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Abstract—We study joint spectrum allocation and user asso-
ciation in heterogeneous cellular networks with multiple tiers
of base stations. A stochastic geometric approach is applied as
the basis to derive the average downlink user data rate in a
closed-form expression. Then, the expression is employed as the
objective function in jointly optimizing spectrum allocation and
user association, which is of non-convex programming in nature.
A computationally efficient Structured Spectrum Allocation and
User Association (SSAUA) approach is proposed, solving the
problem optimally and asymptotically optimally in two regions
divided by a parameter specific threshold. A Surcharge Pricing
Scheme (SPS) is also presented, such that the designed association
bias values can be achieved in Nash equilibrium. Simulations and
numerical studies are conducted to validate the accuracy and
efficiency of the proposed SSAUA approach and SPS.

Index Terms—Heterogeneous cellular network, stochastic ge-
ometry, user association, spectrum allocation.

I. INTRODUCTION

Traditional single-tiered macro-cellular networks provide
wide coverage for mobile user equipments (UEs), but they
are insufficient to satisfy the exploding demand driven by
modern mobile traffic, such as multimedia transmissions and
cloud computing tasks. One efficient means to alleviate this
problem is to install a diverse set of small-cells (e.g., picocells
and femtocells), overlaying the macrocells, to form a multi-
tiered heterogeneous cellular network [1]. Each small-cell is e-
quipped with a shorter-range and lower-cost base station (BS),
to provide nearby UEs with higher-quality communication
links with lower power usage.

However, in the presence of multiple tiers of BSs in a
cellular network, user association control becomes more chal-
lenging. A most direct approach is association by maximum
received power, in which UEs are associated with the BS (in
any tier) with the highest received power. However, in this
case, because small-cell BSs transmit at lower power levels,
only a small number of UEs close to them will connect with
them, while most other UEs crowd in macrocells, leading to
degraded performance. An example is shown in Fig. 1(a), in
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(a) Association by maximum received power.
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(b) Flexible user association.

Fig. 1. An example of a three-tier cellular network. Macrocell BSs, picocell
BSs, and femtocell BSs are represented by squares, circles, and triangles re-
spectively; UEs are represented by dots; blue solid lines show cell boundaries;
dashed lines represent connections between UEs and BSs.

which many UEs occupy the macrocells, while some small-
cells are nearly empty.

In order to resolve this issue, a flexible user association
approach (also called ranged expansion in some literature) may
be employed [2]–[6], in which each tier of BSs is assigned a
user association bias value, and a UE is associated with a
BS with the maximum received power multiplied by the bias
value. If small-cell BSs are assigned larger association bias
values, the small-cells are “expanded” accordingly. This can
result in a more balanced mobile traffic pattern and thus better
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network performance. Fig. 1(b) shows an example of flexible
user association. However, if the association bias values for
small-cell BSs are too large, it will cause improper expansion
of small-cells such that UEs at their cell-edge may suffer from
inadequate received power. As a consequence, the association
bias values should be properly designed so that the overall
network performance is optimized.

Further complicating the resource management problem in a
multi-tier cellular network, the radio spectrum licensed by the
network operator needs to be shared by BSs of widely different
power and coverage areas. How to optimally allocate spectrum
among different tiers is an important open problem. In order
to avoid cross-tier interference, and the prohibitive complexity
in tracking and provisioning for such interference especially
with unplanned deployment of small cells, a disjoint spectrum
mode is commonly advocated [7]–[9], where different tiers of
BSs are allocated non-overlapping portions of the spectrum.
Even so, it is still a challenging problem to properly divide
the spectrum for optimal network performance.

In this work, our objective is to study jointly optimal
spectrum allocation and user association in a heterogeneous
celluar network with multiple tiers of BSs. First, we develop
a stochastic geometric model to study the network perfor-
mance analytically. A closed-form expression for the average
downlink UE data rate is derived, which is then employed
as the objective function for jointly optimizing the spectrum
allocation among tiers and the user association bias values.

This resultant optimization problem is of non-convex pro-
gramming in nature and cannot be solved with a standard
method. Instead, we explore two important structures in
solving the problem. Referred to as the density thresholding
structure, we show that the problem can be studied separately
over two regions, divided by a parameter specific UE density
threshold. Referred to as the priority ordering structure, we
show that a tier with higher BS density should have higher
priority in spectrum allocation. Based on these observations,
we propose a computationally efficient Structured Spectrum
Allocation and User Association (SSAUA) approach to solve
the problem optimally and asymptotically optimally in the two
density regions respectively.

Finally, toward practical implementation of SSAUA, we
propose a Surcharge Pricing Scheme (SPS), such that the
designed association bias values can be achieved in Nash
equilibrium. Hence, each UE is incentivized to adopt the
proposed design with individual rationality.

The rest of the paper is organized as follows. In Section II,
we discuss the relation between our work and prior works.
In Section III, we describe the system model. In Sections
IV, V, and VI, we present our contributions in UE data
rate derivation, SSAUA design, and SPS, respectively. In
Section VII, we present the extension of our model considering
multiple modulation and coding schemes (MCSs). In Section
VIII, we present numerical results. Finally, conclusions are
given in Section IX.

II. RELATED WORKS

A. Stochastic Geometry as Analytical Basis

Stochastic geometry [10]–[14] is a powerful mathemati-
cal modeling tool to analyze the performance (e.g., outage
probability and data rate) of cellular networks with random
spatial patterns of UEs and BSs. In this work, we focus on the
downlink user data rate as performance measure. Pioneering
works on downlink performance analysis using stochastic
geometry include [15], [16], and [17], for either the single-
tier or the multi-tier case. None of them considered spectrum
allocation or user association.

B. Resource Allocation and User Association

Assuming a fixed number of UEs and BSs and without
considering their random spatial patterns, the authors of [18]–
[21] studied optimal power allocation in cellular networks; the
authors of [3], [4] investigated performance benefit introduced
by flexible user association; and the authors of [22]–[27]
studied optimal user association with deterministic utility
optimization.

With a stochastic geometric approach, some prior stud-
ies considered either resource allocation or user association
separately. For example, Cheung et al. [9] studied optimal
spectrum allocation, in cellular networks limited to two tiers
of BSs, without flexible user association. Bao and Liang
[28], [29] compared the outage performance between open
and closed small-cell access modes in a two-tier network
with complete spectrum sharing. Jo et al. [5] presented the
performance evaluation of flexible user association model with
bias values. They derived the coverage probability and UE
data rate, considering cross-tier interference, but in non-closed
forms. They did not provide a means to optimize the derived
performance metrics. This work was later extended in [6] to
study optimal user association in a network with two tiers of
BSs, without considering spectrum allocation.

Through stochastic geometric analysis, spectrum allocation
and user association were jointly studied in [30]–[33]. Singh
and Andrews [30] analyzed the network performance in terms
of coverage probability and data rate under different spectrum
allocation and user association settings. However, the optimal
spectrum allocation and user association were not derived.
A similar problem was also studied by Lin and Yu [31],
with frequency reuse instead of tiered spectrum division as
the approach for spectrum sharing. They provided condition-
ally optimal user association given frequency reuse factors
or conditionally optimal frequency reuse factors given user
association bias values. However, joint optimization remained
an open problem.

Compared with the above studies, we consider multiple
tiers of BSs with disjoint spectrum, and provide optimal and
analytically bounded asymptotically optimal solutions for joint
spectrum allocation and user association. The closest works
to ours may be [32], [33], where the authors extended the
analytical model in [31] to study joint spectrum allocation and
user association. However, [32], [33] aimed to optimize the
average log-utility per UE, such that the logarithm function
cancels the exponential term corresponding to the Laplace
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transform of interference [10], [11]. This alternate objective
led to substantial reduction in analytical complexity. Different
from [32], [33], our model aims to optimize the average UE
data rate directly, leading to a much more challenging problem
and requiring the proposed structured optimization solution.
Furthermore, only the single-MCS case was considered in
[32], [33], while we additionally study multiple MCSs in this
work.

A preliminary version of this work was presented in [34],
where only the single-MCS case was considered. The current
version also contains substantial further analytical details,
simulation results, and discussion.

III. SYSTEM MODEL

A. Multi-tier Cellular Network

We consider a heterogeneous cellular network with random-
ly spatially distributed K ≥ 2 tiers of BSs. As in conventional
stochastic geometric modeling of multi-tier cellular networks
[5], [6], [16], [30], [31], each tier of BSs independently form a
homogeneous Poisson point process (PPP) in two-dimensional
Euclidean space R2. Let Φk denote the PPP corresponding
to tier-k BSs, with intensity λk. Without loss of generality,
we assume that λ1 < λ2 . . . < λK . (If λi = λj , i ̸= j
in reality, we may approximate by setting λj = λi + ξ,
where ξ is arbitrarily close to 0.) UEs are also modeled as
a homogeneous PPP Ψ with intensity µ, independent of all
BSs. We assume each BS is connected to the core network
by separate high-capacity wired or wireless links that have no
influence on our performance analysis. In addition, because
we focus on downlink analysis, we assume that the downlink
and uplink of the system are operated in different spectra,
so that uplink interference and capacity have no influence on
downlink analysis.

B. Power and Path Loss Model

We define the tiers of BSs by their transmission power.
Let Pk be the transmission power of tier-k BSs, which
is a given parameter. Let x and y denote some two-
dimensional coordinates throughout this paper. If Pt(x),
Pt(x) ∈ {P1, P2, . . . , PK}, is the transmission power from
a BS at x and Pr(y) is the received power at y, we have
Pr(y) =

Pt(x)hx,y

α|x−y|γ , where α|x − y|γ is the propagation loss
function, α is a factor accounts for system losses, γ > 2 is
the path loss exponent, and hx,y is the fast fading term. We
assume that α and γ are constant for all tiers. Corresponding
to common Rayleigh fading with power normalization, hx,y

is independently exponentially distributed with unit mean. Let
h(·) be the probability density function of hx,y.

C. Spectrum Allocation

In order to avoid cross-tier interference, different tiers
of BSs are allocated separated spectrum. Assume the total
spectrum bandwidth is W . The network operator allocates
ηkW to each tier-k BS, where ηk is the spectrum allocation
factor and

∑K
k=1 ηk = 1. Let η = (η1, η2, . . . , ηK). Note that

BSs in the same tier are operated on the same spectrum.

We additionally consider the possible constraints ηmin,k ≤
ηk ≤ ηmax,k, for k = 1, 2, . . . ,K. Clearly, we have∑K

k=1 ηmin,k ≤ 1 ≤
∑K

k=1 ηmax,k. Furthermore, we assume
that 0 < ηmin,1 ≤ ηmin,2 . . . ≤ ηmin,K and 0 < ηmax,1 ≤
ηmax,2 . . . ≤ ηmax,K , i.e., the network operator is likely (but
not necessarily) to allocate more spectrum to a tier with higher
BS density.

Given a specific tier-k BS, it is common to assume that
all its associated UEs are equally allocated spectrum [5], [9],
[31]. Hence, the per-UE assigned spectrum bandwidth is βk =
ηkW/Nk, where Nk is a random variable denoting the number
of UEs associated with the BS.

D. Coverage Probability and UE Data Rate

Following conventional stochastic geometric modeling [5],
[9], [31], in Section IV and V, we assume that UEs employ
a single modulations coding scheme (MCS). In this case, let
T denote the minimum required Signal-to-Interference Ratio
(SIR) of UEs. The coverage probability of a UE is defined as
the probability that its SIR is no lower than T [10]. Initially, we
assume that if a UE experiences coverage probability P′ and is
allocated spectrum bandwidth β′, its data rate is β′ log(1+T )
if the SIR is no lower than T , and its data rate is 0 if the SIR
is lower than T (i.e., outage occurs). Thus, the overall data
rate of the UE is β′ log(1 + T )P′. In Section VII, we present
the extension of our model considering multiple MCSs, where
N different threshold values T1, . . . , TN are accommodated.

Note that log is in base 2 throughout this paper. Also, we
have assumed the system is interference limited [6], [9], [18],
[31]–[33], such that noise is negligible.

E. Flexible User Association

Given that a UE is located at y, it associates itself with the
BS that provides the maximum biased received power [5], [6],
[31] as follows:

BS(y) = arg max
x∈Φk,∀k

1

α
BkPk|x− y|−γ , (1)

where BS(y) denotes the location of the BS associated with
the UE, and 1

αPk|x−y|−γ is the received power from a tier-k
BS located at x, and Bk is the association bias, indicating the
connecting preference of a UE toward tier-k BSs. In this case,
the resultant cell splitting forms a generalized Dirichlet tessel-
lation, or weighted Poisson Voronoi [35], shown in Fig. 1(b).
Note that for B1, B2, . . . , BK , their effects remain the same if
we multiply all of them by the same positive constant. Thus,
without loss of generality, in this paper, we normalize them
such that

∑K
k=1 Bk = 1. Let B = (B1, B2, . . . , BK).

Let Ak denote the probability that a UE associates itself
with a tier-k BS, and A = (A1, A2, . . . , AK). As derived in
[5], we have

Ak =
λk(PkBk)

2
γ∑K

j=1 λj(PjBj)
2
γ

, (2)

and thus

Bk =
P−1
k (Ak/λk)

γ
2∑K

j=1 P
−1
j (Aj/λj)

γ
2

. (3)
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Hence, there is a one-to-one mapping between A and B, so
we can view them interchangeably.

F. Problem Statement

We first aim to derive a closed-form expression for the
average UE data rate. Then, our objective is to maximize
the average UE data rate by jointly optimizing the spectrum
allocation factors η and the user association bias values B
(or equivalently A). Finally, we give a pricing scheme to
incentivize each UE to adopt the designed B.

IV. CLOSED-FORM AVERAGE UE DATA RATE

In this section, we derive the average UE data rate via
stochastic geometric analysis. Consider a reference UE, termed
the typical UE, communicating with its BS, termed the typical
BS. Due to the stationarity of UEs and BSs, throughout this
section we will re-define the coordinates so that the typical
UE is located at 0. We are interested in the typical UE since
the average UE performance in the system is the same as the
performance of the typical UE [10].

First, we study the coverage probability given that the
typical UE is associating with a tier-k BS and their distance
is d. In this case, the overall interference to the typical UE is
the sum interference from all tier-k BSs other than the typical
BS. Let Ik(d) denote such interference. Then

Ik(d) =
∑
x∈Φ′

k

Pkhx,0

α|x|γ
. (4)

where Φ′
k is the reduced Palm point process corresponding to

all tier-k BSs other than the typical BS, given that the typical
BS is located at a distance of d from the typical UE. It can
be shown that Φ′

k is a PPP with intensity 0 in B(0, d) and
intensity λk in R2\B(0, d), where B(0, d) denotes the disk
region centered at 0 with radius d [10].

The distribution of Ik(d) is derived through its Laplace
transform as follows:

LIk(d, s) = E

exp
−

∑
x∈Φ′

k

sPkhx,0

α|x|γ


=exp

(
−λk

∫
R2\B(0,d)

(
1−

∫
R+

e−
sPkh

α|x|γ h(h)dh

)
dx

)
(5)

=exp

(
−λk

∫
R2\B(0,d)

sPk

α|x|γ
sPk

α|x|γ + 1
dx

)
(6)

=exp

(
−2πλk

∫ ∞

d

sPkr
α

sPk

α + rγ
dr

)
, (7)

where (5) is obtained from the Laplace functional of PPP Φ′
k

[10], (6) is because the fading term is exponentially distributed
with unit mean, and (7) is through a transformation to polar
coordinates.

Let Pcover,k(d) denote the conditional coverage probability
of the typical UE (given k and d). Then

Pcover,k(d) =P
(
PkhxB ,0

αdγ
≥ TIk(d)

)

=LIk(d, s)|s=Tαdγ

Pk

, (8)

where xB is the coordinate of the typical BS, and |xB | = d.
Substituting (7) into (8), we have

Pcover,k(d) = exp

(
−2πλk

∫ ∞

d

Tdγr

Tdγ + rγ
dr

)
t= r2

T2/γd2= exp

(
−πλkT

2
γ d2

∫ ∞

( 1
T )

2
γ

1

1 + t
γ
2

dt

)
. (9)

Furthermore, the probability density function of the distance
between the typical UE and its associated tier-k BS is

fk(d) =
2πλk

Ak
d exp

−πd2
K∑
j=1

λj

(
PjBj

PkBk

) 2
γ

 (10)

=
2πλk

Ak
d exp

(
−πd2

λk

Ak

)
, (11)

where (10) is derived in [5], and (11) is by substituting (2)
into (10).

Hence, the coverage probability Pcover,k of the typical UE
associated with a tier-k BS can be computed as

Pcover,k =

∫ ∞

0

fk(d)Pcover,k(d)dd

=

∫ ∞

0

2πλk

Ak
d exp

(
−πd2

λk

Ak

)
exp

(
−πλk (T )

2
γ d2

∫ ∞

( 1
T )

2
γ

1

1 + tγ/2
dt

)
dd

=
πλk

Ak

1

π λk

Ak
+ πλk (T )

2
γ
∫∞
( 1

T )
2
γ

1
1+tγ/2 dt

=
1

1 +AkC
, (12)

where C , (T )
2
γ
∫∞
( 1

T )
2
γ

1
1+tγ/2 dt is a system-level constant

only related to γ and T . Note that the coverage probability
is given in non-closed form in [5] for a system where the
spectrum is shared by all tiers. Here we are able to obtain a
closed-form expression, mainly as a consequence of different
tiers using separate spectrum.

Let E0(βk) denote the expected spectrum bandwidth allo-
cated to the typical UE (connecting to a tier-k BS). Following
the model in Section III-C, E0(βk) equals the spectrum
bandwidth allocated to the typical tier-k BS divided by the
average number of UEs associated with it conditioned on the
typical UE, which is Akµ/λk + 1. Hence,

E0(βk) =
ηkW

Akµ/λk + 1
. (13)

Then, by Section III-D, the conditional expected data rate of
the typical UE, given it is associated with a tier-k BS, can be
computed as [5], [31]

Rk = E0(βk) log(1 + T )Pcover,k. (14)

Note that by doing so, we slightly underestimate the average
data rate because the coverage event and βk are not completely
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independent. Although some efforts have been made to ap-
proximate their correlation [6], [36], all of them are inexact
but result in tremendous mathematical complexity. In Section
VIII, we show that the resultant analysis is close to actual
performance via simulation.

Finally, the average data rate of the typical UE, and hence
the average data rate per UE in the system, is

F =
K∑

k=1

AkRk =
K∑

k=1

AkE0(βk) log(1 + T )Pcover,k

=

K∑
k=1

ηkW log(1 + T )

(Akµ/λk + 1)( 1
Ak

+ C)
. (15)

Note that stochastic geometric analysis often leads to non-
closed forms requiring numerical integrations (e.g., [5], [6],
[15], [16]), due to the integral form of the Laplace functional
or generating functional of PPPs applied in analysis [10],
[14]. Fortunately, our derived closed-form expression for the
average UE data rate facilitates the tractability of the resultant
optimization problem.

V. JOINT OPTIMIZATION PROBLEM AND SSAUA

We aim to maximize the average UE data rate F with respect
to η and B. As there is a one-to-one mapping between A and
B, we study the optimization problem over (η,A) instead for
analytical convenience. This is formally stated as optimization
problem P as follows:

maximize
η,A

F(η,A) =

K∑
k=1

ηkMk(Ak)

subject to
K∑

k=1

ηk = 1, ηmin,k ≤ ηk ≤ ηmax,k, ∀k,

K∑
k=1

Ak = 1, Ak ≥ 0, ∀k, (16)

where Mk(Ak) is defined as

Mk(Ak) =
1

(Akµ/λk + 1)
(

1
Ak

+ C
) . (17)

Problem P is non-convex and cannot be solved through a
standard method. Instead, we investigate into two important
structures of the optimal solution, termed density thresholding
and priority ordering, based on which we propose a compu-
tationally efficient Structured Spectrum Allocation and User
Association (SSAUA) approach to solve the problem.

A. Density Thresholding Structure

First, we define an important parameter

ak ,
√

λk/(µC). (18)

Note that Mk(Ak) is increasing on [0, ak] and decreasing
on [ak,∞). We further observe several useful properties of
Mk(Ak), which are presented in Appendix A. Based on these
properties, we obtain the following lemma, whose proof is
given in Appendix B.

Lemma 1. Consider a potential solution (η∗∗,A∗∗) to Prob-
lem P. If ∃i ̸= j, such that A∗∗

i < ai and A∗∗
j > aj , then

(η∗∗,A∗∗) is not an optimal solution.

Lemma 1 suggests that, in an optimal solution, every Ak

must be on the same side of ak. This directly leads to the
following theorem, which is fundamental to our optimization
solution.

Theorem 1. (Density Thresholding) Let (η∗,A∗) be an
optimal solution to Problem P. If

∑K
k=1 ak > 1, then

∀k,A∗
k ≤ ak; if

∑K
k=1 ak < 1, then ∀k,A∗

k ≥ ak; if∑K
k=1 ak = 1, then ∀k,A∗

k = ak.

Proof. If
∑K

k=1 ak > 1, because
∑K

k=1 A
∗
k = 1, ∃l such that

A∗
l < al. This leads to A∗

k ≤ ak, ∀k, according to Lemma
1. The cases where

∑K
k=1 ak < 1 and

∑K
k=1 ak = 1 are

similar.

Note that, the condition
∑K

i=1 ai > 1 (i.e.,√
1
C

(∑K
i=1

√
λi

)
>

√
µ) is referred to as the optimality

region throughout the paper, since the optimization problem
P can be solved optimally in this case, as shown
later in Section V-B. The condition

∑K
i=1 ai < 1 (i.e.,√

1
C

(∑K
i=1

√
λi

)
<

√
µ) is referred to as the asymptotic-

optimality region throughout the paper, since the optimization
problem P can be solved asymptotically optimally in this
case, as shown later in Section V-C. If

∑K
i=1 ai = 1, Problem

P can be trivially solved and is ignored in the rest of our
discussion. Note that because ak can be computed directly
from the given parameters, one can judge in which region
Problem P falls before solving the problem. Next, the solution
to P will be investigated separately under

∑K
i=1 ai > 1 and∑K

i=1 ai < 1.

B. SSAUA under
∑K

i=1 ai > 1

In this case, the original Problem P becomes Problem P1
as follows:

maximize
η,A

F(η,A) =

K∑
k=1

ηkMk(Ak)

subject to
K∑

k=1

ηk = 1, ηmin,k ≤ ηk ≤ ηmax,k, ∀k,

K∑
k=1

Ak = 1, 0 ≤ Ak ≤ ak,∀k. (19)

We first observe an important ordering property of the
optimal solution to P1, as shown in the following lemma,
whose proof is given in Appendix C.

Lemma 2. (Ordering Property) If A∗ is optimal for Problem
P1, then M1(A

∗
1) ≤ M2(A

∗
2) ≤ . . . ≤ MK(A∗

K).
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Next, by sequentially computing η∗ as follows:

η∗K = min(1−
∑K−1

k=1 ηmin,k, ηmax,K),

η∗K−1 = min(1− η∗K −
∑K−2

k=1 ηmin,k, ηmax,K−1),
. . . ,

η∗l = min(1−
∑K

k=l+1 η
∗
k −

∑l−1
k=1 ηmin,k, ηmax,l),

. . . ,

η∗1 = min(1−
∑K

k=2 η
∗
k, ηmax,1),

(20)

we have the following theorem:

Theorem 2. (Priority Ordering) If A∗ is optimal for Problem
P1, then (η∗,A∗), where η∗ is computed in (20), is an
optimal solution to P1.

Proof. Consider Problem P1A as follows:

maximize
η

K∑
k=1

ηkMk(A
∗
k)

subject to
K∑

k=1

ηk = 1, ηmin,k ≤ ηk ≤ ηmax,k, ∀k. (21)

It is a simple linear programming problem with ordered lin-
ear coefficients in the objective, since M1(A

∗
1) ≤ M2(A

∗
2) ≤

. . . ≤ MK(A∗
K) due to Lemma 2. Note that η∗ does not

depend on the exact values of A∗; it only requires the ordering
property as shown in Lemma 2. Also, η∗ is in the feasible
region due to

∑K
k=1 ηmin,k ≤ 1 ≤

∑K
k=1 ηmax,k. It is easy to

verify that (η∗,A∗) is an optimal solution to P1.

In Theorem 2, we note that (20) indicates a priority ordering
structure in spectrum allocation. Tier-K has the highest prior-
ity in spectrum allocation, followed by tier-(K − 1), and so
forth. Furthermore, Theorem 2 provides a means to derive an
optimal η∗ regardless of the A∗ values. We need one further
step to derive the corresponding optimal A∗ by solving the
following Problem P1B:

maximize
A

K∑
k=1

η∗kMk(Ak)

subject to
K∑

k=1

Ak = 1, 0 ≤ Ak ≤ ak, ∀k. (22)

Note that P1B is a convex programming problem, since
Mk(Ak) is concave on [0, ak]. Thus, A∗ can be computed
by a computationally efficient algorithm, such as the interior-
point method. Hence both steps to compute the jointly optimal
solution (η∗,A∗) have low computational complexity.

In summary, under
∑K

i=1 ai > 1, the original optimization
problem can be solved optimally, and thus

∑K
i=1 ai > 1 is

referred to as the optimality region.

C. SSAUA under
∑K

i=1 ai < 1

In this case, the original Problem P becomes Problem P2
as follows:

maximize
η,A

F(η,A) =
K∑

k=1

ηkMk(Ak)

subject to
K∑

k=1

ηk = 1, ηmin ≤ ηk ≤ ηmax, ∀k,

K∑
k=1

Ak = 1, Ak ≥ ak, ∀k. (23)

Problem P2 is more complicated than Problem P1, as
Mk(Ak) is not concave, but an S-shaped function, in the fea-
sible region. Hence, P2 generally incurs high computational
complexity even if an optimal η∗ is given [37], [38].

Therefore, instead of directly solving P2, we first approx-
imate Mk(Ak) by M̃k(Ak) defined as follows:

M̃k(Ak) =
1

(Akµ/λk)
(

1
Ak

+ C
) . (24)

Note that this approximation is reasonable when Akµ/λk is
much larger than 1, e.g., when µ is large. This observation
is also supported by the performance gap as derived in
Section V-C2. Some useful properties of M̃k(Ak) are shown
in Appendix D.

The approximated problem is referred to as Problem P2A,
where we simply replace the objective function of P2 by the
following:

F′(η,A) =
K∑

k=1

ηkM̃k(Ak). (25)

1) Solution to P2A: The important ordering property still
holds for Problem P2A, as formalized in the following
lemma, whose proof is given in Appendix E.

Lemma 3. (Ordering Property) If Ã∗ is optimal for Problem
P2A, then M̃1(Ã

∗
1) ≤ M̃2(Ã

∗
2) ≤ . . . ≤ M̃K(Ã∗

K).

We observe that with the same ordering property, (20) can
again be adopted as an optimal solution to P2A, leading to
the following theorem:

Theorem 3. (Priority Ordering) If Ã∗ is optimal for Problem
P2A, then (η̃∗, Ã∗), where η̃∗ is computed the same way as
η∗ in (20), is an optimal solution to Problem P2A.

Proof. The proof is similar to that of Theorem 2.

Given an optimal η̃∗ for P2A, we find the corresponding
optimal Ã∗ for P2A by solving the following Problem P2B:

maximize
A

K∑
k=1

η̃∗kM̃k(Ak)

subject to
K∑

k=1

Ak = 1, Ak ≥ ak, ∀k. (26)

Unlike in the optimality region, here we have an explicit
solution, as stated in the following theorem:

Theorem 4. Given an optimal η̃∗ for P2A (computed the
same way as η∗ in (20)), the corresponding optimal Ã∗ can
be expressed as follows:{

Ã∗
k = ak, k ≥ 2

Ã∗
1 = 1−

∑K
l=2 Ã

∗
l .

(27)
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Proof. See Appendix F.

Note that both (20) and (27) can be computed with low
computational complexity.

2) Bounding the Performance Gap: Since (η̃∗, Ã∗) is
optimal for P2A rather than P2, we next quantify the
performance gap between (η̃∗, Ã∗) and an optimal solution
(η∗,A∗) to P2.

The performance gap is defined as

E = F(η∗,A∗)− F(η̃∗, Ã∗). (28)

Because F(η̃∗, Ã∗) ≤ F(η∗,A∗) ≤ F′(η∗,A∗) ≤
F′(η̃∗, Ã∗), we have

E ≤ F′(η̃∗, Ã∗)− F(η̃∗, Ã∗) , E′. (29)

Substituting η̃∗ and Ã∗ into E′, we have

E′ =
K∑

k=1

η̃∗k
Ã∗

kµ

λk

(
Ã∗

kµ

λk
+ 1
)(

1

Ã∗
k

+ C
) . (30)

Therefore, the relative performance gap is bounded:

ϵ , E

F(η∗,A∗)
≤ E′

F(η̃∗, Ã∗)

=

∑K
k=1

η̃∗
k

Ã∗
k
µ

λk

(
Ã∗

k
µ

λk
+1

)(
1

Ã∗
k

+C

)
∑K

k=1
η̃∗
k(

Ã∗
k
µ

λk
+1

)(
1

Ã∗
k

+C

) (31)

(a)

≤ max
k

λk

Ã∗
kµ

≤ max
k

λk

akµ

=
√
λKC/µ, (32)

where inequality (a) is obtained by observing the common
factor in the summations in the numerator and denominator of
(31). This result implies that ϵ scales as O

(√
λK/µ

)
. Note

that when µ ≫ λK , we have ϵ ≃ 0 and the performance
of SSAUA is asymptotically optimal. Thus

∑K
i=1 ai < 1 is

referred to as the asymptotic-optimality region.

D. Computational Complexity Comparison

In this subsection, we discuss the computational complexity
of SSAUA and that of an exhaustive search approach to solve
the original joint optimization problem.

1) Computational Complexity of SSAUA: In the optimality
region, the optimal η∗ can be derived with computational
complexity O(K) through (20). Given the optimal η∗, the
remaining problem (22) is a convex optimization problem,
which can be solved using the interior-point method. Let ε
denote the error bound between the output and the optimal
solution. According to Section 11.5 of [39], the interior-point
method involves O(log(Kε )K) Newton iterations; each New-
ton iteration involves a matrix inversion operation, which has
computational complexity O(K3). Therefore, the overall com-
putational complexity is O(log(Kε )K

4). In the asymptotic-
optimality region, the asymptomatically optimal η̃∗ and Ã∗

can be derived through (20) and (27) respectively, with an
overall computational complexity O(K).

2) Computational Complexity of Exhaustive Search: As
explained in detail in Appendix G, we observe that at least
one of the optimal solutions to P, (η∗,A∗), has the following
property: there is at most one k ∈ {1, 2, . . .K} such that
ηmin,k < η∗k < ηmax,k; ∀j ̸= k, either η∗j = ηmin,j or
η∗j = ηmax,j (i.e., at the boundary). Thus, the search for η∗

needs to be performed at these boundary cases only, leading
to a complexity of O(2K).

In the optimality region, if η is fixed, the remaining
problem is a convex optimization problem. The interior-point
method takes another fold of computational complexity of
O(log(Kε )K

4). Consequently, the overall computational com-
plexity is O(2K log(Kε )K

4). In the asymptomatic-optimality
region, if η is fixed, the remaining problem is still a non-
convex optimization problem. A numerical search over all
solutions to the KKT condition is required, leading to another
fold of computational complexity of O( 2

K

ε ). Consequently, the
overall computational complexity is O( 4

K

ε ).

VI. NASH EQUILIBRIUM FOR SSAUA

Individual UEs may behave selfishly to derive unfair advan-
tage despite our design of B∗ (or equivalently A∗). Thus, in
this section, we propose a Surcharge Pricing Scheme (SPS),
such that the designed B∗ is the natural outcome of a Nash
equilibrium. We assume that the designed spectrum allocation
factors η∗ are centrally maintained by the network operator.

We consider a reference individual UE, whose associa-
tion bias values are B′ = (B′

1, B
′
2, . . . , B

′
K). Let A′ =

(A′
1, A

′
2, . . . , A

′
K) be its corresponding association probabili-

ties. For the other UEs, suppose they all obey the association
bias values B∗ assigned by the network operator. Similar to
the discussions in Section III and IV, the average data rate of
the reference UE is

F =
K∑

k=1

η∗kW log(1 + T )

(A∗
kµ/λk + 1)( 1

A′
k
+ C)

. (33)

If the reference UE performs an optimization on F with
respect to A′, the resultant optimal A′∗ = (A′∗

1 , A
′∗
2 , . . . , A

′∗
K)

is unlikely to be the same as A∗. Therefore, we add the
following Surcharge Pricing Scheme: the network operator
applies a surcharge ck to each UE associated with a tier-
k BS. Let c = (c1, c2, . . . , cK). In this case, the average
surcharge for the reference UE is

∑K
k=1 ckA

′
k. Accordingly,

the reference UE will perform the following optimization
Problem P3:

maximize
A′

F′ =
K∑

k=1

 η∗kW log(1 + T )

(A∗
kµ/λk + 1)

(
1
A′

k
+ C

) − ckA
′
k


subject to

K∑
k=1

A′
k = 1, A′

k ≥ 0. (34)

Different from P, it can be shown that P3 is a standard
convex optimization problem. By the KKT conditions, its
optimal solution A′∗ satisfies

Hk

(1 + CA′∗
k )

2
− ck − ν + θk = 0, (35)
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θkA
′∗
k = 0, θk ≥ 0, (36)

where Hk =
η∗
kW log(1+T )
A∗

kµ/λk+1 , θk is a Lagrange multiplier
corresponding to the inequality constraint A′

k ≥ 0, and ν is
a Lagrange multiplier corresponding to the equality constraint∑K

k=1 A
′
k = 1.

Setting A′∗
k = A∗

k, we have

ck =

{
∞, if A∗

k = 0,
Hk

(1+CA∗
k)

2 − ν, otherwise.
(37)

Note that ν could be set arbitrarily due to the equality con-
straint. Without loss of generality, we set ν = mink

Hk

(1+CA∗
k)

2

so that the minimum surcharge among tiers is 0. As a
consequence, a Nash Equilibrium is achieved where every UE
adopts the assigned B∗.

VII. THE MULTIPLE-MCS CASE

In this section, we discuss the usefulness of our proposed
SSAUA in systems with multiple modulation and coding
schemes (i.e., the multiple-MCS case). Instead of considering
only one SIR threshold T (see Section III-D), N SIR threshold
values, T1, T2, . . . , TN , where T1 < T2 < . . . < TN ,
corresponding to N MCSs, are accommodated. In this case,
if a UE is allocated spectrum bandwidth β′, its data rate is
β′ log(1 + TN ), β′ log(1 + TN−1), . . ., β′ log(1 + T1), and
0, respectively, if its SIR is in [TN ,∞), [TN−1, TN ), . . .,
[T1, T2), and [0, T1).

A. Average UE Data Rate

First, similar to the derivations of (4)-(12), given that the
typical UE is associated with a tier-k BS, we can find its
coverage probabilities under T1, T2, . . . , TN to be

P(SIRk ≥ T1) =Pcover,k,1 =
1

1 +AkC1
, (38)

. . .

P(SIRk ≥ Tn) =Pcover,k,n =
1

1 +AkCn
, (39)

. . .

P(SIRk ≥ TN ) =Pcover,k,N =
1

1 +AkCN
, (40)

where Cn , (Tn)
2
γ
∫∞
( 1

Tn
)

2
γ

1
1+tγ/2 dt. Note that because

T1 < T2 < . . . < TN , we have C1 < C2 < . . . < CN

and Pcover,k,1 > Pcover,k,2 > . . . > Pcover,k,N .
Then, the conditional expected data rate of the typical UE,

given it is associated with a tier-k BS, is recomputed as

Rk =E0(βk)

[
log(1 + TN )Pcover,k,N (41)

+

N−1∑
n=1

log(1 + Tn)
(
Pcover,k,n − Pcover,k,n+1

)]
=E0(βk)

[
log(1 + T1)Pcover,k,1 (42)

+
N∑

n=2

(
log(1 + Tn)− log(1 + Tn−1)

)
Pcover,k,n

]

=
ηkW

(Akµ/λk + 1)

[
log(1 + T1)

1 +AkC1
(43)

+

N∑
n=2

log(1 + Tn)− log(1 + Tn−1)

1 +AkCn

]

=
ηkW

(Akµ/λk + 1)

( N∑
n=1

bn
1 +AkCn

)
, (44)

where b1 , log(1 + T1), b2 , log(1 + T2) − log(1 +
T1), . . . , bN , log(1 + TN )− log(1 + TN−1).

Similar to (15), the average data rate of the typical UE
(unconditioned on k), and hence the average data rate per UE
in the system, is recomputed as

F =
K∑

k=1

AkRk

=
K∑

k=1

ηkW

(Akµ/λk + 1)

( N∑
n=1

bn
1
Ak

+ Cn

)
. (45)

The optimization problem (16) is updated correspondingly,
such that Mk(Ak) is redefined as

Mk(Ak) =
1

(Akµ/λk + 1)

( N∑
n=1

bn
1
Ak

+ Cn

)
. (46)

B. SSAUA in the Multiple-MCS Case

In this subsection, we discuss the usefulness of our pro-
posed SSAUA in solving the modified optimization problem
considering multiple-MCS.

1) Density Thresholding: We redefine ak as the unique pos-
itive solution to M ′

k(Ak) = 0. The existence and uniqueness
of ak is shown in Appendix H. Properties (M-1) to (M-4)
presented in Appendix A still hold with the redefined Mk(Ak)
and ak. The proofs of these properties are also shown in
Appendix H.

As a result, Lemma 1 and Theorem 1 still hold in the
multiple-MCS case. Note that different from the single-MCS
case (18), ak cannot be represented in an explicit expression.
As shown in Appendix H, ak is the unique solution to fk(A) =

0, where fk(A) =
∑N

n=1
bn(1−A2Cnµ/λk)

(ACn+1)2 is a decreasing
function. A simple binary search method can be applied to
compute ak, which has low computational complexity.

2) Optimality Region: When
∑K

i=1 ai > 1, since Properties
(M-1) to (M-4) still hold, Lemma 2 and Theorem 2 still hold
in the multiple-MCS case. Then, the same method presented in
Section V-B can be applied to solve the optimization problem.

3) Asymptotic-optimality Region: When
∑K

i=1 ai < 1,
Mk(Ak) is approximated by M̃k(Ak) redefined as follows:

M̃k(Ak) =
1

Akµ/λk

[
N∑

n=1

bn
1
Ak

+ Cn

]
. (47)

If Properties (M-1’)-(M-6’) presented in Appendix D still hold
for the above redefined M̃k(Ak), then Lemma 3, Theorem 3,
and Theorem 4 still hold in the multiple-MCS case, and the
same method employed in Section V-C can be applied to solve
the optimization problem with performance gap bounded by
(32).
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Fig. 2. Average UE data rate under different UE density µ.
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Fig. 3. Comparison of different schemes under different UE density µ.

It is straightforward to verify Properties (M-1’), (M-3’),
and (M-4’). Property (M-6’) is implied by (M-4’) and (M-
5’). However, Properties (M-2’) and (M-5’) are difficult to
verify analytically, as ak is no longer expressed in closed
form. Therefore, we conduct numerical validation to check
Properties (M-2’) and (M-5’) under a wide range of parameter
settings.

We set T = {10−1, 10−0.9, . . . , 100.9, 101}, U =
{101, 101.1, . . . , 103}, Γ = {3, 3.5, 4, 4.5, 5}. It is shown that
Properties (M-2’) and (M-5’) are true under N = 2, 3,
and 4; ∀T1, T2, . . . , TN ∈ T (T1 < T2 < . . . < TN );
∀µ/λi, µ/λj ∈ U (µ/λi > µ/λj); and ∀γ ∈ Γ. Therefore,
at least for the wide range of parameter settings that are
tested, the proposed SSAUA is still useful in the asymptotic-
optimality region. See Appendix I for visualized verification
results.

VIII. NUMERICAL STUDY

In this section, we present numerical studies on the per-
formance of SSAUA. Unless otherwise stated, we label the S-
SAUA solution as (η̂∗, B̂∗) and (η̃∗, B̃∗) in the optimality and
asymptotic-optimality regions, respectively. Note that (η̂∗, B̂∗)
is optimal in the optimality region. We use (η∗,B∗) to label
an optimal solution obtained from exhaustive search in the
asymptotic-optimality region. In this section, each simulation
point is derived as follows: in each round of simulation, UEs
and BSs are generated on a 10 km × 10 km square, and
the UEs in the central 5 km × 5 km square are sampled for
performance evaluation (in order to remove the edge effect).
Each simulation data point is averaged over all sampled UEs
during 100 rounds of simulations.
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Fig. 4. Average UE data rate under different path loss exponent γ.
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Fig. 5. Comparison of different schemes under different path loss exponent
γ, analytical case.

A. Average UE Data Rate under Different UE Densities

In this subsection, we study the average UE data rate of
SSAUA under different values of UE density µ, and compare
it with four reference schemes. The network parameters are as
follows: K = 3, λ1 = 1 units/km2, λ2 = 5 units/km2, λ3 = 10
units/km2, P1 = 56 dBm, P2 = 46 dBm, P3 = 36 dBm,
ηmin,1 = 0.2, ηmin,2 = 0.25, ηmin,3 = 0.3, ηmax,1 = 0.35,
ηmax,2 = 0.4, ηmax,3 = 0.45, γ = 4, W = 200 MHz, and
T = 0.2.

The performance of SSAUA is shown in Fig. 2. A vertical
line indicates the threshold value of µ, as given in Theorem 1,
separating the optimality and asymptotic-optimality regions.
For both regions, we show results of the analytical and simu-
lated performance of SSAUA. Since SSAUA is not optimal in
the asymptotic-optimality region, we also add two sets of re-
sults accordingly: the optimal performance F(η∗,B∗) through
exhaustive search and its analytical upper bound F′(η̃∗, B̃∗).
Fig. 2 illustrates that the performance of SSAUA is very close
to the optimal solution in the asymptotic-optimality region.

Next, we compare the performance of SSAUA with four
reference schemes listed as follows:

• Scheme 1 employs equal spectrum allocation, and user
association based on the maximum received power.

• Scheme 2 employs equal spectrum allocation, and optimal
user association as in SSAUA.

• Scheme 3 employs optimal spectrum allocation as in
SSAUA, and user association based on the maximum
received power.

• Scheme 4 employs optimal spectrum allocation as in
SSAUA, and user association based on a simple range
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Fig. 6. Comparison of different schemes under different path loss exponent
γ, simulation case.
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expansion scheme by setting Bk = 1
Pk

, ∀k.
Fig. 3 shows that SSAUA outperforms these schemes. This
illustrates that both the spectrum allocation component and
the user association component of SSAUA bring performance
benefits. Note that due to the approximation made in (14), the
analytical data rate is slightly lower than the simulated one,
matching our discussion in Section IV.

B. Average UE Data Rate under Different Path Loss Expo-
nents

Fig. 4 shows the optimal network performance under differ-
ent values of the path loss exponent γ. The network parameters
are the same as those used in Fig. 2 except µ is fixed at 100
(i.e., optimality region) and 500 (i.e., asymptotic-optimality
region) units/km2 in Figs. 4 (a) and (b) respectively. This figure
further confirms the observations from Fig. 2. Furthermore, it
shows that SSAUA is effective for a wide range of path loss
conditions.

Fig. 5 shows further analytical performance comparison
of SSAUA and the four reference schemes stated in Section
VIII-A. The results illustrate that in both the optimality and
asymptotic-optimality regions, SSAUA outperforms Scheme
2, Scheme 3, and Scheme 4, and both Scheme 2 and Scheme
3 outperform Scheme 1, confirming the observations from
Fig. 3. Fig. 6 shows the simulated performance comparison of
SSAUA and the four reference schemes. The results show that
the performance orders of the five schemes agree with those
in Fig. 5 in both the optimality region and the asymptotic-
optimality region.
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ĉ
∗

2
(o.)

ĉ
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C. Association Bias Values and Prices

Fig. 7 shows B̂∗, B̃∗, and B∗; and Fig. 8 shows their
corresponding prices ĉ∗, c̃∗, and c∗, under different µ values.
The other network parameters are the same as those used in
Fig. 2. We observe that the B̃∗ and c̃∗ computed based on
SSAUA are close to their counterparts B∗ and c∗. Similar
results have been observed under different path loss exponents
and are omitted for brevity.

D. Run Time Experiment

In this subsection, a run time experiment is presented to
compare the computational complexity of SSAUA with that
of exhaustive search. The experiment is executed by Matlab
R2011a on an ASUS PC with Intel i7-3610QM 2.3GHz
processor and 4GB RAM. The results are averaged over 1000
runs for SSAUA and 10 runs for exhaustive search (both with
randomly generated parameters). Fig. 9 shows that the run
time of SSAUA is almost negligible compared with exhaustive
search. Note that the y-axis is in log scale. When K increases,
the run time of exhaustive search exhibits an exponential
growth tendency, while SSAUA remains computationally effi-
cient.

E. Performance of SSAUA in the Multiple-MCS Case

In this subsection, a numerical experiment is presented to
validate the usefulness of SSAUA in the multiple-MCS case.
The network parameters are as follows: N = 3, T1 = 0.1,
T2 = 0.3, T3 = 0.5, K = 3, λ1 = 1 units/km2, λ2 = 5
units/km2, λ3 = 10 units/km2, P1 = 56 dBm, P2 = 46 dBm,
P3 = 36 dBm, ηmin,1 = 0.2, ηmin,2 = 0.25, ηmin,3 = 0.3,
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Fig. 10. Comparison of different schemes in the multiple-MCS case.
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Fig. 11. Comparison of different schemes under more realistic network
settings, (λ′

1, λ
′
2, λ

′
3) = (1, 2, 3) unit/km2.
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Fig. 12. Comparison of different schemes under more realistic network
settings, (λ′

1, λ
′
2, λ

′
3) = (1, 5, 10) unit/km2.

ηmax,1 = 0.35, ηmax,2 = 0.4, ηmax,3 = 0.45, γ = 4, and
W = 200 MHz.

Fig. 10 shows the comparison of SSAUA with the four
reference schemes. Similar to the results in VIII-A, in the
multiple-MCS case, we can still observe that SSAUA out-
performs Scheme 2, Scheme 3, and Scheme 4, and both
Scheme 2 and Scheme 3 outperform Scheme 1. Both the
spectrum allocation part and the user association part used
in SSAUA bring performance benefits, and the joint spectrum
allocation and user association of SSAUA brings the greatest
performance benefits in the Multiple-MCS case.

F. Performance Comparison under More Realistic Network
Topologies

In this section, we present simulation of SSAUA and the
four reference schemes in more realistic network settings.
First, the UE and BS density settings follow the 3GPP sim-
ulation guidelines from Annex A of [40], which recommend
that there are between 1 to 10 small cell BSs, and 10 to 100
UEs per macrocell. Second, BSs are non-Poisson, and UEs
are inhomogeneously distributed.

The Matern hard core (MHC) point process is an alternative
point process adopted in the literature to counter the drawback
of PPP modeling of cellular networks [41], [42]. MHC point
processes can additionally capture the effect that two BSs are
unlikely to be located very close to each other. In our simu-
lation, tier-k BSs are generated as an MHC point process as
follows: First, we generate a PPP with intensity λ′

k. Each point
in the PPP is associated with a “mark”, which is independently
uniformly distributed on [0, 1]. A point is retained in the point
process if its mark is the largest among all the points within
a distance Dk from it (or there are no other points within
this range); otherwise, the point is removed from the point
process. The remaining points form an MHC point process.
Note that the distance between any two points in the point
process is no less than Dk. In our simulation, each tier of BSs
is independently generated as an MHC point process. Then, the
spectrum allocation factors and user association bias values are
determined, by either SSAUA or one of the reference schemes,
based on PPP BSs with equivalent densities λk = 1−e−πD2

kλ′
k

πD2
kλ

′
k

.
We also consider the scenario where UEs are likely to crowd

near BSs. At the beginning, UEs follow a PPP with intensity
µ′. Then, each tier-k BS brings increment of µ0 to the UE
density in the disk region centered at the BS with a radius
of Rk. In our simulation, the spectrum allocation factors and
user association bias values are determined, by either SSAUA
or one of the reference schemes, based on an equivalent UE
density µ = µ′ + µ0

(∑K
k=1 λkπR

2
k

)
.

In Figs. 11 and 12, we set γ = 4; (P1, P2, P3) =
(56, 43, 33) dBm; ηmin,1 = 0.2, ηmin,2 = 0.25, ηmin,3 = 0.3,
ηmax,1 = 0.35, ηmax,2 = 0.4, ηmax,3 = 0.45; W =
50 MHz; N = 3, T1 = 1, T2 = 2, T3 = 3. In
Fig. 11, (λ′

1, λ
′
2, λ

′
3) = (1, 2, 3) unit/km2, (D1, D2, D3) =

(200, 80, 40) m, (R1, R2, R3) = (200, 80, 40) m, and
µ0 = µ′. The equivalent BS densities are (λ1, λ2, λ3) =
(0.9397, 1.9603, 2.9775) unit/km2, and the equivalent UE den-
sity is µ = 1.1725µ′. In Fig. 12, we set (λ′

1, λ
′
2, λ

′
3) =

(1, 5, 10) unit/km2, (D1, D2, D3) = (200, 80, 40) m,
(R1, R2, R3) = (200, 80, 40) m, and µ0 = µ′. The equiva-
lent BS densities are (λ1, λ2, λ3) = (0.9397, 4.7569, 9.7528)
unit/km2, and the equivalent UE density is µ = 1.2628µ′.
In both figures, µ ranges from 10 to 100. The performance
ratios of SSAUA to all four reference schemes are shown
in the figures. The result suggests that, under more realistic
network topologies, SSAUA still brings useful performance
gain compared with the reference schemes.

IX. CONCLUSIONS AND FUTURE WORKS

In this work, we provide a theoretical framework to study
the joint optimization of spectrum allocation and user asso-
ciation in heterogeneous cellular networks. We establish a
stochastic geometric model that captures the random spatial
patterns of BSs and UEs, and a closed-form expression of the
analytical average UE data rate is derived. We then consider
the problem of maximizing the average UE data rate by jointly
optimizing the spectrum allocation factors and user association
bias values, which is non-convex programming in nature. We
propose the SSAUA approach to solve this problem with low
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computational complexity. We show that SSAUA is either
optimal or asymptotically optimal with a quantified bound
scaling as O(

√
λK/µ). We also propose a pricing scheme

such that the designed association bias values can be achieved
in Nash equilibrium.

So far we have focused on maximizing the user data rate.
However, in multimedia applications, a defining characteristic
is inelasticity, where some predetermined minimum through-
put must be satisfied, or the application session is rejected
or dropped. By taking inelastic traffic into consideration, the
user data rate is no longer the only design goal [43]. For
future work, it will be crucial to design user association and
spectrum allocation schemes to benefit inelastic traffic through
decreasing traffic delay, reducing data rate fluctuation, and
improving quality of experience.

APPENDIX

A. Useful Properties of Mk(Ak)

(M-1) Mk(Ak) is increasing on [0, ak) and decreasing on
[ak,∞).

(M-2) Mk(Ak) is concave on [0, ak).
(M-3) If λi < λj , then Mi(A) < Mj(A), ∀A > 0.
(M-4) If λi < λj , then Mj(A)−Mi(A) is strictly increasing

on [0, aj ].

B. Proof of Lemma 1

Proof. Suppose A∗∗ is optimal, A∗∗
i < ai, and A∗∗

j > aj .
Consider that we increase A∗∗

i by a small value ∆ > 0 and de-
crease A∗∗

j by ∆. According to property (M-1), η∗∗i Mi(A
∗∗
i )+

η∗∗j Mj(A
∗∗
j ) < η∗∗i Mi(A

∗∗
i +∆) + η∗∗j Mj(A

∗∗
j −∆). Thus,

through replacing A∗∗
i and A∗∗

j by A∗∗
i + ∆ and A∗∗

j − ∆
respectively, we find a better solution to P, leading to a
contradiction.

C. Proof of Lemma 2

Proof. Suppose ∃i < j such that Mi(A
∗
i ) > Mj(A

∗
j ). This

implies that A∗
i > A∗

j . (Otherwise, if A∗
i ≤ A∗

j , then we have
Mi(A

∗
i ) ≤ Mi(A

∗
j ) < Mj(A

∗
j ), leading to a contradiction.) A

corresponding diagram is shown in Fig. 13(a).
Case 1: η∗i ≤ η∗j .
Let Â∗

j = A∗
i and Â∗

i = A∗
j . Then we have

[η∗iMi(Â
∗
i ) + η∗jMj(Â

∗
j )]− [η∗i Mi(A

∗
i ) + η∗jMj(A

∗
j )]

=[η∗iMi(A
∗
j ) + η∗jMj(A

∗
i )]− [η∗i Mi(A

∗
i ) + η∗jMj(A

∗
j )]

=η∗j [Mj(A
∗
i )−Mj(A

∗
j )] + η∗i [Mi(A

∗
j )−Mi(A

∗
i )]

≥η∗i [Mj(A
∗
i )−Mj(A

∗
j ) +Mi(A

∗
j )−Mi(A

∗
i )] > 0, (48)

where (48) is due to property (M-4).
As a consequence, if A∗

i and A∗
j are replaced by Â∗

i and Â∗
j

respectively, we obtain a larger F, leading to a contradiction.
Case 2: η∗i > η∗j .
Let Â∗

j = A∗
i , Â∗

i = A∗
j , η̂∗j = η∗i , and η̂∗i = η∗j . (Note that

because ηmin,i ≤ ηmin,j and ηmax,i ≤ ηmax,j , η̂∗j and η̂∗i are
guaranteed to be in the feasible region.)

[η̂∗iMi(Â
∗
i ) + η̂∗jMj(Â

∗
j )]− [η∗i Mi(A

∗
i ) + η∗jMj(A

∗
j )]

Ai
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*
)
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*
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(a) Diagram of Mi(·) and Mj(·).
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(b) Diagram of M̃i(·) and M̃j(·),
Case 1.1 and 2.1.
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(c) Diagram of M̃i(·) and
M̃j(·), Case 1.2 and 2.2.

Fig. 13. Diagrams of Mi(·), Mj(·), M̃i(·), and M̃j(·).

=[η∗jMi(A
∗
j ) + η∗i Mj(A

∗
i )]− [η∗i Mi(A

∗
i ) + η∗jMj(A

∗
j )]

=η∗i [Mj(A
∗
i )−Mi(A

∗
i )] + η∗j [Mi(A

∗
j )−Mj(A

∗
j )]

>η∗j [Mj(A
∗
i )−Mi(A

∗
i ) +Mi(A

∗
j )−Mj(A

∗
j )] > 0. (49)

Thus, if A∗
i , A∗

j , η∗i , and η∗j are replaced by Â∗
i , Â∗

j , η̂∗i , and η̂∗j
respectively, we can find a larger F, leading to a contradiction.

D. Useful Properties of M̃k(Ak)

(M-1’)M̃k(Ak) is a decreasing convex function.
(M-2’)If λi < λj , then M̃i(ai) < M̃j(aj).
(M-3’)If λi < λj , then M̃j(A) − M̃i(A) is a strictly

decreasing function.
(M-4’)M̃k(A)−M̃k(A+D) > M̃k(A

′)−M̃k(A
′+D), for

any A′ > A ≥ ak and D > 0.
(M-5’)If λi < λj , then M̃j(aj)− M̃j(aj +D) > M̃i(ai)−

M̃i(ai +D), for any D > 0.
(M-6’)If λi < λj , then M̃j(aj)−M̃j(aj +D) > M̃i(A

′)−
M̃i(A

′+D), for any D > 0 and A′ > ai (combining
(M-4’) and (M-5’)).

E. Proof of Lemma 3

Proof. Suppose that ∃i < j (i.e., λi < λj) such that
M̃i(Ã

∗
i ) > M̃j(Ã

∗
j ), which also implies that ai ≤ Ã∗

i < Ã∗
j .

The corresponding diagrams are shown in Figs. 13(b) and
13(c).

Case 1: η̃∗i ≤ η̃∗j .
Case 1.1: Ã∗

i ≥ aj .
Let Â∗

j = Ã∗
i and Â∗

i = Ã∗
j . We have

[η̃∗i M̃i(Â
∗
i ) + η̃∗j M̃j(Â

∗
j )]− [η̃∗i M̃i(Ã

∗
i ) + η̃∗j M̃j(Ã

∗
j )]

=[η̃∗i M̃i(Ã
∗
j ) + η̃∗j M̃j(Ã

∗
i )]− [η̃∗i M̃i(Ã

∗
i ) + η̃∗j M̃j(Ã

∗
j )]
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=η̃∗j [M̃j(Ã
∗
i )− M̃j(Ã

∗
j )] + η̃∗i [M̃i(Ã

∗
j )− M̃i(Ã

∗
i )]

≥η̃∗i [M̃j(Ã
∗
i )− M̃j(Ã

∗
j ) + M̃i(Ã

∗
j )− M̃i(Ã

∗
i )] > 0, (50)

where (50) is due to property (M-3’).
Thus, if Ã∗

i and Ã∗
j are replaced by Â∗

i and Â∗
j respectively,

we obtain a larger F′, leading to a contradiction.
Case 1.2: Ã∗

i < aj .
Let Â∗

j = aj , D = Ã∗
j − aj and Â∗

i = Ã∗
i +D. We have

[η̃∗i M̃i(Â
∗
i ) + η̃∗j M̃j(Â

∗
j )]− [η̃∗i M̃i(Ã

∗
i ) + η̃∗j M̃j(Ã

∗
j )]

=[η̃∗i M̃i(Ã
∗
i +D) + η̃∗j M̃j(aj)]− [η̃∗i M̃i(Ã

∗
i ) + η̃∗j M̃j(Ã

∗
j )]

=η̃∗j [M̃j(aj)− M̃j(Ã
∗
j )] + η̃∗i [M̃i(Ã

∗
i +D)− M̃i(Ã

∗
i )]

≥η̃∗i [M̃j(aj)− M̃j(Ã
∗
j ) + M̃i(Ã

∗
i +D)− M̃i(Ã

∗
i )] > 0,

(51)

where (51) is due to property (M-6’).
Thus, if Ã∗

i and Ã∗
j are replaced by Â∗

i and Â∗
j respectively,

we obtain a larger F′, leading to a contradiction.
Case 2: η̃∗i > η̃∗j .
Case 2.1: Ã∗

i ≥ aj .
Let Â∗

j = Ã∗
i , Â∗

i = Ã∗
j , η̂∗j = η̃∗i , and η̂∗i = η̃∗j . (Note that

because ηmin,i ≤ ηmin,j and ηmax,i ≤ ηmax,j , η̂∗j and η̂∗i are
guaranteed to be in the feasible region.)

[η̂∗i M̃i(Â
∗
i ) + η̂∗j M̃j(Â

∗
j )]− [η̃∗i M̃i(Ã

∗
i ) + η̃∗j M̃j(Ã

∗
j )]

=[η̃∗j M̃i(Ã
∗
j ) + η̃∗i M̃j(Ã

∗
i )]− [η̃∗i M̃i(Ã

∗
i ) + η̃∗j M̃j(Ã

∗
j )]

=η̃∗i [M̃j(Ã
∗
i )− M̃i(Ã

∗
i )] + η̃∗j [M̃i(Ã

∗
j )− M̃j(Ã

∗
j )]

>η̃∗j [M̃j(Ã
∗
i )− M̃i(Ã

∗
i ) + M̃i(Ã

∗
j )− M̃j(Ã

∗
j )] > 0. (52)

Thus, if Ã∗
i , Ã∗

j , η̃∗i , and η̃∗j are replaced by Â∗
i , Â∗

j , η̂∗i , and η̂∗j
respectively, we obtain a larger F′, leading to a contradiction.

Case 2.2: Ã∗
i < aj .

Let Â∗
j = aj , D = Ã∗

j − aj , Â∗
i = Ã∗

i +D, η̂∗j = η̃∗i , and
η̂∗i = η̃∗j . We have

[η̂∗i M̃i(Â
∗
i ) + η̂∗j M̃j(Â

∗
j )]− [η̃∗i M̃i(Ã

∗
i ) + η̃∗j M̃j(Ã

∗
j )]

=[η̃∗j M̃i(Ã
∗
i +D) + η̃∗i M̃j(aj)]− [η̃∗i M̃i(Ã

∗
i ) + η̃∗j M̃j(Ã

∗
j )]

=η̃∗i [M̃j(aj)− M̃i(Ã
∗
i )] + η̃∗j [M̃i(Ã

∗
i +D)− M̃j(Ã

∗
j )]

>η̃∗j [M̃j(aj)− M̃i(Ã
∗
i ) + M̃i(Ã

∗
i +D)− M̃j(Ã

∗
j )] > 0.

(53)

Thus, if Ã∗
i , Ã∗

j , η̃∗i , and η̃∗j are replaced by Â∗
i , Â∗

j , η̂∗i , and η̂∗j
respectively, we obtain a larger F′, leading to a contradiction.

F. Proof of Theorem 4

Proof. Suppose ∃k ≥ 2 such that Ã∗
k > ak. Let l = 1, Â∗

k =

ak, D = Ã∗
k − ak, and Â∗

l = Ã∗
l + D. Note that we have

η̃∗k ≥ η̃∗l through Lemma 3. Thus,

[η̃∗kM̃k(Â
∗
k) + η̃∗l M̃l(Â

∗
l )]− [η̃∗kM̃k(Ã

∗
k) + η̃∗l M̃l(Ã

∗
l )]

=[η̃∗kM̃k(ak) + η̃∗l M̃l(Ã
∗
l +D)]− [η̃∗kM̃k(Ã

∗
k) + η̃∗l M̃l(Ã

∗
l )]

=η̃∗k[M̃k(ak)− M̃k(Ã
∗
k)] + η̃∗l [M̃l(Ã

∗
l +D)− M̃l(Ã

∗
l )]

≥η̃∗l [M̃k(ak)− M̃k(Ã
∗
k) + M̃l(Ã

∗
l +D)− M̃l(Ã

∗
l )] > 0.

(54)

As a consequence, if we replace Ã∗
l and Ã∗

k by Â∗
l and Â∗

k

respectively, we find a better solution to Problem P2A, which
leads to a contradiction.

G. Some Properties Used for Exhaustive Search

Lemma 4. Let (η∗,A∗) be an optimal solution to P. Suppose
∃i ̸= j, such that ηmin,i < η∗i < ηmax,i and ηmin,j < η∗j <
ηmax,j . Then, let η̂∗i = ηmax,i and η̂∗j = η∗i + η∗j − ηmax,i if
ηmax,i−η∗i ≤ η∗j −ηmin,j; let η̂∗i = η∗i +η∗j −ηmin,j and η̂∗j =
ηmin,j otherwise. Let η̂∗ = (η∗1 , . . . , η̂

∗
i , . . . , η̂

∗
j , . . . , η

∗
K). Then

(η̂∗,A∗) is still an optimal solution to Problem P.

Proof. First, we have Mi(A
∗
i ) = Mj(A

∗
j ). Otherwise, suppose

Mi(A
∗
i ) > Mj(A

∗
j ) (without loss of generality); then we can

find a better solution by replacing η∗i and η∗j by η∗i + δ and
η∗j − δ respectively, where δ > 0.

Given that Mi(A
∗
i ) = Mj(A

∗
j ), the same F can be obtained

when we replace η∗i and η∗j by η̂∗i and η̂∗j .

Lemma 4 demonstrates that if there are η∗i and η∗j not at
the boundary, we can “push” one of them to the boundary
and maintain the optimization in P. If there are more than
two terms in η∗ not at the boundary, we can “push” them to
the boundary one by one, until there is at most one term in
η∗ not at the boundary. Thus, Lemma 4 directly leads to the
following Theorem:

Theorem 5. At least one of the optimal solutions to P,
(η∗,A∗), has the following property: There is at most one
k ∈ {1, 2, . . .K} such that ηmin,k < η∗k < ηmax,k, and
∀j ̸= k, either η∗j = ηmin,j or η∗j = ηmax,j .

H. Proof of Properties of Mk(·) in the Multiple-MCS Case

In this subsection, we prove Properties (M-1) to (M-4) when
we redefine Mk(A) as in (46). In the proof, we set uk = µ/λk.

1) Property (M-1): The first derivative of Mk(A) is

M ′
k(A) =

1

(Auk + 1)2

[ N∑
n=1

bn(1−A2Cnuk)

(ACn + 1)2

]
. (55)

M ′
k(A) is positive at A = 0, and is negative when A

is sufficient large. Thus, there exists positive ak such that
it is a solution to M ′

k(A) = 0. In addition, we have[∑N
n=1

bn(1−A2Cnuk)
(ACn+1)2

]′
= −

∑N
n=1

2bnCn(Auk+1)
(ACn+1)3 < 0,

demonstrating that
∑N

n=1
bn(1−A2Cnuk)

(ACn+1)2 is a decreasing func-
tion. Thus, ak is the unique solution to M ′

k(A) = 0. M ′
k(A)

is positive on [0, ak), and negative on (ak,∞). Note that a
simple binary search method can be applied to numerically
search for ak.

Note that
N∑

n=1

bn(1−A2Cnuk)

(ACn + 1)2
> 0 (56)

on [0, ak), which will be used in the subsequent steps.
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2) Property (M-2): We have

M ′′
k (A) =

[∑N
n=1 z

′
n(A)

]
v(A)−

[∑N
n=1 zn(A)

]
v′(A)

(v(A))2
,

(57)

where zn(A) =
bn(1−A2Cnuk)

(ACn+1)2 , and v(A) = (Auk+1)2. Then,
we have

z′n(A) = −2bnCn(Auk + 1)

(ACn + 1)3
, (58)

which is negative.
Consequently, on [0, ak),

∑N
n=1 z

′
n(A) is negative, v(A) is

positive,
∑N

n=1 zn(A) is positive (due to (56)), and v′(A) is
positive. Thus, M ′′

k (A) is negative. Property (M-2) is proved.
3) Property (M-3): Trivially true.
4) Property (M-4): Let λk > λj . Then we have uk < uj .

Let ∆Mkj(A) = Mk(A)−Mj(A). Then

∆M ′
kj(A) = M ′

k(A)−M ′
j(A) (59)

=
uk − uj

(Auk + 1)2(Auj + 1)2
· (60)[ N∑

n=1

Abn(A
3Cnukuj −Auk −Auj −ACn − 2)

(ACn + 1)2

]
=

uk − uj

(Auk + 1)2(Auj + 1)2
· (61)[ N∑

n=1

A2bnuj(A
2Cnuk − 1)

(ACn + 1)2
−

N∑
n=1

Abn(Auk +ACn + 2)

(ACn + 1)2

]
.

Note that
∑N

n=1
A2bnuj(A

2Cnuk−1)
(ACn+1)2 =

A2uj

∑N
n=1

bn(A
2Cnuk−1)

(ACn+1)2 < 0 on [0, ak) (see (56)),
and uk < uj . Consequently, ∆M ′

kj(A) > 0. Property (M-4)
is proved.

I. Numerical Verification of Properties (M-2’) and (M-5’) of
M̃k(Ak) in the Multiple-MCS Case

Fig. 14 visualizes a typical example in our numerical verifi-
cation of Properties (M-2’) and (M-5’). In this figure, we nar-
row the parameter sets to T = {10−1, 10−0.5, 1, 100.5, 101},
U = {101, 101.5, . . . , 103}, and Γ = {4}. For all T1, T2, T3 ∈
T (T1 < T2 < T3), ∀µ/λi, µ/λj ∈ U (µ/λi > µ/λj), and
∀γ ∈ Γ, we plot [M̃j(aj)−M̃j(aj+D)]− [M̃i(ai)−M̃i(ai+

D)] versus D, and values of M̃j(aj)− M̃i(ai). Consequently,
100 curves and points are plotted in Fig. 14. The curves
and points are all above zero, illustrating the correctness of
Properties (M-2’) and (M-5’) under the range of parameter
settings that are tested. The results for other parameter setting
are similar and are omitted to avoid redundancy.
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