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Abstract—Cellular and device-to-device (D2D) communication
may cause significant inter-cell interference (ICI) at a neigh-
boring base station (BS). In this work, we aim to maximize
the sum rate of a cellular user (CU) and a D2D pair, with
receive beamforming at the BS equipped with multiple antennas,
subject to per-node power, maximum ICI, and minimum SINR
constraints. We propose an efficient algorithm to maximize the
sum rate in two steps. We first consider the D2D admissibility
problem to determine whether the D2D pair can share the
spectrum with the CU while satisfying all the constraints and
SINR requirements. We then obtain the optimal beam vector
and the optimal power levels of the CU and D2D transmitters
in closed form. The performance of the proposed algorithm is
studied numerically. It is shown the proposed optimal solution
substantially outperforms a CU-priority heuristic approach that
selects the maximum CU power with minimum D2D interference.

I. INTRODUCTION

Local service requirements have led to the development of

device-to-device (D2D) communication, where nearby users

can transmit data directly to each other with reused cellular

resource blocks [1], [2]. D2D communication has been shown

to increase the overall network spectral efficiency and improve

radio resource utilization because of resource reuse by both

cellular users (CUs) and D2D pairs.

For a D2D underlaying cellular network, interference needs

to be carefully controlled because cellular users and D2D users

share the spectrum. In order to manage the interference to CUs

in the same cell, several approaches have been proposed in

the literature [1]–[9]. In [3], D2D users scale the transmission

power according to their pathloss to the base station (BS). The

authors of [4] have proposed a power control approach subject

to constraints on the SINR degradation of the cellular link.

In [5], the maximum D2D transmit power is limited using

cellular power control information as a reference. A mixed

integer nonlinear programming has been formulated in [6],

and a greedy heuristic algorithm has been proposed to reduce

the interference to the cellular network. In [7], a sum rate

maximization has been studied for a cellular network with one

CU and one D2D pair with rate constraints and a minimum

quality-of-service (QoS) requirement for the CU. In [8], an

interference limited area has been proposed, where a D2D pair

cannot reuse the CU resources. In [9], a three-step algorithm

has been proposed to maximize the overall network throughput

subject to SINR requirements for both D2D users and CUs.

Despite the many studies summarized above, inter-cell in-

terference (ICI) is a challenge that has not been addressed in

the existing literature. It is important to set the cellular user

and D2D transmit powers such that the ICI in the neighboring

cell does not exceed some upper limit. Furthermore, receive

beamforming at the BS is an efficient technique to take advan-

tage of the spatial diversity provided by multiple antennas to

improve the received SINR. However, the only existing work

that studies joint CU and D2D power optimization under CU

and D2D SINR requirements [9] considers neither ICI nor

receive beamforming.

In this paper, we jointly design the receive beam vector at

the BS and powers of CU and D2D transmitters to maximize

the uplink sum rate. We focus our attention to one CU and one

D2D pair that share the same spectrum in a cell, where the BS

has multiple receive antennas. Our objective is to maximize the

uplink sum rate of the CU and D2D pair under minimum CU

and D2D SINR requirements, as well as per-node power and

maximum ICI constraints. The proposed approach consists of

two steps. We first consider the D2D admissibility problem, to

determine whether all constraints and SINR requirements can

be satisfied, if the D2D pair is admitted to share the spectrum

with the CU. We then obtain the optimal beam vector and

the optimal power levels of the CU and D2D transmitters in

closed form. We show that the power optimization subproblem

can be solved in sixteen unique scenarios. The necessary

and sufficient conditions for those scenarios are discussed

and the corresponding optimal solutions are given. Simulation

results demonstrate that the optimal solution can substantially

increase the sum rate over a heuristic where the CU is given

higher priority over the D2D pair.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

We study the underlaying D2D communication in a cellular

system, where D2D devices reuse the spectrum resource

already assigned to the CUs for uplink communication. We

assume orthogonal spectrum resource allocation among CUs

in a cell. Thus, these CUs do not interfere with each other.

When a D2D pair reuses the channel of a CU, the D2D pair

and the CU generate intra-cell interference to each other. In

this work, we focus on the transmission design between a

single CU and a single D2D pair attempting to reuse the CU’s

assigned channel. We assume the BS centrally coordinates

the scheduling of the CU and D2D pair and their respective

transmission power. The BS is equipped with N antennas, and

the users are each equipped with a single antenna. In order to



mitigate the intra-cell interference between the CU and the

D2D pair, the transmit powers of the D2D transmitter and

the CU should be optimally chosen. We assume that both the

D2D pair and the CU have their respective minimum SINR

requirements.

Let PD and PC denote the transmission power of the D2D

pair and the CU, respectively. The SINR at the D2D receiver

is given by

γD =
PD|hD|2

σ2
D + PC |gC |2

(1)

where hD ∈ C is the channel between the D2D pair, gC ∈ C is

the interference channel between the CU and the D2D receiver,

and σ2
D is the noise variance at the D2D receiver. The uplink

received SINR at the BS for the CU is given by

γC =
PC |wHhC |2

σ2 + PD|wHgD|2
(2)

where hC ∈ CN×1 is the channel between the CU and the

BS, gD ∈ C
N×1 is the interference channel between the D2D

transmitter and the BS, w is the receive beam vector at the BS

with unit norm, i.e., ‖w‖2 = 1, and σ2 is the noise variance

at the BS.

Both D2D and CU transmissions cause ICI in a neighboring

cell. In this work, we consider ICI for uplink transmission at

the neighboring BS. However, our approach can be applied

to consider ICI in the downlink scenario. Let fC ∈ CN×1

and fD ∈ CN×1 denote the ICI channel from the CU and the

D2D transmitter to the neighboring BS, respectively. Since the

beam vector of the neighboring BS is usually unknown to the

CU and D2D pair, we consider the worst-case maximum ICI

power given by

PI = PC‖fC‖2 + PD‖fD‖2. (3)

Let w̃ denote the beam vector used by the neighboring BS.

Since |w̃Hf | ≤ ‖f‖ for all f , the power in (3) is an upper

bound of the effective ICI. If w̃ is known, then it is easy to

take it into account by replacing ‖f‖ by |w̃Hf | in (3).

We assume perfect knowledge of the communication chan-

nels and intra-cell interfering channels, which is a common

assumption in the research literature. For the ICI channels,

we note that only channel powers (i.e., ‖f‖2) are required to

compute the interference power, which can be estimated in

the neighboring BS and shared with the BS scheduler in the

desired cell through the wired backhaul.

B. Problem Formulation

We assume per-node power constraints, with Pmax
C and

Pmax
D denoting the maximum transmit power at the CU and

D2D transmitters, respectively. Our goal is to maximize the

sum rate of the D2D pair and the CU uplink transmission by

optimizing the set of powers {PD, PC} and beam vector w,

under the per-node power and maximum ICI constraints, as

well as the SINR requirements. The sum rate maximization

problem is given by

max
PD ,PC ,w

(

log(1 + γC) + log(1 + γD)
)

(4)

subject to γC ≥ γ̃C , (5)

γD ≥ γ̃D, (6)

PC ≤ Pmax
C , PD ≤ Pmax

D , (7)

PI ≤ Ĩ (8)

where γ̃C and γ̃D are the minimum SINR requirements for

the CU and D2D pair, respectively, and Ĩ is the maximum

ICI power in the neighboring cell.

III. ADMISSIBILITY TEST AND POWER ALLOCATION

In this section, we solve the sum-rate maximization problem

(4). This problem is non-convex, since the objective in (4)

is not convex. Nonetheless, we will derive a closed-form

solution. Two steps are involved in this problem. First we need

to determine whether the D2D pair can be admitted to reuse

the CU’s assigned channel, then we obtain the optimal power

for each transmission. Towards this, we obtain the closed-form

expression of the optimal beam vector w, leading to a simple

feasibility test. Then, we obtain the optimal powers P oD and

P oC in closed form.

A. The Admissibility Test

Given the power constraints, SINR requirements, and ICI

threshold, the admissibility of the D2D pair can be determined

by evaluating the feasibility of the problem (4). That is, the

D2D pair is allowed to reuse the CU’s channel if it passes the

following feasibility test

find {PD, PC ,w} (9)

subject to (5), (6), (7), (8).

We first obtain the optimal beam vector w in terms of

{PC , PD} that maximizes γC at the left hand side of constraint

(5). For a given set of {PC , PD}, this receive beamforming

problem is given by

max
w

PCw
HHCw

wHΛDw
(10)

where HC
∆
= hCh

H
C and ΛD

∆
= σ2I + PDgDg

H
D . The max-

imization problem (10) is a generalized eigenvalue problem,

and the optimum beam vector is given by

wo =
Λ

†
DhC

‖Λ†
DhC‖

. (11)

We can show that ΛD ≻ 0; hence, the pseudo inverse in (11)

becomes a matrix inversion. Substituting wo in (11) into (2),

the maximum SINR of the CU is given by

max
w

γC = PCh
H
CΛ−1

D hC . (12)

Let ρ
∆
=

|hH
C gD |

‖hC‖‖gD‖ denote the correlation coefficient of the

channels hC and gD, where |ρ| ≤ 1. Applying the matrix in-

version lemma to Λ−1
D and after some algebraic manipulation,



the SINR constraint (5) can be re-expressed as

PC‖hC‖2
σ2

(

1− ρ2

1 + σ2

PD‖gD‖2

)

≥ γ̃C . (13)

For notation simplicity, in the following, the D2D and CU

powers PD and PC are denoted by x and y, respectively.

Considering the x-y power plane, we study the constraints (6)

and (13) in the following proposition to solve the feasibility

problem (9).

Proposition 1: Consider constraints (6) and (13) with e-

quality. The solution {xI , yI} to the two equations is unique

and is given by

xI =
ξ

2(1−K1)
, yI =

ξ

2(1−K1)βK3
− σ2

D

K3
(14)

where ξ = β
(

αK3 + σ2
D(1 − K1)

)

− K2 +
√

K2
4 + 4(1−K1)βK2(αK3 + σ2

D), K4
∆
= β(αK3 +

σ2
D(1 − K1)) − K2, α

∆
= σ2γ̃C

‖hC‖2 , β
∆
= γ̃D

|hD|2 , K1
∆
= ρ2,

K2
∆
= σ2

‖gD‖2 , and K3
∆
= |gC |2.

Proof: We can rewrite (13) as

y = η(x)
∆
= α

(

1− K1

1 +K2/x

)−1

. (15)

Taking the first and second derivatives, we can show that

η(x) is a concave strictly increasing function. Note that

constraint (6) is characterized by a line on the power plane,

i.e., x
σ2

D+K3y
= β. Solving the intersection of this line and the

curve (15), we obtain (14).

By Proposition 1, the necessary and sufficient condition for

the D2D pair to be admissible is that the solution {xI , yI} in

(14) satisfies

0 < xI ≤ Pmax
D , (16)

0 < yI ≤ Pmax
C , (17)

c1yI + c2xI ≤ 1 (18)

where c1
∆
= ‖fC‖2/Ĩ, and c2

∆
= ‖fD‖2/Ĩ. Note that if either

(16) or (17) does not hold, the maximum power of D2D or

CU would not be enough to meet both SINR requirements. If

(18) does not hold, the ICI constraint cannot be satisfied.

B. The Optimal Power Allocation Solution

We now solve the optimal power allocation problem to

maximize the sum rate in (4). After substituting (11) into (2),

the problem (4) can be rewritten as

max
(x,y)

logR(x, y) (19)

subject to (6), (7), (8), (13)

where R(x, y)
∆
= (1+ ax

σ2

D+K3y
)
(

1+by(1− K1x
K2+x

)
)

, a
∆
= |hD|2,

and b
∆
= ‖hC‖2/σ2. We will solve the problem in the case

when the ICI constraint (8) is inactive at optimality, as well

as when it is active at optimality. Let Axy denote the feasible

solution region of the problem (19). A property of the objective

function (19) is provided in the following lemma.

Lemma 1: Given any power pair (x, y) in the interior of

Axy , there exists ζ > 1, such that (ζx, ζy) ∈ Axy . Further-

more, R(ζx, ζy) > R(x, y).
Lemma 1 indicates that the optimal power solution pair

(xo, yo) is at the boundary lines of Axy . In particular, when

the constraint (8) is inactive at optimality, for (xo, yo), at least

one of them equals the maximum power (Pmax
D or Pmax

C ).

In other words, (xo, yo) is at either vertical or horizontal

boundary of Axy. In the following, we analyze these boundary

lines h(x)
∆
= R(x, Pmax

C ) and g(y)
∆
= R(Pmax

D , y) to find the

optimal power allocation.

Proposition 2: If the ICI constraint (8) is inactive, then

{xo, yo} is at one end of the vertical or horizontal boundary

of Axy .

Proof: Taking the first and second derivatives, we can

show that h(x) and g(y) are either strictly increasing or convex

functions. We omit the details due to page limitation.

If the ICI constraint (8) is active at optimality, from (3) we

have c1y
o + c2x

o = 1, i.e., (xo, yo) is on the tilted boundary

line of Axy . The following lemma provides the solution in

this case.

Lemma 2: If the ICI constraint (8) is active at optimality,

then the optimal D2D power xo is one of the roots of the

following quartic equation

e4x
4 + e3x

3 + e2x
2 + e1x+ e0 = 0 (20)

where e0
∆
= aa1K

2
2 (b1 + 1) − a21b1K1K2 − a21b2K

2
2 , e1

∆
=

−2aa1b2K
2
2 + aa1K2(b1 + 1) + aa1K2 − 2aa1K1K2b1 +

aa1b1K2+2a21b2K2(K1 − 1)+2a1a2b1K1K2+2a1a2b2K
2
2 ,

e2
∆
= aa1b2K2(3K1 − 4) + aa1

(

1 + b1(1−K1)
)

− a21b2(1−
K1)+a2b2K

2
2(a−a2)+a2b1K1K2(a−a2)−4a1a2b2K2(K1−

1), e3
∆
= −2aa1b2(1−K1)+2a1a2b2(1−K1)−2a2b2K2(K1−

1)(a − a2), e4
∆
= a2(a − a2)b2(1 −K1), a1

∆
= σ2

D +K3/c1,

a2
∆
= K3c2/c1, b1

∆
= b/c1, and b2

∆
= bc2/c1. Furthermore, the

optimal CU power is given by yo = (1 − c2x
o)/c1.

Proof: The optimal power on the line due to ICI is the

solution of the following optimization problem

max
(x,y)

(

1 +
ax

σ2
D +K3y

)

(

1 + by(1− K1x

K2 + x
)
)

(21)

subject to c1y + c2x = 1.

Substituting y = (1 − c2x)/c1 into (21), it becomes

maxx R̃(x), where R̃(x)
∆
=

(

1+ ax
a1−K4x

)(

1+(b1−b2x)(1−
K1x
K2+x

)
)

. Since R̃(x) is continuous and has a first-order deriva-

tive, the optimum xo is obtained by solving dR̃(x)/ dx = 0,

which results in a quartic equation in (20).

Not that quartic equations have closed-form solutions. Fur-

thermore, there is no need to compute all the roots of (20),

since not all of them are in Axy. In the following, we

classify different scenarios of Axy and the corresponding

optimal power solutions (xo, yo), providing simple expressions

to check the conditions under which these scenarios apply.

C. Weak ICI from CU and D2D

Now, we consider the case where both the CU and the

D2D transmitter cause weak ICI. This happens if the boundary
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line c1x + c2y = 1 intersects both the horizontal and vertical

boundary lines, as shown in Figs. 1-6. More precisely, we have

1− c2P
max
D

c1
≤ Pmax

C ≤ 1

c1
,
1− c1P

max
C

c2
≤ Pmax

D ≤ 1

c2
.

Depending on the shape of Axy (i.e., shaded area in Figs. 1-

6), we derive the optimal power allocation in the following

six scenarios.

1) Scenario 1: The feasible solution region Axy is depicted

in Fig. 1 as the shaded area. In this scenario, there is no

intersection between the tilted boundary line B-C and the

curves I-E and I-A (corresponding to SINR constraints (5)

and (6), respectively). The condition under which this scenario

happens is given by K2

(

K1

1−
γ̃C

bPmax
C

−1
)−1 ≤ (1−c1Pmax

C )/c2.

By Lemma 1, it is sufficient to consider points A and E

to find the optimal power allocation (xo, yo). Therefore, the

set of candidate pairs is given by P(A.1) =
{(

β(σ2
D +

K3P
max
C ), Pmax

C

)

,
(

K2

(

K1

1−
γ̃C

bPmax
C

− 1
)−1

, Pmax
C

)}

.

2) Scenario 2: As shown in Fig. 2, in this scenario, the

curve I-F intersects the tilted boundary line; However, line I-

A does not intersect the tilted boundary line. The condition

for this scenario is as follows:

β(σ2
D +K3P

max
C ) ≤ 1− c1P

max
C

c2
, (22)

1− c1P
max
C

c2
≤ ψ1 ≤ Pmax

D (23)

where ψ1
∆
=

µ+
√
µ2−4c2(1−K1)K2(αc1−1)

2c2(1−K1)
and µ

∆
= 1 −K1 −

c2K2 − αc1. There are three candidate pairs for (xo, yo). If

the optimal CU power is Pmax
C , then by Lemma 1, (xo, yo)

is either point A or B. Using Lemma 2, we need to find

the roots of (20) which are within the range of x-coordinate

of tilted boundary line B-F. The set of candidate pairs is

given by P(A.2) =
{(

β(σ2
D + K3P

max
C ), Pmax

C

)

,
(

(1 −
c1P

max
C )/c2, P

max
C

)

,
(

ψ1, (1 − c2ψ1)/c1

)

,A2

}

where A2
∆
=

{(

xoi , (1− c2x
o
i )/c1

)}

with xoi being a root of (20) satisfying

(1− c1P
max
C )/c2 < xoi < ψ1.

3) Scenario 3: As illustrated in Fig. 3, in this scenario, the

curves I-D and I-A do not intersect boundary line B-C. The

entire tilted line is in the feasible region. The condition for

this scenario is given by (22) and

α
(

1− K1

1 +K2/Pmax
D

)−1 ≤1− c2P
max
D

c1
. (24)

Based on Lemmas 1 and 2, (xo, yo) could be at either of the

end points A, B, C, D or any power given by the root of (20)

within the range of x-coordinate of tilted boundary line B-C,

i.e., The set of candidate pairs is given by P(A.3) =
{(

β(σ2
D+

K3P
max
C ), Pmax

C

)

,
(

(1 − c1P
max
C )/c2, P

max
C

)

,
(

Pmax
D , (1 −

c2P
max
D )/c1

)

,
(

Pmax
D , α

(

1 − K1

1+K2/Pmax

D

)−1
)

,A3

}

where

A3
∆
=

{(

xoi , (1 − c2x
o
i )/c1

)}

with xoi being a root of (20)

satisfying (1− c1P
max
C )/c2 < xoi < PD .

4) Scenario 4: As shown in Fig. 4, in this scenario, both

curves I-F and I-G intersect the tilted boundary line. The

condition for this scenario is
1−c1P

max

C

c2
≤ ψ2 ≤ ψ1 ≤ Pmax

D

where ψ2
∆
=

σ2

Dβ+βK3/c1
1+βK3c2/c1

is the x-coordinate of point G.

In order to find the optimal power, we need to consider

the end points G and F. In addition, we obtain the roots

of (20) that are within the range of x-coordinate of tilted

boundary line G-F. The set of candidate pairs is P(A.4) =
{(

ψ2, (1−c2ψ2)/c1

)

,
(

ψ1, (1−c2ψ1)/c1

)

,A4

}

where A4
∆
=

{(

xoi , (1− c2x
o
i )/c1

)}

with xoi being a root of (20) satisfying

ψ2 < xoi < ψ1.

5) Scenario 5: As shown in Fig. 5, in this scenario, the

line I-G intersects tilted boundary line G-C, while the curve

I-D does not. The condition for this scenario is given by

(24) and
1−c1P

max

C

c2
≤ ψ2 ≤ Pmax

D . Based on Lemmas 1

and 2, (xo, yo) could be either of the end points G, C, D

or any power given by the root of (20) within the interval

of x-coordinates of tilted boundary line G-C, i.e., the set

of candidate pairs is P(A.5) =
{(

ψ2,
1−c2ψ2

c1

)

,
(

Pmax
D , (1 −

c2P
max
D )/c1

)

,
(

Pmax
D , α

(

1 − K1

1+K2/Pmax

D

)−1
)

,A5

}

where

A5
∆
=

{(

xoi , (1 − c2x
o
i )/c1

)}

with xoi being a root of (20)

satisfying ψ2 < xoi < Pmax
D .

6) Scenario 6: As depicted in Fig. 6, this scenario happens

when there is no intersection between the tilted line and

the curves I-H and I-D. The condition for this scenario

is (Pmax
D − βσ2

D)/βK3 ≤ (1− c2P
max
D )/c1. By Lemma 1,

it is sufficient to consider only points H and D to find

the optimal power allocation. The set of candidates for

the optimal powers is given by P(A.6) =
{(

Pmax
D , α

(

1 −
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K1

1+K2/Pmax

D

)−1
)

,
(

Pmax
D ,

Pmax

D −βσ2

D

βK3

)}

.

D. Other Scenarios

Depending on the condition of ICI channels, four other

cases are possible: i) strong CU ICI and weak D2D ICI, ii)

weak CU ICI and strong D2D ICI, iii) strong CU ICI and

strong D2D ICI, and iv) negligible ICI. There are ten scenarios

in total for these four cases. Similar to our discussion in

Section III-C, we can obtain the condition and the optimal

power candidate pairs in each scenario. Details are omitted

due to page limitation.

IV. NUMERICAL RESULTS

We provide numerical results to evaluate the performance of

the proposed algorithm. We set σ2 = σ2
D = 1, γ̃C = γ̃D = 2,

Pmax
C = Pmax

D = Pmax, and Ĩ = 2N . Let dD, dC , dgC , dgD ,

dfC , dfD, and d0 denote the distances between the D2D trans-

mitter and receiver, CU and BS, CU and D2D receiver, D2D

transmitter and BS, CU and neighboring BS, D2D transmitter

and neighboring BS, and the cell radius, respectively. We set

dC = 0.5d0, dgC = 1.25d0 − dD/2, dgD = 0.75d0 + dD/2,

dfC = 2.0616d0, and dfD =
√

22 + (0.75 + 0.5dD/d0)2d0.

The path loss exponent is set to 4. Thus, the channels are

Gaussian with zero-mean and variance (d/d0)
−4. We use 5000

realizations for each data point. For performance comparison,

we consider a CU-priority heuristic algorithm: It selects the

maximum feasible CU power with the minimum feasible D2D

power, in order to maximize the SINR of the CU.

The sum rate versus the normalized maximum power,

Pmax/σ2, for various number of antennas, N , is shown in

Fig. 7. We observe two regimes in this figure: Regime 1,

where the ICI is low and the sum rate is limited by Pmax; and

Regime 2, where Pmax is high and the sum rate is controlled

by the ICI threshold Ĩ. It can be seen that the sum rate is an

increasing function of the maximum power, in Regime 1, and

then it converges in Regime 2 due to the ICI limit. We also

see that the proposed algorithm significantly outperforms the

CU-priority heuristic in both regimes for all values of N .

In order to evaluate the benefit of D2D communication, the

difference between the sum rate under the proposed algorithm

and the maximum sum rate when there is no D2D is defined as

the rate gain. The rate gain for dD/d0 = 0.1, 0.2 and N = 4 is

shown in Fig. 8. It can be seen that the rate gain is increasing

in Regime 1 and decreasing at the beginning of Regime 2.

This happens because we have two sources of ICI in the D2D

mode as compared with one source when there is no D2D.

Hence, in non-D2D mode, the CU can use a higher power

for transmission. As expected, when the D2D channel is very

strong, i.e., the D2D distance is small, significant rate gain is

achieved.

V. CONCLUSION

In this paper, we have formulated an uplink sum rate

maximization problem of one CU and one D2D pair subject

to minimum QoS requirements in terms of SINR, per-node

maximum power, and maximum ICI constraints, with receive

beamforming at the BS. Furthermore, we have developed a

simple feasibility test to admit the D2D pair to share the

spectrum with the CU. An algorithm has been proposed to

obtain the optimal beam vector and powers of CU and D2D

transmitters in closed form. Simulation results have shown

significant rate gain obtained by the proposed algorithm.
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