2892 £ 0.0042 0.3194 +£ 0.0030

useful when the momentum parameter is small. For different pg values, we notice
there exists an optimal ¢4 in Fig. 2 (left) when test error is minimized. We plot
the test error versus t4 for notMNIST dataset in Fig. 2 (right). The test accuracy
is shown in Appendix L. We observe an overshooting phenomenon for pg = 0.99,
which is consistent with our convergence analysis in Theorem 25. We observe similar
phenomenon when we train a feedforward fully connected neural network with 1000
hidden nodes on MINIST dataset. In terms of test accuracy, we observe that it is
not helpful to use a momentum parameter, pg = 1, for the entire training. In an
online framework with high dimensional parameters, early momentum is particularly
useful since we can minimize memory utilization as SGDEM does not require w;_1
for the entire iterative updates.

To see whether SGDM is able to match performance of SGDEM by further
tuning hyperparameters, in Table 1, we show the results of an ablation study
where we minimize the test error of SGD and SGDM by optimizing over step-
sizes o € {0.1,0.01,0.001,0.0001} and momentum parameters p € {0,0.5,0.9,0.99}.
For SGDEM, we do not tune t4 and used the fixed t; = 3000. The rest of the setup is
similar to Fig. 2 (right). We repeat the experiments for 5 times to report confidence
intervals. These results show that even under tuned hyperparameters, SGDEM
outperforms both SGDM and SGD in terms of test error.

Distributed training on ImageNet. Fig. 1 shows validation loss and generaliza-
tion error of SGDEM at epoch 90 when training ResNet-18 on ImageNet in a practical
data-parallel setting with 4 GPUs under tuned step-sizes for SGD and SGDM. We ob-
serve that the minimum generalization error happens if the momentum is applied for
50 epochs. In Fig. 3, we plot validation accuracy and generalization gap of SGDEM
at epoch 90. Similar to the loss results, we observe that the minimum generalization
error happens if the momentum is applied for 50 epochs. Our accuracy results are
on par with existing results (He et al., 2016).

Details of ImageNet experiments. The global minibatch size and weight decay
are set to 128 and 5x 1077, respectively. For each ¢4, the momentum is set to pg = 0.9
in the first ¢4 epochs and then zero for the next 90 — t; epochs. We use a cluster with
4 NVIDIA 2080 Ti GPUs with the following CPU details: Intel(R) Xeon(R) CPU
E5-2650 v4 @ 2.20GHz; 48 cores; GPU2GPU bandwidth: unidirectional 10GB/s and
bidirectional 15GB/s.
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Figure 4: Generalization error (left) and training error (middle) of logistic regression (cross
entropy loss) for notMNIST dataset with T = 1000 iterations . Test accuracy of logistic
regression for notMNIST dataset with n = 500 (right).

5.2 Strongly Convex Loss

We now study the performance of SGDEM for
a smooth and strongly convex loss function. We
train a logistic regression model with the weight
decay regularization on notMNIST and MNIST

—— |validation - train|
The setup’s details are provided in Appendix L. ’ \/—’
We plot the test error and test accuracy versus

tq under SGDEM for notMNIST and MNIST TR o 07
in Appendix L and observe that, unlike the case

of nonconvex loss functions, it does not hurt to Figure 3: Validation accuracy and

add momentum for the entire training. We then generalization gap of SGDEM when
training ResNet-18 on ImageNet in a

distributed setting with 4 GPUs under

—— validation

Accuracy at epoch 90

focus on SGDM and compare the optimization
aI.1d generalization performance of vanilla SGD tuned step-size and global minibatch
with that of SGDM under pp = 0.5 and p = 0.9, ., of 128. For each tg, the momen-
which are common momentum values used in  tym s set to uy = 0.9 in the first
practice (Goodfellow et al., 2016, Section 8.3.2). t; epochs and then zero for the next
90 — tq epochs. SGDM is a special
Hurting generalization error and improv- form of SGDEM with t; = 90.
ing training error. In Fig. 4 (left) and (mid-
dle), we plot generalization and training error versus n with fixed 7" and observe that
generalization error decreases as n increases for all values of u, which is suggested by
our stability upper bound in Theorem 18. In addition, for sufficiently large n, we
observe that the generalization error increases with i, consistent with Theorem 18.
On the other hand, training error increases as n increases with fixed 7', which
is expected. We can observe that adding momentum reduces training error as it
improves the convergence rate.

Negligible improvement of test accuracy. In Fig. 4 (right), we plot test
accuracy versus T with fixed n (See Appendix L for training error, training accuracy,
and test error). As the number of epochs increases, we note that the benefit of
momentum on the test accuracy becomes negligible. This happens because adding
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momentum results in a higher generalization error thus penalizing the gain in training
erTor.

6 Conclusions and Future Work

We study the generalization error of SGDEM under mild technical conditions. We
show that there exists a convex loss function for which the stability gap for multiple
epochs of SGDM becomes unbounded and investigate a modified momentum-based
update rule, i.e., SGDEM. We establish a bound on the generalization error of SG-
DEM for the class of smooth Lipschitz loss functions. Our results confirm that
deep neural networks can be trained for multiple epochs of SGDEM while their
generalization errors are bounded. We also study the convergence of SGDEM in
terms of a bound on the expected norm of the gradient. Then, for the case of strongly
convex loss functions, we establish an upper bound on the generalization error, which
decreases with the size of the training set, and increases as the momentum parameter
is increased. We establish an upper bound on the expected difference between the
true risk of P-SGDM and the global minimum of the empirical risk. Finally, we
present experimental evaluation and show that the numerical results are consistent
with our theoretical bounds and SGDEM is an effective algorithm for nonconvex
problems.

Beyond uniform stability analysis, which is sufficient for generalization, developing
necessary conditions for generalization of various learning algorithms remains an open
problem. In particular, “on-average” stability is a more relaxed notion and depends
on the data-generating distribution (Shalev-Shwartz et al., 2010). Finally, practical
methods for adaptive training, such as Adam, use a variation of the heavy-ball
momentum (Kingma and Ba, 2015). Adapting our analysis for such extensions is
also an interesting area of future work.
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Content of the appendix. The appendix is organized as follows:

e In Appendix A, we show that the stability gap for multiple epochs of SGDM
may become unbounded for any step-size schedule.

o Theorem 8 (convergence of SGDEM) is proved in Appendix B.
o Convergence of SGDEM with constant step-size is provided in Appendix C.

e Convergence guarantees for SGDEM with other time-dependent step-sizes are
provided in Appendix D.

o A sufficient condition for the upper bound in Theorem 25 to become monotoni-
cally decreasing is provided in Appendix E.

e Benefit of using momentum in terms of convergence is elaborated in Ap-
pendix F.

e High-probability generalization bounds for SGDEM are established in Ap-
pendix G.

o Theorem 18 (stability of strongly convex problems) is proved in Appendix H.
o Convergence bound for strongly convex loss is provided in Appendix I.

e An upper bound on true risk of strongly convex loss is established in Appendix J.
o Generalization error of SGDEM with a; = a/+/ is discussed in Appendix K.
e Additional experimental details are included in Appendix L.

In our analysis of the stability of SGDM, we will consider the following two
properties of the growth of the update rule. Let €2 denote the model parameter space.
Consider a general update rule G which maps w € €2 to another point G(w) € Q.
Our goal is to track the divergence of two different iterative sequences of update
rules with the same starting point.

Definition 20 An update rule G is n-expansive if

IG(v) — G(w)]|

v,we) HV - WH

Definition 21 An update rule G is o-bounded if

sup [[w — G(w)] < o.
we
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Appendix A. Importance of early momentum on bounding the
stability gap

To highlight the importance of early momentum on bounding the stability gap, in
this section, we show that the stability gap for multiple epochs of SGDM may become
unbounded for any step-size schedule. This includes a1 = 1 and o; = 0 for j > 1,
i.e., the gradient term is added only in the first iteration. We also establish a Q(%)
lower bound for SGDM on Example 1 even with a time-decaying step-size, which
shows that it is important to control both step-size and momentum to establish
uniform stability.

Theorem 22 For Example 1 with datasets described in Theorem 8 and for any
step-size schedule, there exists a momentum such that the stability gap for SGDM is
lower bounded by Q(L).

In addition, if aj > omin for j = 1,2,..., 0T where amin and n < 1 are some
constants that do not depend on T, then the stability gap for SGDM is lower bounded
by Q(%) for any momentum p > 0.

Proof Following the proofs of Theorem 3 for SGDM with oy > 0, we have
L2 T-1

>

n =0

20&1

Eallt(wr; z) — t(wr;z)|] =

Substituting p = 1, E4[|¢(wr;2) — £(W}; z)|] is lower bounded by Q(Z).
For the second part of the theorem, suppose o; > i for j = 1,2,...,77. Then
we have

QOJmmLZ ! ;
Ealll(wr:2) — i )l) > 22225 g
=0
and E[|¢(wr;z) — £(w/; z)|] is lower bounded by Q(%) [ |

Corollary 23 For Example 1 with datasets described in Theorem & and for time-
decaying step-size, the stability gap for SGDM is lower bounded by Q(%) for any
momentum p > 0.

Proof It follows immediately from the proof of Theorem 4. |

Appendix B. Proof of Theorem 8 (convergence of SGDEM)

The following lemmas are useful for our proofs:
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Lemma 24 For any integers t, p, and q, such that 0 <t < T —1, p < T, and

q <T —1t, and for any sequences ag,aq, ..., and by, by, ..

o~

71—

T T—t T
2 @iy b= b ) ay
=p j=q i=q j=itt

., we have

Proof We prove by induction. It clearly holds for T' = 1. Suppose it holds for all

k < T. Then, we have

i— k+1—t

k+1 t k
Zaz b]fZaZij—i-akH Z b;
i=p

=q
—t k k’-i-l—t
SN Y wan 3 b
i=q j=i+t j=q
k—t k k—t
= "b Y aj+ a1 Y b+ appibrri— (B.1)
i=q j=itt J=q
k—t k+1
=) b Z aj + ag1bry1-¢
i=q j=i+t
k+1—t k+1
= bi Z Qaj.
i=q Jj=t+t
|

As two special cases of Lemma 24, we obtain (Li and Orabona, 2020, Lemma 4)
by substituting g =1, t =0, p=1land ¢=0, t=1, p=1:

=1 j=1 Jj=t

T i—1 1 T
Zai bj = bi Z aj.
=1 5=0 =1 Jj=t+1

To facilitate the convergence analysis, we define g, := wy —w;_; with gy = 0
and q; = 0. It is not difficult to show that q,,; = psQ; — @ Vwl(wy; 2z, ). Since the

empirical risk Rg is a S-smooth function, we have

Rs(wyy1) < Rs(wy) + VRs(wy) Tay + g

27
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Based on the definition of q,, the inner-product term in Eq. (B.2) is bounded:

VRs(wi) a1 = naVRs(wi)'q, — arV Rs(wi) " Ve(wi; zi,)
= 1aVRs(wi—1)"ay + pa(VRs(w;) — VRs(wi_1)) ' g
— a;VRs(wy) "' Vi(wy; z;,)
< paVRs(wi-1) "y + 11l VRs(wi) — VRs(w; 1) |||
— a;VRs(wy) " Vl(wy; z;,)
< paVRs(wi-1)"a; + pafllay|* — arV Rs(wi) ' Ve(wy; zi,)

where the last inequality holds due to smoothness. Unraveling the recursion Eq. (B.3),
we have

t—1

VRs(w) a1 < B pl g |? Zud 'a;VRs(w;) " Ve(w;; z;,)
=0

For simplicity of analysis, we first suppose that the momentum is applied in T steps.
Then we modify the bound considering it is set to zero after t; steps. Substituting
this bound in Eq. (B.2) and summing for ¢t = 1,...,T, we have

T t—1
Rs(wri1) < Rs(wo) +5ZZMZ Naiall*+ 5 ZH%HH2
t=1i=1 (B4)
T t
—Zz,u l;VRs(w;) Ve wy; zi,).
t=1i=1

Using Lemma 24, we expand the the second and fourth terms in the upper
bound Eq. (B.4):

T t—1
B>l llagal® =8 Z s[5! z il
t=1i=1 i—t11
T—t+1
ng — p
=5 Z #quu? (B.5)

Bid 2
< Prd a2
e ; o

Furthermore, we have
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T t

_ZZH azvRS Wz) Vﬂ(wuzll) —
t=11i=1

~+

1 i VRs(w;) "V Rs(w;)

1M
-1

pi iV Rs(wi)" (VRs(w;) — V(wi; z,))

+
M=

o
I
—_
N
Il
—

T
== ng'at|VRs(we)|I* D g
t=1

i=t

T
+> ugtaVRs(wy) T (VRs(wy) — Ve i) D
t=1 1=t

Ha 2
= — — R
> ol VRs(w)l

t=1
T 1— MTftJrl

+> _du atVRs(w;) " (VRs(w;) — VE(wy;z,))
t=1

(B.6)

Substituting Egs. (B.5) and (B.6) into Eq. (B.4) and rearranging the terms, we
obtain

Ty Tt
Y ———a|[VRs(w)|” < Rs(wp) — Rs(wr41)
t=1 1- Hd

w\m

T
Z [ty

T t+1
+ Z atVRS(Wt)T(vRS(Wt) - ve(wt; Zit))

Bia 2
[— q .
= ; lasa
(B.7)
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We now find an upper bound on 37 [|q,]/%:

Z a4 Z l1aa, — eVl (we; i, )|
t=1
T T

<Dl + 3
Z

y o Ve (wy; z;,)||?

741 T
S qutH + o Ve (we; z,) ||
11— g

T
1
d||Qt+1|| +Zl P lwe V(w3 2i,)|°

IN

1
— f1a)*

2 X,
<= N a2
(1—Md)2; !

IN

M= Mﬂ 1

~+
Il
[
—~
—

leve Vol (wes i, )|

where the second and last lines hold due to Jensen’s inequality and L-Lipschitz
property, respectively.

Applying this upper bound in Eq. (B.7), taking expectation over ig,...,i,, we
have:

ta 1 _ Iutdd*t+1 ) BIL2
E4 ——2 o4||VRs(w < Rg(wp) — inf Rg(w «
|2 e VRl < Rs(wo) —inf Rs(w) + 55— Z :
Bpal? tdi
(1= pa)® =
(B.8)
Fort=t4+1,...,T, using smoothness property, we have:

Rs(wii1) < Rs(wi) — a;VRs(wy) " ViE(wi; z,) + gHVE(Wt; z,)||?

L2
< Rs(w;) — a;VRs(wi) " Ve(wy; z;,) + 67
Using a similar argument, we can find the following upper bound when the momentum

is set to zero:

T
Eal D ol VRs(wy)|’] < Rs(wo) — inf Rs(w Z o, (B.9)
t=tq+1 t=tg+1
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Adding Egs. (B.8) and (B.9), we have

tq 1—/,Ltd_t+1 T
EA{Z*O&HVRS(WOHZ-F S ol VRs(wy)?]

= 1 t*td—&—l

ta—1 L2 T
2(Rs(wo) —inf Rs(w)) + 22 (+ Bﬂdud)i% ; ﬂ > af

t=tq+1

BL? Bpal?®  BL? } Z
201 = pa)® (1 —pa)®” 2 J =
On the other hand, we find a lower bound on the left hand side:

2(Rs(wo) — inf Rs(w)) + max {

tq 1— tg—t+1

T

1

Ba[3 o VRswlP+ Y VR
=1 t—td+1

1— tqg—t+1

. . Hq
2 g, 152 B TR

T
> i 2].
> ;at min, Ea[|VRs(we)|?]

Combining the above upper bound and lower bound, we have

2(Rs(wo) — infy Rs(w))
1r<nl<nTEA[HVRS<Wt)H ] < ST oy

L? L2 L2
maX{Q(l/B—Md)Q’ (BMZd ﬁ }Zt 1011;

Zt:l Qi
which completes the proof. In particular, by substituting step-size a; = g /t9, we
achieve convergence with the rate of O(T9~!) for SGDEM with any .

(B.10)

_l’_

Appendix C. Convergence of SGDEM with constant step-size

Theorem 25 Suppose that £ satisfies Assumption 1 and that the SGDEM update is
executed for T steps with constant step-size o < 2(1 — pg) and momentum pg € (0,1)
in the first tq steps. Then, for any S and 0 <ty < T, we have

. W+ Js
<
t:%lf.l.l,T €(t) < %]

where €(t) = Ea[|VwRsW)|?], J2 = (ta + 1)(2(;22-)7 + L(28L8a)?) 4 (T —

T—pg (1—pa)?
ta)Sa?L?, Wy = (td+1)(1 = ﬁ)—k(T—td)a, and W = Ea[Rs(wo)—Rs(w5)]
with w§ = arg miny, Rs(w

(C.1)
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Proof We analyze the convergence of SGDEM for a smooth Lipschitz loss function
with constant step-size. To facilitate the convergence analysis, for ¢ € [t4], we define
p; = 1% (wy —wy_1) with pg = 0. Substituting this into the SGDEM update, the
parameter recursion is given by

(6
L= pa

Wil + Pppg = We + Py — Vwl(wi; zi,). (C2)

We also define x; := w; + p,. Note that for a S-smooth function f and for all
u, v € ¥, we have

flu) < f(V)+Vf(V)T(u—V)+§|Iu—VH2~ (C.3)

We note that x; = wy for t > t4. Let t € [tg]. Since the empirical risk Rg is a
(B-smooth function, we have

5062 2
Vwl(Wye; Zi
Vwhs (Xt>va£(Wt§ Zit)
d

Rs(x¢11) < Rs(xt) + VwRs(x) T (xer1 — x¢) +

< Rslx) + 5 (

al )2 «a
1 — pa I—p
where we use the fact that ||Vwf(wy;z;,)|| < L, due to the L-Lipschitz property.

Upon taking the expectation w.r.t. i; in Eq. (C.4) and defining ry := Rs(x¢41) —
Rs(x¢), we have

o al 2
Bulr] < ~ - VuRs(x) VuRst) + 5 (1)
o B T o 9 By alL
= 1 (Vuls(x) = VaRs(w) VaRs(w) = 1V Rs(wo) [P+ 5 (3= -
1 o By al 2 a? o 9
< Z _ = —
< S IVwhs(x) = VaRstw)|*+ 5 (7= )+ (g — 7o) IV Bs(wo)l

(C.5)

where the last inequality is obtained using 2u'v < |[ul|? + ||v||?. For t > t4, we have

Eit[rt] < —OZVWRS(Wt)TVWRS(Wt) + g(OZL)Q

B
2

(C.6)

IN

(aL)? — | VwRs(wy)[|.

In the following, we obtain an upper bound on ||V Rs(x;) — VwRs(w;)|?

in Eq. (C.5) for ¢ € [t4].
Since Rg is f-smooth, we have

IVwRs(x) = VwRs (i) [* < 57[x — we|*. (C.7)
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2.2
We also note that 32||x; — wy|> = %Hwt — w2

For notational simplicity, we define q;, := 1;;” p; with q; = 0. Rewriting

the SGDEM update rule, the parameter recursion is given by

A1 = paly — aVwl(Wy; zi,). (C.8)
Unraveling the recursion Eq. (C.8), we have

t—1
4 = —a ) pl V(w7
k=0
t—1
= —« Z /"stwg(wt—l—k; Zitflfk)'
k=0

(C.9)

t
We define ©;_1 := _4_{ ik = =44, Then we can find an upper bound on ||q,| as
follows:

t—1

k
lagl =1 — > whValwei—;2i,_, )
k=0
t—1

=al| Y phVwlwi 1k zi, )|
k=0
t—1 (C.10)

ad il V(w1 gz, )l
k=0

a®;_ 1L
al
L—pq
Substituting Eq. (C.10) into Eq. (C.7), we obtain the following upper bound on
IVwRs(xt) = VRs(wy)|*:

IN

IN

<

20272,2
o o Q7B L7y
HVWRS(Xt) - VWRS(Wt)H < m (Cll)
Substituting Eq. (C.11) into Eq. (C.5) and taking expectation over iy, ..., i, we
have
Q a? B, aL \2 1/ afLug \2
Ealr,] < — — E AV 24 2 (el L
Al < <1 —pa 2(1-— ,Ud)2) AllVshswoll)+5 (1 - Md> "3 <(1 - Md)2)
(C.12)

Summing Eq. (C.12) for ¢ € [t4] and Eq. (C.6) for t =t4+1,...,T, we have

J1 S Ea[Rs(x0) — Rs(X¢41)] + J2

< E4[Rs(wo) — Rs(W5)] + Jo (C13)
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where
e () SR IVuRslFl ca Y EallVaRsu)|]
1-— Hd 2(1 - ,Ltd) t=0 t=tq+1
(C.14)

and

J= (a5 (5 (izd)z + ;(%)2) (1) DI

Noting o < 2(1 — ¢)(1 — pg) for some 0 < ¢ < 1, we obtain the following lower
bound on J; in Eq. (C.14):

t 1
Uatlac o o)+ (T—t)a min _e(t)
1— g t=0,.ta t=tq+1,..,T (C.15)
> in_ et
> X3, min_e(t)

=U,...,

J1

Y

where y3 = (t‘iiﬂ):w + (T — tg).
Substituting Eq. (C.15) into Eq. (C.13), we obtain Eq. (C.1), which completes
the proof.

We cannot directly combine standard bounds for SGDM and SGD to analyze
convergence of SGDEM because the standard analysis requires characterization of
the empirical risk at wy,. Instead our proof is inspired by the convergence proof
for SGDM by carefully handling time-varying momentum. We now study the upper
bound (C.1) as a function of ¢4 for a given p4. Note that the first term in the upper
bound vanishes as T" — oo.

Remark 26 In Appendixz E, we provide a sufficient condition for the upper bound

(C.1) to become a monotonically decreasing function of ty. In Theorem 25, V‘{,—i ~

‘gigij for some a,b,c,d. We may provide a looser bound by establishing an upper

bound on Jo and a lower bound on Wy. However, such looser bound is not useful since
we will not be able to recover standard bounds for SGD and SGDM. In order to provide
a simpler expression and understand how adding momentum affects the convergence,
in Appendiz F we study the convergence bound for a special form of SGDEM and
show the benefit of using momentum. We also provide a simple sufficient condition
for the mon-vanishing term in the convergence bound to become a monotonically
decreasing function of q.

We also establish convergence guarantees for SGDEM with another time-dependent
step-size in Appendix D.
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Remark 27 In Theorem 25, our focus is on guaranteeing convergence to a local
minimum, which holds for any ty < T. We note that optimizing the upper bound in
(C.1) over t4 will not provide much intuition on the optimal ¢4 in terms of training
error since we cannot guarantee the actual suboptimality gap (optimization error) of
nonconvex loss functions. In practice, we need to tune t; when training, e.g., neural
networks. Our experimental results show that a nontrivial £; can be optimal in terms
of test error.

Appendix D. Convergence guarantees for SGDEM with
time-dependent and time-decaying step-sizes

We establish convergence guarantees for SGDEM with time-dependent and time-
decaying step-sizes as follows.

Theorem 28 Suppose that { satisfies Assumption 1 and that the SGDEM update

1s executed for T steps with momentum g in the first tq steps and time-dependent
. . . o K

step-size « = min{2(1—¢)(1— pgq), max{\/td—i—l,\/T—td}} for some0 <c<1land0 < K.

Then, for any S and 0 <ty < T, we have

7 -
min e(t)SM (D.1)
t:O,...,T Wl
where
= B, KL 2 1 KBLug .2 B 5.9
S S(APER 2 P ey
& 2(1—Md) Jr2<(1—/~Laz)2) "2 ’
g ate o,
1 — pia
T = max{ 1 ’max{\/td—l—l,\/T—td}}.
21— o)1= a) K

Theorem 29 Suppose that £ satisfies Assumption 1 and that the SGDEM update is
executed for T steps with time-decaying step-size oy = t‘i—"l fort=0,1,...,T with
ap < 2(1 —¢)(1 — pg) for some 0 < ¢ <1 and momentum pg > exp(—1) in the first
tq steps. Then, for any S and 0 <ty < T, we have

min_€(t) < Wj_JQ (D.2)
1=0,....T W,
where
ta _
5 al o, B 2 1 aoctBLpg 2
Jy = + Sl —— + Y (—E2E7
2 ﬁ(l_ﬂd) 5 (a0l) P— ;( T — g )
A In(ty + 1)ape
M= )
1 LT
& = min{ 1+ In(t), i (ug "+ 1(2)}, and I(t) :/ Ha_ gy,
1 — pg 1 U

35



RAMEZANI-KEBRYA, ANTONAKOPOULOS, CEVHER, KHISTI, AND LIANG

Proof Following the proof of Theorem 25 for ¢ € [t4], we have

1 9 By oqL \2 a? o 9
. < Z _ [ _ .
Bilr) < 5 VwRs(x) = VaRswol* + 5 () 4 (5 = 10 ) Ve sl
(D.3)
For t > t4, we have x; = w; and
_ T B 2
]Elt[rt] < _atvaS(Wt) VWRS(Wt) + 5(0@[1)
3 (D.4)
< §(OétL)2 — ||V Rs (we) ||

In the following, we obtain an upper bound on ||V Rs(x¢) — VwRs(wy)|?
in Eq. (D.3). Since Rg is $-smooth, we have

IVwRs (xt) = Vv Rs (we) || < 52 %, — w”. (D.5)
We also note that
ﬂ2ﬂd
52 Xt — W 2= S ld W — Wi
| | = Md)QII I
For notational simplicity, we define q, := 1;%pt with q; = 0. Rewriting

the (SGDEM) update rule, the parameter recursion is given by

Q1 = Hdly — aVwl(Wi; zi,). (D.6)
Unraveling the recursion Eq. (D.6), we have

t—l—k
= —ap Z T Vwl(W;zi, ). (D.7)

Lemma 30 Provided that jg > exp(—1), we have ||q.||* < €2a3L? for t < ty, where

¢, = min{

—u
A In(e), g + 1)} and I(2) /“d du.
— HKd

Proof Following the proof of Theorem 25, an upper bound on ||q.||? is given by
lag|1? < agL?5?

where
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Note that

t—1 t t t

_ 1 _

S< 3 b= ana §< 1/k:§1+/1/udu:1+ln(t).
k=0 L= pa k=1 1

- ~ —k
Rewriting S as S = p4 >k, % and noting f(u) = p " /u is conver and non-
increasing for 1 <wu <t due to the lower bound pug > exp(—1). Therefore, we have
S < ply(ugt +1(1)). m

Substituting the upper bound on ||q,||? into Eq. (D.5), we obtain the following
upper bound on ||V Rs(x¢) — VwRs(wy)||?:
BRI
(1= pa)?

Substituting Eq. (D.8) into Eq. (D.3) and taking expectation over iy, ..., i, we
have

IVwRs(xt) — Ve Rs(wy)||* < (D.8)

« a? B/ oyl \2 aoCtBLugN2
Ealrd) < (77— g Ball VaRs (w7 + 5 (20 ) + (22
(D.9)

Summing Eq. (D.9) for ¢t € [t4] and Eq. (D.4) for t =t4+1,...,T, we have

A

Ji < Ea[Rs(x0) — Rs(x¢+1)] + Jo

T (D.10)
< Ea[Rs(wg) — Rs(ws)] + Jo
where
ta 2 T
B3 (L VB[V Rsw) [+ Y aEall Ve Rs(w)|)
=N —pa o 2(1— pa) t=tg+1
(D.11)

Noting ap < 2(1 — ¢)(1 — pg) for some 0 < ¢ < 1, we obtain the following lower
bound on J; in Eq. (D.11):

d T
- ay .
Jyp > min  €(t) + E a;  min  €(t)
im0 L= Ha t=0-ta tmtgp1  tatlhe T (D.12)

where

)OZ(). (D13)
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Finally, we note that

B/ aol \2<4 1 aol \2 3 , - 1 B )
5(1_Hd) tg(tﬂ)z Sﬁ(l—ﬂd) and - (aoL) t:%:ﬂ Gy S gleel)
|

Appendix E. Sufficient condition for the upper bound
in Theorem 25

In the following corollary, we provide a simple sufficient condition for the upper
bound (C.1) to become a monotonically decreasing function of ¢,.

Corollary 31 Suppose that { satisfies Assumption 1 and that SGDEM is executed
for finite T steps with constant step-size o < 2¢(1 — pg) with some ¢ < 2_1% and
momentum fiq in the first tq steps. Then the upper bound (C.1) is a monotonically

decreasing function of tq if the following condition is satisfied:

(K1 — K2)(K3 +TKy)

W > - Ky —-TK. E.1
% K, 1 2 (E.1)
_ B( oL \2 | 1/ aBLug \2 _ B, 272 _ 2
where K| = f(ﬁud) + 5(&_}5;@) , Koy = 50°L%, K3 = 1_0‘M — 2(12;151)2’ and
K4 = Q.
Proof Note that we can express the upper bound (C.1) as
Ulty) = W+ K1+ TKy + tq(K; — K»)
¢ K3+ TKy + ty(Ks — Ky)
The proof follows by taking the first derivative of U w.r.t. ¢4. |

Corollary 31 implies that adding momentum for a longer time is particularly
useful when our initial parameter is sufficiently far from a local minimum.

Appendix F. Understanding the role of momentum on convergence

In order to understand how adding momentum affects the convergence, we study
the convergence bound for a special form of SGDEM and show the benefit of using
momentum.

Corollary 32 Suppose we set tg =T with constant step-size o < 2(1 — pq). Then,
for any S, we have

(aBLug)?
. 1% Ba?L? 4 ‘5o
t_%nnTe(t) < = = t5 i () _M)2 . (F.1)
o (T + 1)(1—ud o 2(1—Md)2) @ Hd “
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Note that the upper bound (F.1) is a function of ug. The first term in the
upper bound vanishes as T' — oo. In the following corollary, we provide a simple
sufficient condition for the non-vanishing term in the upper bound (F.1) to become
a monotonically decreasing function of ug.
2pq—p2
(1-pa)?
0 < ¢ < 1. Then the non-vanishing term in the upper bound (C.1) is a monotonically

decreasing function of .

Corollary 33 Suppose 5 < and we set tg =T with a < 2¢(1 — pg) for some

Proof Noting a < 2¢(1 — pg) for some 0 < ¢ < 1, we obtain the following lower
bound on J; in Eq. (C.14):

J1 > x4 minTe(t) (F.2)

=VU,...,

where

tg+ 1)a(l —c
X4::(d Jod )-f—T—td.
L= pa

Substituting Eq. (F.2) into Eq. (C.1), the non-vanishing term in the upper bound

%62 (1 + B%) becomes a function of pg through (1 — pug) (1 + B%).

We can prove the proposition by taking the first derivative w.r.t. pg. |

Appendix G. High-probability generalization bounds

We consider the generalization error that depends on a random set of n samples S
drawn i.i.d. from some space Z with an unknown distribution D:

€g(S) = Ea[R(wr) — Rs(wr)].

We establish high-probability bounds for generalization error of SGDEM along the
lines of (Feldman and Vondrak, 2018).

Theorem 34 (High-probability generalization bound) Let 0 < 6 < 1. For
the setting described in Corollary 12, with probability at least 1 — § over S ~ D", the
generalization error of SGDEM €4(S) is bounded by O(\/(M + %) log (%))

Proof The proof follows by the arguments in (Feldman and Vondrak, 2018, Theorem
1.2) and substituting the stability upper bound in Corollary 12. |

Appendix H. Proof of Theorem 18

We track the divergence of two different iterative sequences of update rules with
the same starting point. We remark that our analysis is more involved than (Hardt

39



RAMEZANI-KEBRYA, ANTONAKOPOULOS, CEVHER, KHISTI, AND LIANG

et al., 2016) as the presence of momentum term requires a more careful bound on
the iterative expressions.

To keep the notation uncluttered, we first consider SGDM without projection
and defer the discussion of projection to the end of this proof. Let S = {z1,...,2,}
and 8" = {z],...,z),} be two samples of size n that differ in at most one example.
Let wy and w/ denote the outputs of SGDM on S and &, respectively. We consider
the updates wy 1 = G¢(wy) + pu(wy — wy—1) and w} | = Gi(w}) + p(w} — w;_ ) with
Gi(w) = wy — aVwl(wi;zi,) and Gi(w}) = wi — aVyl(W};zi, ), respectively, for
t=1,---,T. We denote d; := ||w; — w}||. Suppose wy = wy, i.e., do = 0.

We first establish an upper bound on E4[d7]. At step ¢, with probability 1 —1/n,
the example is the same in both S and &', i.e., z;, = z{,, which implies G; = G}.

Then Gy becomes (1 — gﬁl)—expansive for a < Biﬂ (see, e.g., (Hardt et al., 2016,

Appendix A)). Hence, we have
i1 = [lpp(wy — wi) — p(wy—1 — wi_q) + Ge(wy) — Gi(wy)]]
< pllwe —will + pllwi—1 — wi_y || + [|[Ge(wy) — Ge(wy)| (H.1)
< 96 + pdi—1

where 9 = 1+ p — 222, With probability 1/n, the selected example is different in S
L EY

and &’. In this case, we have
Or1 = [l(we — i) — pu(wy—1 — wi_y) + Gi(wy) — Gi(wy)]|
< prflwy — Wil + plwi—r — wi_q || + 3
< 90 + pdp—1 + [|Ge(wy) — Gy(wy) || (H.2)
< 90 + b1 + [|wy — Ge(wy) || + [[wi — Gi(w)|
< 95 4+ ude_1 + 2aL

where ¢3 = ||Gi(wy) + Gi(w}) — G(w}) — Gi(w})]||. The last inequality in (H.2) holds
due to the L-Lipschitz property. Combining Eqgs. (H.1) and (H.2), we have

Ealdi+1] < (1 —1/n) (ﬁEA[(St] + MEA[5t—1]) + 1/n(19EA[5t} + uEA[6i—1] + 2aL)

2L
= ﬂEA[ét] + MEA[dtfl] + T

(H.3)
Let us consider the recursion
EAlSis] = VEAIS] + pEAlF 1] + 2o (H.4)
with dg = dp = 0. Upon inspecting Eq. (H.4) it is clear that
Eald] > VEA[0-1], Wt >1, (H.5)
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as we simply drop the remainder of positive terms. Substituting Eq. (H.5) into Eq. (H.4),
we have

~ = 2aL
Ea[dr11] < (1 +p+ % - ﬁ)EA[&] —
(H.6)
2aL
where the second inequality holds due to p > g—ﬁ — %
Noting that E4[6;] > E[d] for all ¢ including T', we have
AloT] < XT: (9 +2u)" 2aL(B +)
I et n(aBy — 3u(B + 7))
where the second expression holds since 0 < p < 3(%7%
Applying the L-Lipschitz property on ¢(-,z), it follows
Ea[lt(wr;z) — ((wy; z)|] < LEA[07]
2aL?
< 20L7(B+7) (H.7)

~ n(afy = 3u(B+1))

Since this bound holds for all S, §’, and z, we obtain an upper bound on the uniform
stability and the proof is complete.

Our stability bound in above holds for the (P-SGDM) update because Euclidean
projection onto a convex set does not increase the distance between projected points
(Rockafellar, 1976). In particular, note that inequalities (H.1) and (H.2) still hold
under P-SGDM.

Appendix I. Convergence bound for strongly convex loss

In this section, we develop an upper bound on the optimization error for the case of
strongly convex loss, which is defined as

€opt = Es,a[Rs(Wr) — Rs(W5s)] (1.1)

where wr denotes the average of T steps of the algorithm, i.e., Wy = T%rl ZtT:o W,
Rs(w) =137 ¢(w;z;), and w§ = argminy Rs(w).

The optimlzatlon error quantifies the gap between the empirical risk of P-SGDM
and the optimal empirical risk.
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Theorem 35 Suppose that £ satisfies Assumptions 1 and 2 and that P-SGDM 1is
executed for T steps with constant step-size o and momentum p. Then we have®

. uWo I=pWi Wy W3 N aL? (12)
opt = (1— )T 20T 2 20 —p)  201—np) '
where Wo = E&A[R‘g(Wo) — RS(WT)], W1 ES A[HWO — WS” ] ES A[HWT —

w5 ], and W3 = 747 g Es,alllwe — wel]?].

Proof Again, we first consider SGDM without projection and discuss the extension
to projection at the end of this proof. To facilitate the convergence analysis, we
define:

1%
pt = H(Wt — Wt_l) (I?))

with pg = 0. Substituting into SGDM, we have

2a
— M(St —w) Vyl(wi; z;,)

(1.4)

« 2
It =l oo = Wl + (7 Vwllwes ) 5

where s; = w; + p,. Substituting s;, taking the expectation w.r.t. i, using the
L-Lipschitz assumption, noting Rg is a ~-strongly convex function, summing for

t=0,...,T, and rearranging terms, we have
204 £l
sr < WEA[RS(WO) Rs(wr)] Z [llw: — w||?)
- =0 (L5)
a’L*(T + 1)
5 + Eal[wo — wl|’] Alllwi — w1 %]
(1—p)? ZO
where ¢p = 12—70{;1 ST EA[Rs(w;) — Rs(w)]. Since || - || is a convex function, we

have ||[Wr — wl|? < T%rl S, lws — w]|? for all wp and w. Furthermore, due to the
convexity of Rg, we have

T
Rs(Wr) — Rs(w Z Rs(wi) — Rs(w)). (1.6)
t:O

Taking expectation over S, applying the above inequalities, and substituting
W = wg, we obtain Eq. (I1.2).

8. Linear convergence results for SGD can be obtained under a stringent condition (Needell et al.,
2014). Such a condition requires that the loss function is simultaneously minimized on each
training example, and it does not apply to our setting. Different from (Yan et al., 2018; Ghadimi
et al., 2015), we analyze the convergence of P-SGDM for a smooth and strongly convex loss
function with constant step-size.
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Our convergence bound in (I.2) can be extended to P-SGDM. Let use denote
Vgl = Wy + p(wp — wy1) — aVl(wy; zi,).

Then, for any feasible w € €2, Eq. (I.4) holds for y; ,, i.e.,

X a 9
191 — wii* = llse — wl* + (ﬁ) IVt (wy; 2i,)|°

L.7)
2a (
T M(St — W)vaﬂ(wt; Zi,)

where y, =y, + ﬁ(ylt — Wi 1).
Note that the LHS of Eq. (I.7) can be written as
19,1 — wl* = ﬁ”)’tﬂ = (pwy + (1= p)w)][>.
We note that w; = pwy + (1 — p)w € Q for any w € Q and wy € 2 since 2 is convex.
Now in projected SGDM, we have

[Wipr — We[* = [|P(y;p1) — We|?

< [lypgr — Wl

since projection a point onto {2 moves it closer to any point in 2. This shows
inequality (I.5) holds, and the convergence results do not change. |

Theorem 35 bounds the optimization error, i.e., the expected difference between
the empirical risk achieved by SGDM and the global minimum. Upon setting p =0
and v = 0 in Eq. (I.2), we can recover the classical bound on optimization error
for SGD (Nemirovskij and Yudin, 1983), (Hardt et al., 2016, Theorem 5.2). The
first two terms in Eq. (I.2) vanish as T increases. The terms with negative sign
improve the convergence due to the strongly convexity. The last term depends on
the step-size, a, the momentum parameter p, and the Lipschitz constant L. This
term can be reduced by selecting « sufficiently small.

Appendix J. Upper bound on true risk

We now study how the uniform stability results in an upper bound on the true risk
in the strongly convex case. We also compare the final results with SGD with no
momentum and we show that one can achieve tighter bounds by using SGDM than
vanilla SGD.

The expected true risk estimate under parameter W can be decomposed into a
stability error term and an optimization one. In Appendix I, we present an upper
bound on the optimization error for strongly convex loss. The optimization error
reflects the optimality gap when we optimize the empirical risk under some step-size
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and momentum. By combining the result Appendix I and our stability error bound,
and adjusting the hyper parameters, we minimize the upper bound on the expected
true risk estimate.

In the following lemma, we show that stability results similar to Theorem 18
hold even if we consider the average parameter Wy instead of wp. In other words,
the same upper bound holds even if W is considered as the output of algorithm A.

Lemma 36 Suppose that that £ satisfies Assumptions 1 and 2 and P-SGDM is

executed for T steps with step-size o and momentum w. Provided that % — % <

n< 3(0&7% and a < %ﬂ, then the average of the first T' steps of P-SGDM satisfies

es-uniform stability with Eq. (4.1).

Proof Let us define w; = } Y _; wy, and b := ||Wy — W} | where W} is obtained as

specified in the proof of Theorem 18. Following the proof of Theorem 18, we have
o afy = 2aL

E[6 <(1+3u——)E|[J —_— J.1

Braa] < (1430 — 2 BB+ = (3.1)

P
for k =0,...,T. Defining d; := Z’“jl 5;@7 we have 67 < d7 by the triangle inequality.

Summing Eq. (J.1) for k = 0,...,T and dividing by T, we have E[o7] < E[d7] <
2aL(B+7)
n(aﬂv—3u(ﬁ+v))

. Applying the L-Lipschitz property on £(-,z), we have

2aL*(B + )
E[[{(Wr;z) — ((W; z)|] < , J.2
letwrs7) — i) < TS (12)
which holds for all S, §’, and z. [ |
Adding the stability error following Lemma 36, we have
E&A[R(VAVT)] < E‘g’A[Rs(WT)] +e < ES,A[Rs(ng)] + €opt + €s (J.3)

where €op := Es a[Rs(Wr) — Rs(w5s)].
Note that there is a tradeoff between the optimization error and stability one.
We can balance these errors to achieve reasonable expected true risk.

Theorem 37 Suppose that £ satisfies Assumptions 1 and 2 and that P-SGDM 1is
executed for T steps with constant step-size « = C'/T1? for q € [%, 1) and momentum u,
satisfying the conditions in Theorem 18 with p = o(ary). Then, the risk E[R(Wr)] —
E[Rs(ws)] goes to zero as T and n increase with the rate:

1 1
Tql{q<1/2}+(1—q)1{q>1/2}" p,

E[R(Wr)] — E[Rs(w)] = O max { 1) (Excess Risk)
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Proof By our convergence analysis in Theorem 35, we have

uWo (1 =)Wy ~Ws uyWs al?
€opt < + — — + .
(1—-pwT 2aT 2 21— p)  2(1—p)

By our stability analysis in Lemma 36, we have

2aL*(B +7)
n(aBy —3u(B+7))

Adding the upper bounds of €,,; and €5 above, we have

€s >

- . pWo (1= )Wy AW
< _
]E&A[R(WT)] < E&A[R‘g(ws)] —+ (1 — M)T + ST 5
uyWs al? 2aL%(B + )

20— 20— napy —3u(B+7)

(J.4)

We note that the condition p < 3 6/17) in Theorem 18 implies that u < ay/3. For

sufficiently small p = o(avy), the last term in the upper bound becomes independent
of a and we have

2L (B+7)
n(afy —3u(B+17))

Then for any o = C/T for q € [%, 1), T and n, the upper bound on the risk goes
to zero as T and n increase with the rate in Eq. (Excess Risk). |

O(1/n).

Theorem 37 provides a bound on the expected true risk of P-SGDM in terms of
the global minimum of the empirical risk.

Appendix K. Generalization error of SGDEM with o, = ag/v/t

We establish an upper bound on the generalization error of SGDEM with the
larger step size ay = ap/+/t, which is a common choice in the optimization litera-
ture (Bubeck, 2015).

Theorem 38 Suppose that £ satisfies Assumption 1 and that the SGDEM update is
executed for T steps with step-size oy = an//t and some constant pg € (0,1] in the
first ty steps. Then, for any 1 <t <ty <T, SGDEM satisfies es-uniform stability
with

a 2 ny 2
€5 < 2;% exp(uVT)h(pa, tq) + tf + ,B(TQLL—l)eXp (u(\/T— \@)) (K.1)

where h(pa, ta) = exp(2puata+u?/ (1)) (2(v2ua(v/ia + 1)) — ®(V2pa(VE+ 7)),
O(x) = erf(x) := \ffO exp(—t?)dt, u= (1 — 2)aof, and M = SUpy, , £(W; Z).
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Proof Similar to the proof of Theorem 10, we have the following inequality:

5 ~ 20i;: L
A < (U420 + (1= 1/n)aB)A; + n’f .

Noting that At,f > A, ; for all t > ¢, we have E[A ;] < S3+ 54 where

1 Oé(),@ 20{0[4
Sg = 14+2pp+ (1—=)—=
’ t%lp];-[i-l( ' )\f> vt

and

1, apB\ 200 L
Z H(1+2up (1- )\Of)n\o[

t=ty+1 p=t+1

Substituting u, = pq for p=1,...,t4, we can find an upper bound on S3 as follows:

si= 30 T (1+2m - )22k

t=t+1p=t+1

ta T 1 200L
S 10 exp(2up+ (- )aoﬁ) a\of

t=t+1p=t+1 \f
La 1 200L
< Z exp (2/Ld(td — t) + (1 — ;)O&Qﬁ(ﬁ — \/i)) n\/f

t=t+1

2a9 L ta —2ugt —uvt
@0 exp(uVT + 2puqgtq) / exp(—2pat — uv?) dt
n 7 Vi

exp(uVT + 2pgtq + u?/(811q)) /{td exp (— 2uq(

IN

IN

2a0L V4 u/(4p4))?)

Vit

= Z0ORVT (/T + 3t + /(S (2 Dra(VTa + 1)) — 2(/Piral VT4 1)
nA/ 2144 Hd Hd

IN

dt

where the last line follows (Gradshteyn and Ryzhik, 2014, Eq. 3.321).
We can also find an upper bound on Sy as follows:

1 Oéoﬁ 20[0.[/
1 _ 2\ U7
¢ %:lell ( n) ) nVt

2L
< Bn—1) exp (U(ﬁ - \/ﬂ)) (K.2)

2L
< mexp (u(ﬁ— \@))

Replacing A7 with its upper bound in Eq. (3.3), we obtain Eq. (K.1).
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By its definition, we have ®(z) < 1. We also note that 1 — exp(—2?) < ®(x)
for x > 0 following the upper bound developed for 1 — erf in (Chiani et al., 2003).
Applying both lower bound and upper bound on ¢ in Eq. (K.1) and after rearranging
the terms, we have

< (23(1/27\f exp (2ua(ts — 1)) + B(iLQl)) exp ( (VT - f)) + n (K.3)

Corollary 39 Suppose, in Theorem 38, we set ty = t* + K for some constant K
where t* satisfies:

2
M exp(uVT)VEr = (U(y\o/g?f L2ao) exp(uVT). (K.4)

Then the generalization error of SGDEM for T steps with ay = ap/\/t is upper
bounded by (’)(exp(u\/T/(uH)Jr“d)) '

Proof Note that we can minimize:

. tM 2a0L% /7 52
i+ g o Cma) + =) e (u(VT = V)

by optimizing ¢ after setting t; = ¢ + K where the objective is the upper bound
in Eq. (K.1). We note that an optimal £* satisfies Eq. (K.4), which does not have an
analytic solution but can be solve numerically. Instead, we consider a suboptimal
solution by taking In from both sides of Eq. (K.4) and applying the well-known
inequality In(z + 1) < x, Vo > —1, which leads to:

uag L2 /7
In (( \‘}% + L2a0)/M) /T
u+1 u+1’

Vi=

Substituting Eq. (K.5) into Eq. (K.1) completes the proof. |

Appendix L. Additional experiments

In Fig. 5, we plot the test accuracy versus tg of SGDEM and SGDM (which is a
special case of SGDEM with t; = T') for the notMNIST dataset for different pgy
values. We observe dramatic decrease in the test accuracy for pg = 0.99, which is
consistent with our convergence analysis in Theorem 25.
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Figure 5: Test accuracy of a feedforward fully connected neural network for notMNIST
dataset.
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Figure 6: Test error of logistic regression for notMNIST dataset.

We now study the performance of SGDEM for a smooth and strongly convex loss
function. We train a logistic regression model with the weight decay regularization
using SGDEM for binary classification on the two-class notMNIST and MNIST
datasets that contain the images from letter classes “C” and “J”, and digit classes
“2” and “9”, respectively. We set the step-size o = 0.01. The weight decay coefficient
and the minibatch size are set to 0.001 and 10, respectively. We use 100 SGDEM
realizations to evaluate the average performance.
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Figure 7: Test accuracy of logistic regression for notMNIST dataset.
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Figure 8: Test error of logistic regression for MNIST dataset.

We plot the test error and test accuracy versus tg under SGDEM for the notMNIST
dataset in Figs. 6 and 7, respectively. We show the same performance measures for
the MNIST dataset in Figs. 8 and 9 respectively. We observe that, unlike the case of
nonconvex loss functions, it does not hurt to add momentum for the entire training.
In the following, we focus on SGDM with the classical momentum update rule for a
smooth and strongly convex loss function for the notMNIST dataset.

In the following, we focus on SGDM with the classical momentum update rule
for a smooth and strongly convex loss function on notMINIST.
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Figure 9: Test accuracy of logistic regression for MNIST dataset.
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Figure 10: Generalization error (cross entropy) of logistic regression for notMNIST dataset
with T = 1000 iterations.

We compare the training and generalization performance of SGD without momen-
tum with that of SGDM under p = 0.5 and p = 0.9, which are common momentum
values used in practice (Goodfellow et al., 2016, Section 8.3.2).

We show in Fig. 10 the generalization error (w.r.t. cross entropy) versus the
number of training samples, n, under SGDM with fixed T" = 1000 iterations for
u=0,0.5,0.9. In Fig. 11, we plot the training accuracy as a function of the number
of training samples for the same dataset. First, we observe that the generalization
error decreases as n increases for all values of y, which is also suggested by our
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Figure 11: Training accuracy of logistic regression for notMNIST dataset with T = 1000
iterations.
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Figure 12: Training error (cross entropy) of logistic regression for notMNIST dataset with
n = 500.

stability upper bound in Theorem 18. In addition, for sufficiently large n, we observe
that the generalization error increases with p, consistent with Theorem 18. The
training accuracy also improves by adding momentum as illustrated in Fig. 11.

In order to study the optimization error of SGDM, we show in Figs. 12 and 13, the
training error and test error, respectively, versus the number of epochs, under SGDM
trained with n = 500 samples. We plot the classification accuracy for training
dataset in Fig. 14. We observe that the training error decreases as the number of
epochs increases for all values of p, which is consistent with the convergence analysis
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Figure 13: Test error (cross entropy) of logistic regression for notMNIST dataset with
n = 500.
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Figure 14: Training accuracy of logistic regression for notMNIST dataset with n = 500.

in Theorem 35. Furthermore, as expected, we see that adding momentum improves
the training error and accuracy. However, as the number of epochs increases, we note
that the benefit of momentum on the test error becomes negligible. This happens
because adding momentum also results in a higher generalization error thus offsetting
the gain in training error.
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