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Abstract

We study the performance of a multi-user prefetch-
ing strategy in a two-tier heterogeneous wireless net-
work. A predictive framework was previously introduced
for mobility-aware document prefetching to enhance the ex-
perience of a mobile user roaming between heterogeneous
wireless access networks. However, an undesirable effect
of multiple prefetching users is the potential for system in-
stability due to the racing behavior between document ac-
cess delay and user prefetch quantity. This phenomenon is
particularly acute in the heterogeneous environment. We
propose to alleviate the system traffic load through optimiz-
ing a prefetch thresholding algorithm, accounting for server
queuing prioritization. We evaluate the performance of the
proposed algorithm through numerical analysis and simu-
lation. We show that stability can be maintained even under
heavy usage, providing both the same scalability as a non-
prefetching system and the performance gains associated
with prefetching.

Keywords: mobile prefetching, heterogeneous wireless
networks,WLAN/3G integration, performance modelling,
queuing analysis

1 Introduction

The future wireless information system will consist
of heterogeneous radio access networks, including wide-
area cellular networks, wireless metropolitan area networks
(WMANs), wireless local area networks (WLANs), and
infrastructure-less wireless networks [3]. Since no single
access technology meets the ideal of high bandwidth, uni-
versal availability, and low cost, they should be strategi-
cally integrated to provide optimal services. In such het-
erogeneous systems, a mobile device roaming across differ-

Figure 1. A two-tier wireless heterogeneous
network.

ent access networks should dynamically adapt and make in-
telligent choices to balance the trade-offs between various
performance factors [14]. In this work, we study network
aware document prefetching by a mobile device in a two-
tier wireless system comprised of a universal basic coverage
network, and within it a preferred high speed network with
lower access cost but limited coverage. Throughout this pa-
per, we use wide-area cellular and WLAN as examples for
these two networks, respectively, as shown in Fig. 1.

Prefetching is a technique in which the client device pro-
actively fetches from the server documents that are pre-
dicted to be accessed in the near future. For example, the
Mozilla-based Web browsers [1] have support for a prefetch
tag, which allows a Web page to specify the subsequent doc-
uments that should be automatically fetched by the browser.
The main benefit of prefetching is that it can reduce the user
perceived access delay to the much shorter time of a cache
lookup. Prefetching is most effective when there exist items
that will be accessed with high probability, and there are de-



lays or down-times between consecutive access requests.
There exists much research on Web document prediction

and prefetching [15, 11, 12, 5, 2, 7, 4]. Most of the pro-
posed methods make use of user histories to make informed
predictions. Traditional Web caching systems without pre-
fetching have been shown to achieve a maximum hit rate of
around 40% to 50% on static Web pages, whereas aggres-
sive prefetching schemes can increase the hit rate to the or-
der of 80%. In addition, we have previously examined the
benefit of prefetching using Web browsing as an example
and showed that mobility-awareness can lead to significant
performance gain [9]. However, the major side effect of
Web prefetching is a considerable increase in traffic due to
prefetching stale documents that will not be accessed [6].
Furthermore, in the wireless environment, prefetching deci-
sions may be constrained by device power [10, 19] or stor-
age capacity [18].

In this work, we observe that prefetching is particularly
valuable for users in a two-tier wireless network because
the cost of access in WLAN is generally much less expen-
sive than the surrounding cellular network. A successful
prefetch when the user is about to leave the coverage area
of the WLAN displaces a potential cellular network access
with a cheaper WLAN access. Network awareness is thus
built into the prefetching decision process.

We extend the previous results in [9] and examine the ef-
fect of multiple prefetching users on system performance. A
unique challenge that arises in the multi-user scenario is the
feedback of prefetching strategy amongst the users. When
multiple users are competing for the available bandwidth,
each user may have to wait much longer for its request to
be serviced, and will adjust its prefetching strategy accord-
ingly. This introduces more requests to the server, and fur-
ther increases the time to service requests. The increase in
traffic delays due to prefetching is well known [6], but in
the two-tier network it results in a more significant problem
because of the increased level of prefetching.

We propose a novel analysis framework to evaluate and
optimize the performance of prefetching in a two-tier net-
work. Furthermore, the analysis framework accounts for
queuing prioritization and reneging at the document server,
allowing service differentiation between regular and pre-
fectching requests. The amount of prefetching, or the ag-
gressiveness of the algorithm, can be adjusted by each user
based on their current mobility and application characteris-
tics. Other metrics that are used in the prefetching decision
process include the network bandwidth, data access costs,
and the user perceived value of time. We develop the anal-
ysis framework using these QoS metrics such that the ef-
fects of any mobility pattern, network topology, or access
pattern could be used as inputs into optimal network-aware
prefetching over heterogeneous networks.

The rest of this paper is organized as follows. In Section

2 we describe the system model and user prefetching strat-
egy. In Section 3 we present a recursive queuing analysis
framework to evaluate prefetching performance. In Section
4 numerical and simulation results are presented. Finally,
conclusions are given in Section 5.

2 Multi-user Network Aware Prefetching

In this section, we describe the system model for multi-
user network aware prefetching and present the user pre-
fetching strategy.

2.1 Network Model and Document Access

We consider mobile users in a two-tier network, com-
prised of WLANs surrounded by a ubiquitous cellular net-
work. Users may roam anywhere and are not constrained
to any one network. Users are mobility-aware, such that
they have an estimate of which networks they may roam
to in the near future [9, 13]. Users access documents,
and are provided with a mechanism to estimate the access
probabilities, pa, for their next set of possible documents
[15, 11, 12, 5, 2, 7, 4].

Prefetch requests are sent to a central server while users
are reading their current page, and the prefetched docu-
ments are placed in a cache on the mobile device. Each
new user request is served by first examining the cache for
a successful prefetch, and if none is found, a normal docu-
ment request is sent to the server. It was shown in [9] that
gains from prefetching within the cellular network are mini-
mal, and thus we only consider the case of prefetching from
within the WLAN. Each user will establish a prefetching
threshold, H , and will prefetch in a single batch request all
documents with access probabilities greater than the thresh-
old (i.e., pa > H).

The central server is modelled as a queue servicing re-
quests from all users in the system. Since normal requests
are more time sensitive, while prefetch documents can be
returned any time within the inter-request interval, we study
a two-priority system where web documents are given high
priority (HP), and all prefetch documents are given low pri-
ority (LP). We choose a preemptive resume system [16],
which operates so that when an HP request arrives while
an LP request is in service, it is serviced immediately and
causes the LP request to be preempted to the front of its
waiting queue. The LP request returns to service only when
all HP requests have been serviced, and resumes from where
it left off. The preemptive resume model fits well with a
packet-based system.

Furthermore, the server queue supports reneging. The
HP and LP requests are dropped from the server when the
user departs from the WLAN. It is also reasonable to purge
the stale prefetch requests. When a user submits a new HP



or LP batch request, any prior LP requests by the same user
are deemed stale and reneged.

2.2 Prefetching Strategy

We define the cost of access as the sum of access cost and
the penalty for access delay. Then, the prefetching thresh-
old is based on a decision function that compares the ex-
pected costs of requesting and not requesting to prefetch a
document with access probability pa, denoted cp and cnp,
respectively.

If a document is not prefetched and if it is indeed re-
quested by the user at time t, or if the document is not
prefetched in time, then the user’s document request will
be forwarded to the server with high priority. The expected
cost of this is

cHP (t) =
(
1 − Ftw

(t)
)
(αBW

s + αT E[SHP ]) +
Ftw

(t)(αBC
s + αT s/bC) ,

(1)

where tw denotes the user’s residual WLAN residence time
and Ftw

(t) its cdf, αBW
and αBC

denote the price per byte
of access to the WLAN and to the cellular network1, respec-
tively, s denotes the average document size, bC denotes the
constant bit rate provided by the cellular network, αT de-
notes the cost of lost time, where lost time is defined as the
duration in which a user is waiting for the server to service
a HP request, and SHP denotes the HP request sojourn time
in the server queue, given by

SHP = min(S0
HP , tw) , (2)

where S0
HP is the touched sojourn time of a HP request if

there were no reneging due to the user moving out of the
WLAN. Note that αBW

and αBC
may represent both the

monetary cost paid to the service providers and the energy
cost of wireless access. Hence, we have

cnp =
∫ ∞

0

ftr
(t)pacHP (t)dt , (3)

where tr denotes the time for the user to request the next
document and ftr

(t) its pdf.
The value of cp depends on whether the prefetch request

is successfully serviced. Let S0
LP be the untouched sojourn

time of a LP request if there were no reneging due to a new
request by the user or the user moving out of the WLAN, so
that the LP request sojourn time is given by

SLP = min(S0
LP ,min(tr, tw)) . (4)

1These prices may account for both the monetary cost charged by the
service provider and the communication energy cost to the mobile device.

Then, we have

cp =
∫ ∞

0

ftr
(t)

(
P{S0

LP > t}pacHP (t)+

P{S0
LP < min(t, tw)}αBW

s + P{tw < S0
LP < t}

pa(αBC
s + αT s/bC)

)
dt .

(5)

The optimal prefetching threshold is determined by

H = min{pa|cp < cnp} . (6)

Clearly, it depends on the network characteristics and user
access patterns. Next, we present an analytical framework
to evaluate the effect of various system parameters on the
optimization of prefetching.

3 Performance Analysis Framework

This section provides an analytical framework for multi-
user network aware prefetching. We present a method to
compute the distributions of S0

HP and S0
LP , which in turn

depend on the prefetching quantity by the other users and
hence H . Then, a recursive procedure can be used to ap-
proach the optimal prefetching threshold. This recursion
converges as long as the feedback generated from an in-
crease in traffic is less than the increase in traffic [8]. For
most traffic loads in our numerical analysis, the system con-
verges after a few iterations.

3.1 Steady State Server Queue Distribution

The state of the preemptive resume priority queue can be
described by the doublet of state variables (#LP,#HP ).
We first determine the arrival rates of different types of re-
quests. To obtain tractable analysis results, we assume that
the user’s document inter-request time, tr, and the time for
the server to transmit a document, ts, are both exponen-
tial, with rates λ and μ, respectively. We further assume the
WLAN residence time, tw, of a user is exponential with rate
γ. This is a common model for cell residence time in the
literature. Later, in the simulation section, we demonstrate
that the computed optimal prefetching threshold provides
a close approximation even for non-memoryless document
access patterns.

We consider the queue state only at instants when a doc-
ument is viewed, and hence an HP request and its associated
LP requests can be regarded as one batch request. If the last
batch request occurred in the WLAN, and the request was
successful in prefetching the next document viewed by the
user, the user will generate a new batch of only prefetch re-
quests. If the last batch request was unsuccessful, or was
from a different network, then the current batch must con-
tain an HP request for the document the user wishes to view.



Therefore, each batch contains a variable amount of LP re-
quests and one or zero HP requests. To find the probabil-
ity that a batch request contains k LP documents, denoted
PL[k], we count the number of documents with access prob-
ability exceeding the prefetching threshold:

PL[k] =
∑

a

P{δ = a}·

P
{ ∑

x∈xD

1(pa(x) > H) = k|δ = a
}

,
(7)

where δ represents all document access probability distri-
butions and xD represents all possible documents to be re-
quested.

To simplify analysis, we further assume that if one
prefetch request from a batch is dropped, then all of the re-
quests are dropped, and similarly if one prefetch request is
returned, then all of the requests are returned. This assump-
tion is reasonable because most of the time the LP requests
are served in quick succession. We ignore this assumption
in our simulation, such that individual documents within a
batch can be either dropped or received. As can be seen
later, this approximation is acceptable, and it significantly
reduces the analysis complexity.

We first consider request batches with no HP request.
This is possible only if the previous LP requests were not
dropped and they include the document actually intended by
the user. Thus, the arrival rate of request batches that cause
a queue state net movement of (k, 0), where 0 ≤ k ≤ |xD|,
given the current state (j, n), is

λk,0|j,n = λpW PL[k]
|xD|∑
i=1

PL[i]P{C|i}(1−P{DL|j, n}) ,

(8)
where pW is the probability that the inter-request time is
less than the WLAN residence time, i.e.,

pW = P{tr < tw} =
λ

λ + γ
, (9)

P{C|k} is the sum of access probabilities in the last batch
of k LP requests, and P{DL|j, n} is the probability that
the last batch of LP requests are dropped due to staleness
given current queue state (j, n). When j is not too small,
P{DL|j, n} can be approximated by the probability that
any batch of LP requests are dropped due to staleness, i.e.,

P{D|j, n} = P{tr < S0
LP |j, n} . (10)

Otherwise, some normalization may be necessary.
Batch requests with one HP request can be due to three

possible outcomes of the previous LP batch request: they
were dropped due to staleness, they were dropped due to
user moving out of WLAN, or they were received but did

Figure 2. Priority service rate model.

not include a successful prefetch. The probability for the
last case, or the probability the last prefetch batch resulted
in a miss, is

P{M |j, n} = PL{0} +
|xD|∑
k=1

PL{k}(1 − P{C|k})

(1 − P{DL|j, n}) .

(11)

For there to be a net movement of k > 0 LP requests and
one HP request in the queue, there is either a batch of k LP
requests inducing no LP dropping, or a batch of i ≤ k + 1
LP requests inducing i − k dropped LP requests. Hence,

λk,1|j,n = λPL[k]
(

pW P{M |j, n} + 1 − pW

)

+λpW

|xD|∑
i=k+1

PL[i]PL[i − k]P{D|j, n} .

(12)

For the net movement of LP requests to be less than zero,
there must be dropped LP requests. Thus, we have the fol-
lowing for 0 < k ≤ |xD|:

λ−k,1|j,n = λpW

|xD|−k∑
i=0

PL[i]PL[i + k]P{D|j, n} . (13)

The arrival rates in (8), (12), and (13) are then combined
with service rates for the preemptive-resume priority model,
as shown in Fig. 2, to define a continuous-time Markov
chain that represents the server queue. This Markove chain
is clearly ergodic. We denote uj,n the steady state distribu-
tion of this Markov chain. We further define λ′ as the sum
of all outgoing rates from a specific state

λ′
j,n =

|xD|∑
k=1

λk,0|j,n +
|xD|∑
k=0

λk,1|j,n

+
min(|xD|−1,j)∑

k=1

λ−k,1|j,n .

(14)



Then, the following balance equations can be used to nu-
merically compute uj,n [17]:

λ′
0,0u0,0 = (μ + γ)u1,0 + (μ + γ)u0,1

(λ′
0,n + μ + nγ)u0,n = (μ + (n + 1)γ)u0,n+1 + nγu1,n

+ λ0,1|0,n−1u0,n−1 +
|xD|−1∑

k=1

λ−k,1|k,n−1uk,n−1

(λ′
j,0 + μ + jγ)uj,0 = (μ + (j + 1)γ)uj+1,0

+ (μ + γ)uj,1 +
min(|xD|,j)∑

k=1

λk,0|j−k,0uj−k,0

(λ′
j,n + μ + (j + n)γ)uj,n = (μ + (n + 1)γ)uj,n+1

+ (j + 1)γuj+1,n +
min(|xD|,j)∑

k=1

λk,0|j−k,nuj−k,n

+
min(|xD|,j)∑

k=0

λk,1|j−k,n−1uj−k,n−1

+
xD−1∑
k=1

λ−k,1|j+k,n−1uj+k,n−1 .

(15)

3.2 HP and LP Sojourn Time Distribution

Since the server queue is preemptive, SHP is simply the
waiting time of an M/M/1 queue with reneging due to the
user moving out of WLAN at rate γ. We first consider the
untouched (i.e., not reneged) HP sojourn time S0

HP . It can
be shown that, given n HP request in the queue, the un-
touched sojourn time of the (n + 1)th HP request has distri-
bution [16]

fS0
HP |n(x) =

μ

βn+1(γ)

n∑
i=0

(−1)i

i!(n − i)!
e−(μ+iγ)x , (16)

where

βn(γ) =

[(
μ + γ

γ

)(
μ + 2γ

γ

)
...

(
μ + (n − 1)γ

γ

)]−1

.

(17)
Then, the touched sojourn time, SHP = min(S0

HP , tw), has
distribution

fSHP |n(x) =
μ

βn+1(γ)

n∑
i=0

(−1)ie−[μ+(i+1)γ]x

i!(n − i)!

μ + (i + 1)γ
μ + iγ

.

(18)

The sojourn time of an LP request is the HP busy period
with an initial workload of x equal to the total service time

of all HP and LP requests ahead of it in the queue. We label
the HP busy period THP [x]. From [16], the relationship
between the busy period of an M/M/1 queue initiated by a
workload x is

E[e−θTHP [x]] = E[e−xη] , (19)

where η ≡ η(θ) is given by

η =
θ + λHP − μ +

√
(θ + λHP + μ)2 − 4λHP μ

2
,

(20)
where λHP is the request rate of HP documents and can
be computed by summing over all request rates that include
one web document. Neglecting HP reneging due to mo-
bility, the HP requests are served with rate μ. Hence, we
have an upper bound LP sojourn time probability distribu-
tion, due to n HP requests, in the Laplace domain

fWLP |n(θ) =
(

μ

μ + η

)n

. (21)

Furthermore, similar to (16), we can determine the un-
touched LP waiting time distribution, due to j existing LP
requests in the queue, given by the Laplace transform

fS0
LP |j(θ) =

μ

βj+1(ν)

j∑
i=0

(−1)i

i!(j − i)!
1

μ + iν + η
, (22)

where ν = λ + γ is the rate of LP reneging.
Hence, assuming that the sojourn times of different LP

requests in the same batch are the same and that no LP drop-
ping is induced by the new LP requests, we have an approx-
imation to the untouched LP sojourn time distribution given
queue state (j, n), in the Laplace domain,

fS0
LP |j,n(θ) = fS0

LP |j(θ)fWLP |n(θ) . (23)

To improve the above approximation, we can further
consider the concurrent dropping of LP requests and the
position of the new LP request in the batch request. We
assume that in a LP batch of size k, any given LP request
will be uniformly distributed among all k possible positions.
Then, from an initial state (j, n), the Laplace domain aver-
age distribution for the untouched LP sojourn time is

f
S

0
LP |j,n(θ) =

( |xD|∑
k=0

f{k, 1|j, n} +
|xD|−1∑

k=1

f{−k, 1|j, n}
)

(
μ

μ + η

)n+1

+
|xD|∑
k=1

f{k, 0|j, n}
(

μ

μ + η

)n

,

(24)

where f{k,m|j, n} denotes the weighted Laplace domain
average sojourn distribution of a batch request causing net



movement (k,m) given queue state (j, n), and is computed
by

f{k, 0|j, n} = pW

(
PL{k}

k

k∑
i=1

fS0
LP |j+i,n(θ)

)
|xD|∑
i=1

PL[i]P{C|i}(1 − P{DL|j, n}) ,

(25)

f{k, 1|j, n} =
(
pW P{M |j, n} + 1 − pW

)
(

PL[k]
k

k∑
i=1

fS0
LP |j+i,n(θ)

)
+ pW P{D|j, n}

min(k+j,|xD|)∑
i=k+1

PL[i − k]
PL[i]

i

i∑
l=1

fS0
LP |j+l−i+k,n(θ) ,

(26)

f{−k, 1|j, n} = pW

|xD|−k∑
i=1

PL[i + k]P{D|j, n}

PL[i]
i

i∑
l=1

fS0
LP |j−k+l−i,n(θ) .

(27)

Finally, the distribution of the touched LP sojourn time,
SLP = min(S0

LP ,min(tr, tw)), can be derived similarly to
(18).

3.3 LP Dropping Probability and User Received
Traffic

The probability of LP dropping due to staleness,
P{D|j, n}, is a parameter used throughout Section 3.1. It
can be computed recursively using the LP sojourn time dis-
tribution. With tr exponential with rate λ, we have

P{D|j, n} = P{tr < S
0

LP |j, n}

=
∫ ∞

0

∫ s

0

λe−λtf
S

0
LP |n(s)dtds

= 1 − f
S

0
LP |j,n(λ) .

(28)

The amount of traffic received by users, that is the traffic
that successfully gets serviced by the queue, is another im-
portant performance metric. HP requests may be dropped
due to mobility, i.e., when S0

HP > tw. Hence, the amount
of traffic received per HP request is

ρHP =
∑
j,n

uj,nP{S0
HP > tw|n}

=
∑
j,n

uj,n

∫ ∞

0

∫ s

0

γe−γtfS0
HP |n(s)dtds

=
∑
j,n

uj,n(1 − fS0
HP |n(γ)) .

(29)

To obtain the total rate of HP traffic received, we multiply
ρHP by the sum of rates for all request that include one HP
request.

Similarly, LP requests may be dropped due to either
mobility or for staleness, i.e., when SLP > min(tr, tw).
Hence, we have the amount of traffic received per LP re-
quest

ρLP =
∑
j,n

uj,nP{S0

LP > min(tr, tw)|n}

=
∑
j,n

uj,n

∫ ∞

0

∫ s

0

(λ + γ)e−(λ+γ)tf
S

0
LP |n(s)dtds

=
∑
j,n

uj,n(1 − f
S

0
LP |j,n(λ + γ)) .

(30)

To obtain the total rate of LP traffic received, we multiply
ρLP by the rate of LP requests.

4 Numerical and Simulation Results

A multi-threaded Java based simulation environment has
been developed to validate the proposed analysis model.
Note that as explained previously, the simplifying assump-
tions made in Section 3 are not made in simulation.

To represent the various levels of predictability on a
user’s future document access, we pick the document ac-
cess probabilities, pa, uniformly from a set of nine truncated
geometric distributions of length 10 and parameter varying
from 0.1 to 0.9 with step size 0.1. The intra-request time is
has mean 12 seconds and is exponential in the default case.
The other default system parameters are bW = 100KB/s,
bC = 5KB/s, αBW

= $1/MB, αBC
= $0.05/KB,

s = 10KB, and αT = $20 per hour. It was demonstrated in
[11] that, in general, a suitable value for the user perceived
cost of access delay may be the user’s income level.

The simulations were run for various number of users
and different values of pW = P{tr < tw}, the probability
that the user remains inside the WLAN at the next document
access, which represents the level of user mobility. All data
points are taken after the system has reached an equilibrium
state.

4.1 Traffic Load

A comparison of the expected HP and LP traffic gen-
erated is shown in Fig. 3, with pW = 0.8. The analysis
and simulation results are very close, with less than 10%
difference in most cases. Furthermore, the amount of LP
traffic is much greater than the amount of HP traffic, sug-
gesting aggressive prefetching. The benefit of adaptive op-
timal prefetching thresholding is seen, as the amount of LP
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Figure 3. Expected traffic generated in server
queue.

traffic peaks at between 40 to 50 users, at the same time as
the total traffic at the server approaches capacity. Indeed,
the server hovers near capacity even for a much larger user
population.

We next present the amount of traffic received per user
in Fig. 4. We see that the success ratio shrinks as more
users enter the system. The HP traffic gradually increases,
showing that less and less of the prefetching requests are
resulting in hits.

4.2 Performance Gain and Effect of Mobility

We plot the performance gain of prefetching using the
optimal threshold over non-prefetching in Fig. 5, for five
different degrees of mobility. The performance gain is
defined as the percentage cost reduction from the non-
prefetching system. These results suggest that, when the
server utilization is below capacity, higher degrees of mo-
bility lead to higher gains. However, when the server is near
capacity (e.g., when the number of users is greater than 50),
the more aggressive prefetching by users due to higher mo-
bility remains detrimental to system performance.

4.3 Non-Markovian Inter-requests

In Fig. 6, we compare the optimal user prefetching
threshold for both Markovian and non-Markovian inter-
request durations. Simulation results are obtained with a
heavy-tail Pareto inter-request time of index 10 and also
with a nearly Gaussian Erlang inter-request time of or-
der 20, both scaled to have mean 12 seconds. They are
compared with the analysis and simulation results obtained
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Figure 4. Expected traffic per user.

from exponential inter-request time as in Section 4.1, with
pW = 0.8. We observe that the prefetching threshold is al-
most insensitive to the different inter-request distributions,
especially for moderate to low total number of users (e.g.,
less than 70). Hence, the proposed analysis can be applica-
ble to a wide range of practical systems.

5 Conclusions

Adaptive document access strategies are necessary in
future wireless systems where heterogeneous access tech-
nologies will be seamlessly integrated. Document prefetch-
ing can significantly improve the performance of such in-
tegrated systems, but it needs be carefully designed, taking
into consideration its effect on the system traffic load when
multiple users are present. In this paper, we have proposed
a novel analysis framework toward optimal document pre-
fetching over a two-tier network with priority queuing.

Through numerical and simulation studies using typical
parameter values, we demonstrate that, with optimal con-
trol of the prefetching threshold, multi-user prefetching can
be scalable and operate well under heavy usage with many
concurrent users. The proposed network-aware prefetch-
ing gives the users faster response time, and the service
providers the revenue of increased activity without loss of
service due to instability. Our experimental results further
demonstrate that the proposed analysis can be used to eval-
uate the performance and provide optimization guidelines
for systems with non-Markovian access patterns.
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