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Abstract— Statistical characterization of the signal-to-
interference-plus-noise ratio (SINR) via its cumulative distri-
bution function is ubiquitous in a vast majority of technical
contributions in the area of cellular networks, since it boils
down to averaging the Laplace transform of the aggregate
interference, a benefit accorded at the expense of confinement
to the simplistic Rayleigh fading. In this paper, to capture
diverse fading channels that arise in realistic outdoor/indoor
wireless communication scenarios, we tackle the problem
differently. By exploiting the moment generating function of the
SINR, we succeed in analytically assessing cellular networks
performance over the shadowed κ–μ, κ–μ, and η–μ fading
models. These channel models offer high flexibility by capturing
diverse fading channels, including Rayleigh, Nakagami-m,
Rician, and Rician shadow fading distributions. These channel
models have been recently promoted for their capability to
accurately model dense urban environments, future femtocells,
and device-to-device shadowed channels. In addition to unifying
the analysis for different channel models, this paper integrates
the coverage, the achievable rate, and the bit error probability,
which are largely treated separately in the literature. The
developed model and analysis are validated over a broad range
of simulation setups and parameters.

Index Terms— 5G, cellular networks, moment generating func-
tion, line-of-sight (LoS), non-line-of-sight (NLoS), shadowing,
stochastic geometry.

I. INTRODUCTION

CELLULAR networks modeling and analysis is a vibrant
topic that keeps taking new dimensions in complexity as

to mirror the evolution if not revolution of wireless networks
from the first to the upcoming fifth wireless technology
generation (5G). As a key enabler to realize 5G wireless
networks, heterogeneous networks (HetNets) are indeed the
most influential solution that guarantees higher data rates
and macrocell traffic off-loading, while providing dedicated
capacity to homes, enterprises, or urban hot spots. To cope
with such evolution, stochastic geometry proved to be a very
powerful tool for reproducing large-scale spatial randomness,
an intrinsic property of emerging cellular networks, as well
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as different sources of uncertainties (such as multipath fading,
shadowing, and power control) within tractable and accurate
mathematical frameworks [1], [3]. Able to provide insightful
design guidelines, through closed forms, stochastic geometry
rid system-level performance evaluation of computationally-
intensive simulations.

In the last decade, many contributions spearheaded this
line of research by developing all aspects of the stochastic
geometry models, except for the fading environments. For
instance, the downlink baseline operation of cellular net-
works is characterized in [1]–[5]. Range expansion and load
balancing are studied in [6] and [7]. By exploiting recent
advances in stochastic geometry analysis, several mathematical
frameworks are developed to study multiple-input multiple
output (MIMO) operation in cellular networks [8], [9]. Other
aspects including energy efficiency, energy harvesting, interfer-
ence cancellation, additional interference imposed via under-
lay device-to-device (D2D) communication, etc., have been
investigated exploiting the tractability of stochastic geometry
(see [10] and references therein).

As far as the fading model is concerned, the Rayleigh
fading has been commonly assumed, with only some proposals
incorporating the Nakagami-m fading, yet merely with integer
parameter values [5], [11]. Such particular fading distributions,
by leading to exponential expressions for the conditional SINR
that enable averaging via the MGF of the interference, have
very often implied very similar mathematical models in their
analysis steps. Strikingly, due to the Rayleigh assumption,
characterizing the SINR via its cumulative distribution func-
tion (CDF) is ubiquitous in almost all pioneering contributions
pertaining to cellular networks modeling [1]–[10].

Such infatuation with Rayleigh and Nakagami-m has, how-
ever, limited legitimacy according to [12] and [13], who argued
that these fading models may fail to capture new and more
realistic fading environments. Besides ignoring the line-of-
sight (LOS) component in the received signal, which is promi-
nent in outdoor cellular communications, the Rayleigh model
is a single-parameter fading model that is not flexible enough
to accurately represent complex indoor fading environments.
The diagnosis for Rayleigh fading is even more pessimistic
in future femtocells [14] where multiple dominant signal
components (DSCs) may be created by reflections in close
proximity to the BSs and/or users or may appear in millimeter
wave (mmW) communications [15]. With Nakagami-m fading,
stochastic geometry analysis necessitates for tractability an
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integer value for m [11], thereby limiting the applicability
of the model in setup scenarios that capture practical mul-
tipath conditions. Despite the fact that several approaches
show alternative techniques to circumvent such dependency
to the Rayleigh fading [16]–[19]; there are yet no stochastic
geometry models accounting for state-of-the-art fading models

As a step forward to bridge this gap in the literature, this
work incorporates versatile multiple-parameter fading mod-
els into tractable stochastic geometry analysis. These fading
models include the shadowed κ-μ distribution, the gener-
alized Rician or the κ-μ distribution, and the η-μ distri-
bution. Besides their elegance, these models are governed
by more than two tunable parameters endowing them with
high flexibility to capture a broad range of fading channels,
whence their practical significance. The κ-μ distribution, first
introduced in [12], can be regarded as a generalization of the
classic Rician fading model for line-of-sight (LOS) scenarios.
On the other hand, the η-μ distribution can be considered as a
generalization of the classic Nakagami-q (Hoyt) fading model
for non-LOS scenarios. Interestingly, the κ-μ and the η-μ
distributions represent all-encompassing generalizations, with
the classical channels including the Nakagami-m, the Hoyt,
the Rayleigh, and the Rice fading being their special cases.

The shadowed κ-μ fading model, recently introduced
in [20], jointly includes large-scale and small-scale propaga-
tion effects, by considering that only the dominant components
are affected by shadowing [20]. The shadowed κ-μ distribution
includes the shadowed Rician distribution as a special case,
and obviously it also includes the κ-μ fading distribution from
which it originates. However, as we will later see, one of the
most appealing properties of the shadowed κ-μ distribution is
that it unifies the set of LOS fading models associated with the
κ-μ distribution [12], and strikingly, it also unifies the set of
NLOS fading models associated with the η-μ distribution [12].
These fading models offer far better and much more flexible
representations of practical fading LOS, NLOS, and shadowed
channels than the Rayleigh and Nakagami-m distributions.

Although some works have considered already shadowed
κ-μ fading in the context of stochastic geometry [21], [22],
they relied on series representation methods (e.g., infinite
series in [21] and Laguerre polynomial series in [22]) thereby
expressing the interference functionals as an infinite series of
higher order derivative terms given by the Laplace transform
of the interference power. These methods cannot lend them-
selves to closed-form expressions and hence require complex
numerical evaluation.

To the best of the authors’ knowledge, this paper is pio-
neer in introducing a general approach of incorporating the
comprehensive shadowed κ-μ, κ-μ and η-μ fading models
into an exact and unified stochastic geometry analysis. Besides
offering a unified modeling framework for the analysis of a
much wider set of practical fading distributions, this work also
develops a unified mathematical analysis paradigm for three
key performance metrics altogether: i) the average BEP, ii) the
coverage probability, and iii) the ergodic achievable rate for
cellular networks.

The rest of the paper is organized as follows. The system
model, assumptions, and methodology of our new analy-

sis framework are presented in Section II. In Section III,
the baseline downlink modeling paradigm for cellular net-
works over LOS/NLOS and shadowed fading is presented. Our
new unified performance analysis framework is presented in
section IV. Numerical and simulation results are presented in
Section V and the paper is concluded in Section VI.

II. NETWORK AND CHANNEL MODELS

We consider a downlink single-tier cellular network where
single-antennas BSs are deployed according to a homogeneous
PPP � with intensity λ and a typical single-antenna mobile
user is located at the origin. It is assumed that all the BSs
have the same transmit power P . Without loss of generality,
all BSs are assumed to have an open access policy, and hence,
all users can associate with all BSs. The users are assumed
to associate to the BSs according to their average radio signal
strength (RSS). Similar to [1], universal frequency reuse is
considered with no intra-cell interference.

Further, we adopt the standard path-loss propagation model
of power attenuation r−α with the propagation distance r ,
where α > 2 is the path-loss exponent. For simplicity,
we assume that all BSs experience the same path-loss expo-
nent α. Besides we assume that the channel gains between
any two generic locations, denoted by h, include all random
channel effects such as fading and shadowing. Additionally,
we assume the latter to be independent of each other, inde-
pendent of the spatial locations, symmetric, and identically
distributed. We introduce below some key definitions for the
generic channel model distributions adopted in this work.

A. Channel Model Distributions

Definition 1 (The Shadowed κ-μ Distribution [20]): Let h
be a random variable statistically following a shadowed κ-μ
distribution with mean � = E[h] and non-negative real shape
parameters κ , μ, and m, i.e., h ∼ Sκ,μ,m(�; κ,μ, m). Then its
probability density function (PDF) is given by

fh,Sκ−μ(y) = μμmm(1+ κ)μ

�(μ)�μ(μκ + m)m

( y

�

)μ−1
e−

μ(1+κ)
� y

× 1F1

(
m, ν,

μ2κ(1+ κ)

�(μκ + m)
y

)
, (1)

where 1F1(·) is the confluent hypergeometric function of [23,
eq. (13.1.2)] and the Gamma function is denoted by �(·) [23].
The shadowed κ-μ fading model was originally proposed
in [20]. In recent works, the shadowed κ-μ distribution pro-
vided an excellent fit with channel measurements conducted to
characterize the shadowed fading observed in device-to-device
communication channels [24] and in shadowed body-centric
communication channels [25]. In this new model, the potential
clustering of multipath components is considered alongside
the presence of elective dominant signal components (DSCs),
which are subject to Nakagami-m distribution. The shadowed
κ-μ distribution is an extremely versatile fading model that
also includes as special cases other important distributions
such as the One-Sided Gaussian, Rice, Nakagami-m, and
Rayleigh distributions.

Definition 2 (The κ-μ Distribution [12]): Let h be a random
variable statistically following a κ-μ distribution with mean
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� = E[h] and non-negative real shape parameters κ and μ,
i.e., h ∼ Sκ,μ(�; κ,μ). Then its pdf is given by

fh,κ−μ(y) = μ(1+ κ)
μ+1

2

eκμ�κ
μ−1

2

( y

�

)μ−1
2

e−
μ(1+κ)

� y

× Iμ−1

(
2μ

√
κ(1+ κ)

�
y

)
, (2)

where the modified Bessel function of the first kind of order b
is represented by Ib(·) [23, eq. (8.431.1)]. The κ-μ fading
model was originally conceived for modeling the small-scale
variations of a fading signal under LOS conditions in non-
homogeneous environments. If μ = 1, this distribution reduces
to the Rice model. The latter is the most important model for
representing a single dominant DSC between the BS and a
mobile user [26]. However, multiple DSCs may be created by
reflections from metal objects (e.g., light-posts, cars) in close
proximity to the BSs and/or users, or may appear in millimeter
wave (mmW) communications where highly directional anten-
nas are used for short-range communications [15]. Therefore,
the κ-μ distribution offers a much more flexible representation
of practical fading LOS channels than the Ricean one [13]. The
κ-μ distribution is reduced from the shadowed κ-μ distribution
by eliminating the shadowing of each dominant component
when m −→∞.

Definition 3 (The η-μ Distribution [12]): Let h a random
variable statistically following an η-μ distribution with mean
� = E[h] and non-negative real shape parameters η and μ,
i.e., h ∼ Sη,μ(�; η,μ). Then its pdf is given by

fh,η−μ(y) =
√

π(1+ η)μ+ 1
2 μμ+ 1

2

�(μ)�
√

η(1− η)μ− 1
2
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)μ− 1
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e−
μ(1+η)2
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× Iμ− 1
2

(
μ(1− η)2

2η�
y

)
. (3)

Since it is practically difficult to achieve a LOS communica-
tion all the time, we consider, in this work, the η-μ distribution
as a general fading distribution that can be used to better
represent the small-scale variation of the fading signal in a
NLOS condition [12]. If μ = m and η −→∞, this distribution
reduces to the Nakagami-m model. Moreover, when μ = 1/2,
we obtain the Nakagami-q Hoyt distribution.

B. Modeling Methodology

The instantaneous SINR for the tagged user placed at the
origin1 and located at a random distance r from its serving
BS can be expressed as

SINR = Phr−α

σ 2 + P
∑

i∈�(\0) hir
−α
i

= hr−α

σ 2

P + I
, (4)

where σ 2 is the noise power, �(\0) is the point process
representing the interfering BSs (excluding the serving BS)
on the tagged channel, and the random variable I =∑

i∈�(\0) hir
−α
i denotes the aggregate interference at the

1Based on the properties of homogeneous PPPs, there is no loss of generality
in assuming the tagged user to be located at the origin [27].

tagged user from �(\0). According to the properties of homo-
geneous PPPs [27, Vol. 1, Th. 1.4.5], the set of interfering BSs
∈ �(\0) is still a homogeneous PPP outside the ball centered
at the origin and of radius r . Note that in stochastic geometry
analysis, spatial average performance metrics requires the pdf
of r , which is given in a PPP network with RSS association
as fr (x) = 2πλxe−πλx2

, r ≥ 0 [1].
Lemma 1: The MGF of the SINR can be calculated as

MSINR(s)= 1− 2
√

s
∫ ∞

0
Eh

[√
hJ1

(
2
√

shξ
)]

︸ ︷︷ ︸
�

×Er

[
exp

(
−σ 2

P
ξ2rα

)
LI (ξ

2rα)

]
dξ, (5)

where Ex [.] is the expectation with respect to the random
variable x , J1(·) is the Bessel function of the first kind and
first order [23, eq. (8.402)], and LI (s) = E

[
e−s I

]
denotes the

Laplace transform of the aggregate interference.
Proof: See Appendix A.

It is worth emphasizing that � in (5) is independent of
the variable LI and is a function of the fading parameters
only. Hence, for known fading parameters, � is a constant
w.r.t. the interference Laplace transform. This key property of
Lemma 1 makes the latter a powerful baseline model to build
upon in terms of developing tractable analytical models for
cellular network, namely by extending the results of this paper
to many other directions. Without any pretention of being able
to discuss them all due to lack of space, the most promi-
nent directions for future works include MIMO and multi-
tier downlink performance analysis. Although extended in
numerous ways to date [1]–[10], these models (i.e., downlink
and multi-tier) have never been considered from the standpoint
of (5). Interestingly, Lemma 1 not only promotes general and
generic fading channels, but also other generalization aspects
such as the the effect of LOS/NLOS propagation where the
probability with which a BS is NLOS (also termed blocking
probability) is dependent on the distance between the BS
and the receiver of interest [28]. In this context, leverag-
ing on Lemma 1, mathematical models for millimeter wave
(mmWave) cellular communications, regarded as a potential
scheme in next fifth generation (5G) systems and Internet
of things (IoT) applications, become tractable. Remarkably,
the proposed framework is also able to accommodate both
closest- and strongest-BS association rules as well as single-
and multi-slope path loss models [29].

Hereafter, by applying (5), we characterize the SINR by
deriving its MGF in generalized fading channels. In contrast to
almost all existing works that adopt the CCDF-based analysis
approach [1]–[11] owing to the tractability and favorable
analytical characteristics of Rayleigh fading, we develop a
novel modeling paradigm for cellular networks that incorpo-
rates much more flexible and useful fading models, namely
shadowed κ-μ, κ-μ, and η-μ into a novel tractable stochas-
tic geometry analysis framework. Capitalizing on the sev-
eral existing MGF-based approaches for performance analysis
namely the Gil-Pelaez inversion theorem [30] for coverage
probability, the transforms for rate analysis of Hamdi [31]
and Di Renzo et al. [32], Craig’s transform for BEP analy-
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sis [26], and fractional moment calculation for error vector
magnitude (EVM) performance [33], this work develops a
unified mathematical paradigm that bridges the gap between
BEP, coverage probability, and ergodic rate analyses in cellular
networks. Extension of this analysis framework to cover
performance metrics (EVM, average throughput,2 etc.) under
the considered generic fading models is beyond the scope of
this contribution and will be the subject of future works.

III. UNIFIED ANALYSIS OF THE SINR STATISTICS

We now state our main and most general results from which
all other results in the subsequent sections shall follow.

Theorem 1: The MGF of the SINR over shadowed κ-μ
fading is

M Sκμ
SINR(s) = 1− �s(μκ

m + 1
)m

(1+ κ)
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)
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I

(
ξrα

)]
dξ, (6)

where �1(·, ·; ·, ·; ·, ·) denotes the Humbert function of the
first kind [34, eq. (1.2)], and LSκμ

I denotes the Laplace
transform of the aggregate interference when the receiver inter-
fering link suffers from shadowed κ-μ fading, i.e., hi∈�(\0) ∼
Sκ,μ,m(�I ; κI , μI , mI ), with integer valued mI and μI ,
obtained as

LSκμ
I (ξrα) = exp

(
− 2πλr2

( m I∑
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2F1
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when μI ≤ mI . And when μI ≥ mI , it becomes

LSκμ
I (ξrα)

= exp

(
− 2πλr2

m I ,μI−m I∑
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(8)

where � = �I
μI (1+κI )

, � = (μI κ+m I )�I
m I μI (1+κI )

. Moreover,

2F1(a, b, c, x) and F1(a, b, b′; c; x, y) denote the Gauss
hypergeometric function [23, eq. (9.100)] and the first
Appell’s hypergeometric function [23, eq. (9.180.1)],
respectively, and

(a
b

) = �(a)�(b)/�(a + b) is the binomial
coefficient.

2Throughput is defined as the number of successfully transmitted bits per
channel use.

Proof: See Appendix B.
Theorem 2: The MGF of the SINR over κ-μ fading is

Mκμ
SINR(s)=1−�e−κμs

(1+κ)

∫ ∞
0

�2

(
μ+1; 2, μ; −sξ�

μ(1+ κ)
,μκ

)

×Er

[
exp

(
−ξrα σ 2

P

)
Lκμ

I

(
ξrα

)]
dξ, (9)

where �2(·, ·; ·; ·, ·) denotes the Humbert function of the sec-
ond kind [34, eq. (1.3)], and Lκμ

I denotes the Laplace
transform of the aggregate interference under κ-μ fading,
i.e., hi∈�(\0) ∼ Sκ,μ(�I ; κI , μI ). Furthermore, when μI is
integer Lκμ

I is obtained as

Lκμ
I (ξrα) = exp
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Proof: See Appendix C.
Theorem 3: The MGF of the SINR over η-μ fading is

Mημ
SINR(s) = 1− 2�ημ+1s
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(
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where the Laplace transform of the aggregate inter-
ference hi∈�(\0) ∼ Sη,μ(�I ; ηI , μI ), denoted as Lημ

I ,
is obtained as

Lημ
I (ξrα)

= exp
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Proof: From (1), when m = μ/2, we resort to the
reduction formula of 1F1(·) given by [23, eq. (9.6.47)]

1F1 (β, 2β, z) = 22β−1�

(
β + 1

2

)
z

1
2−βez/2Iβ− 1

2

( z

2

)
, (13)

readily yielding (3) after some algebraic manipulations. Pre-
viously shown in [35], this result reveals that the η-μ fading
distribution arises as a particular case of the more general
shadowed κ-μ model. Notice that, the Nakagami-q (Hoyt)
model with shape parameter q = 1√

2κ+1
arises when m =

μ
2 = 0.5, since η = q2 for the η-μ distribution in (3) [35].3

Accordingly, the SINR MGF under η-μ fading is obtained

3The η-μ fading model is symmetrical for η ∈ [0, 1] and η ∈ [1,∞].
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from (6) by setting m = μ, μ = 2μ, and κ = 1−η
2η . Since

mI = μI /2 ≤ μI , then Lκμ
I reduces from LSκμ

I in (8)
by setting mI = μI , μ

I
= 2μI , and κ I = 1−ηI

2ηI
, thereby

yielding (12).
Corollary 1: The MGF of the SINR over arbitrary

Nakagami-m fading is given by

Mm
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×Er
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(
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and the Laplace transform of the aggregate interference under
Nakagami-m Lm

I is given by

Lm
I (ξrα) = exp
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−πλr2
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−2

α
, mI , 1− 2

α
;−�I

mI
ξ

)
−1

))
.

(15)

Proof: The Nakagami-m fading distribution arises as a
particular case of the more general shadowed κ-μ model when
m = μ. However, this simplification is not straightforward
and actually requires further involved manipulations given
in Appendix D.

It is worthwhile to note that Lm
I in (15) is a well-

known result in the area of cellular networks analysis over
Nakagami-m fading [9], [11]. While Lm

I has so far been pre-
sented as a fundamental finding in previous works, it becomes
in this contribution a secondary result that simply reduces from
a more general performance analysis framework.

The MGF of the SINR for Rayleigh fading, extensively
adopted in the literature [1]–[10], reduces simply from (14)
when m = mI = 1 as

MSINR(s) = 1−�s
∫ ∞

0
exp(−s�ξ)Er

×
[

exp

(−ξrασ 2

P

)
LI
(
ξrα

)]
dξ, (16)

where the Laplace transform of the aggregate interference
under Rayleigh fading, LI , is a special case of (15) when
mI = 1.

Proof: This proof is a special case of Theorem 4 with
more simplifications arising from the fact that 1F1 (a, a; x) =
exp(x).

For completeness, it is worthwhile to mention that
(16) can be easily deduced from CCDF-based analysis
frameworks [1]–[10] by applying M(s) = 1− sLP(SINR>T )(s)
where P(SINR > T ) is the CCDF of the SINR,
given for instance in [1] as P(SINR > T ) =
Er
[
exp(− T

P�rασ 2)LI
( T

�rα
)]

, and carrying the change of
variable ξ = T/�. This key observation, unambiguously, cor-
roborates the much wider scope claimed by our novel analysis
framework and the rigor of its mathematical derivations.

While applying the shadowed κ-μ or the κ-μ (to capture
different DSCs scenarios) to the tagged user link is quite
intuitive (typically in the case of future femtocells and pic-
ocells), it might not be as much obvious to do so to the
interference links. Actually, in a typical urban deployment,
interfering channels are less likely to experience LOS than

the direct link. However, destructive LOS interference may
also happen in practice, namely in suburban and rural areas
having wide parks and open spaces. In this work, the treatment
of the tagged user link is independent from its interference
counterpart as can be seen from (5). This dissociation is very
appreciable since it allows modeling cellular networks with
direct and interfering links experiencing asymmetric fading
(i.e., different fading models). Although not shown explicitly
in this work, cellular networks performance under asymmetric
fading can be easily assessed by swapping LI in (7), (8), (10),
(12), and (15).

The new fundamental statistics disclosed in Theorems 1 to 4
provide a novel unifying analysis framework for of a variety
of extremely important fading distributions. In some particular
cases, the obtained formulas reduce to previously well-known
major results in the literature. Besides, even though this work
focuses on the shadowed κ-μ, κ-μ, and η-μ distributions,
our new analysis framework is extensible to any other fad-
ing/shadowing distribution as long as the quantity pertaining to
the expectation over h in (5) (i.e., �) can be obtained in closed
form. Moreover, by assuming composite fading/shadowing
fading over the interfering links, the analytical tractability
of our new analysis framework is not affected at all and
we can still formulate all performance metrics with the
Laplace transform of the aggregate interference. Nevertheless,
the expression of the latter might may become more involved.

IV. AVERAGE ACHIEVABLE RATE

The average transmission rate, as defined by Shannon’s
capacity, is evaluated using the MGF transform
in [31, Lemma 21] as

C � E[ln (1+ SINR)] =
∫ ∞

0

exp{−s}
s

(1− MSINR(s)) ds.

(17)

The average rate is computed in nats/Hz (1 bit = ln(2) =
0.6934 nats) for a typical user assumed to achieve the Shannon
bound at its instantaneous SINR. We state now the main
theorems that give the ergodic capacity of a typical mobile
user on the downlink.

Theorem 5: The average ergodic rate of a typical mobile
user on the downlink over shadowed κ-μ fading is

C Sκμ(λ, α) = �(μκ
m + 1

)m
(1+ κ)

∫ ∞
0

F2

×
(

μ+ 1, m, 1; 2, μ; μκ

μκ + m
,
−ξ�

μ(1+ κ)

)
Er

×
[

exp

(
−ξrα σ 2

P

)
LSκμ

I

(
ξrα

)]
dξ, (18)

where F2(a, b, b′; c, c′; x, y) stands for the Appell’s hyperge-
ometric function of the second kind [23, eq. (9.180.2)], and
LI (ξrα) is given in (7)-(8).

Proof: Plugging (6) into (17), and resorting to

F2
(
a, b, b′; c, c′; x, y

) = 1

�(b′)

∫ ∞
0

tb′−1e−t

×�1
(
a, b; c, c′; x, yt

)
dt, (19)

yields the desired result after some manipulations.
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A hallmark of current-small cell systems in urban environ-
ments is that they are overwhelmingly interference-limited,
where the downlink channels are severed by interference rather
than by thermal noise, especially at the cell edge where the
interference power is typically so much larger. In such a case,
the average rate is limited by bandwidth rather than power.
Therefore, the case of no noise (or infinite transmit power P)
is of particular interest because it captures the scenario where
the transmit power would not be a binding constraint over
downlink communications.

Corollary 1 (Shadowed κ-μ, No Noise or Infinite P): The
interference-limited ergodic rate of a typical mobile user on
the downlink over shadowed κ-μ fading is

C Sκμ,∞(α) = �(μκ
m + 1

)m
(1+ κ)

×
∫ ∞

0

F2

(
μ+ 1, m, 1; 2, μ; μκ

μκ+m , −ξ�
μ(1+κ)

)

1+ A Sκμ(ξ)
dξ,

(20)

where

A Sκμ(ξ)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

m I∑
k=1

(m I
k

)
�kξ k

2F1
(
mI , k − 2

α , k + 1− 2
α ,−�ξ

)
αk
2 − 1

−
m I−μI∑

n=1

(m I−μI
n

)
�nξn

2F1
(
mI , n− 2

α , n+1− 2
α ,−�ξ

)
αn
2 − 1

,

μI ≤ mI ;
m I ,μI−m I∑

n,k;(n,k) 	=(0,0)

(μI−m I
k

)(m I
n

)
�k�nξ k+n

α(n+k)
2 − 1

F1

(
n + k − 2

α
,

μI − mI , mI , n+k + 1− 2
α ,−�ξ,−�ξ

)
, μI > mI .

(21)

Proof: When noise is neglected, i.e., σ 2 � 0 or the
transmit power is not a binding constraint i.e., P � ∞, then
the expectation Er

[
exp

(
−ξrα σ 2

P

)
LSκμ

I (ξrα)
]

≈
σ 2�0,P�∞

Er [LI (ξrα)] with respect to the distance r separating a typical

user from its tagged BS with pdf fr (x) = 2πλxe−πλx2
is

expressed in closed form using [23, eq. (3.326.2)], thereby
yielding the simplified expressions of the ergodic rate shown
in (20).

Theorem 6: The average rate of a typical mobile user at a
distance r from its serving BS over κ-μ fading is

Cκμ(λ, α) = �e−κμ

(1+κ)

∫ ∞
0

�1

(
μ+ 1, 1; 2, μ;μκ,

−ξ�

μ(1+κ)

)

×Er

[
exp

(
−ξrα σ 2

P

)
Lκμ

I

(
ξrα

)]
dξ, (22)

where LI (ξrα) is given in (10).
Proof: The results follows after substituting (9) into (17)

and applying

�1
(
a, b; c, c′; x, y

)= 1

�(b)

∫ ∞
0

tb−1e−t�2
(
a, c, c′; x, yt

)
dt .

(23)

Another rationale to get (22) starts from (18) and employs the
following limit relation [34]:

lim
ε→0

F2

(
α,

b′

ε
, b, c′, c; εx, y

)
= �1

(
α, b; c′, c; b′x, y

)
. (24)

Corollary 2 (κ-μ, No Noise or Infinite P): The interference-
limited ergodic rate of a typical mobile user and its serving
BS over κ-μ fading is

Cκμ,∞(α)= �e−κμ

(1+κ)

∫ ∞
0

�1

(
μ+1, 1; 2, μ;μκ, −ξ�

μ(1+κ)

)
dξ

1+ Aκμ(ξ)
.

(25)

where Aκμ(ξ) = μI (1+κI )
μI

eκI μI �
μI
I

∑∞
k=0

(
μ2

I κI (1+κI )

�I

)k

k!
∑μI+k

n=1
(μI+k

n )
(

ξ�I
μI κI (1+κI )

)n
2F1

(
μI+k−2,n− 2

α ,n+1− 2
α ,− ξ�I

μI κI (1+κI )

)

αn
2 −1 .

Proof: The result follows from (22) after setting σ 2 = 0
and using [23, eq. (3.326.2)].

Corollary 3 (Rice Fading): An interesting case to be
addressed here is the typical Rice model, which arises from
the κ-μ fading when μ = 1 and κ = K where K is the
Rice factor. The ergodic rate under Rice fading is obtained
from (22) as

C Rice(λ, α) = �e−K

1+ K

∫ ∞
0

�1

(
2, 1; 2, 1; K ,

−ξ�

1+ K

)

×Er

[
exp

(
−ξrα σ 2

P

)
L Rice

I

(
ξrα

)]
dξ, (26)

where

L Rice
I (ξrα) = exp

(
− 2πλ

r2e−K

�I

∞∑
k=0

(
K (1+K )

�I

)k

k!

×
k+1∑
n=1

(k+1
n

) ( ξ�
K (1+K )

)n

αn − 2
2F1

×
(

k−1, n− 2

α
, n+1− 2

α
,
−ξ�I

K (1+ K )

))
. (27)

Theorem 7: The average rate of a typical mobile user at a
distance r from its serving BS over η-μ fading is

Cημ(λ, α)

= 2�ημ+1

η+1

∫ ∞
0

F2

(
2μ+1, μ, 1; 2, μ; −ξ�η

μ(1+η)
, 1− η

)
Er

×
[

exp

(
−ξrα σ 2

P

)
Lημ

I

(
ξrα

)]
dξ. (28)

Proof: The result is obtained along the same lines of (18)
by performing similar substitutions as in (11). Moreover,
Lημ

I (ξrα) is given in (10).
Corollary 4 (η-μ, No Noise or Infinite P): The interference-

limited ergodic rate of a typical mobile user on the downlink
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over η-μ fading is

Cημ,∞(α) = 2�ημ+1

η + 1

∫ ∞
0

×
F2

(
2μ+ 1, μ, 1; 2, 2μ; −ξ�η

μ(1+η) , 1 − η
)

1+ Aημ(ξ)
dξ.

(29)

where

Aημ(ξ) =
μI ,μI∑

n,k
(n,k) 	=(0,0)

(μI
k

)(μI
n

)
η−k

I

(
�I ηI ξ

μI (1+ηI )

)n+k

α(n+k)
2 − 1

F1

×
(

n + k − 2

α
,μI , μI , n + k + 1− 2

α
,

− �I ξ

μI (1+ ηI )
,− �I ηI ξ

μI (1+ ηI )

)
.

Proof: Substituting (12) into (28) with σ 2 = 0 and using
[23, eq. (3.326.2)] yield the desired result.

Theorem 8: The average ergodic rate of a typical mobile
user over Nakagami-m fading is

Cm(λ, α)=
∫ ∞

0

(
1−
(

1+�ξ
m

)−m
)

Er

[
e−

ξrα σ2

P Lm
I (ξrα)

]

ξ
dξ,

(30)

where Lm
I (ξrα) is given in (15).

Proof: The result is a special case of (20) when m = μ.
In this case, a reduction formula of the Appell’s F2 function is
given in Appendix E. Alternatively, one can obtain (30) after
plugging (14) into (17) and resorting to [23, eq. (7621.5)].

Corollary 5 (Nakagami-m, No Noise or Infinite P): The
interference-limited ergodic rate of a typical mobile user on
the downlink over Nakagami-m fading is obtained as

Cm,∞(α) =
∫ ∞

0

1−
(

1+ �ξ
m

)−m

ξ2F1

(−2
α , mI , 1− 2

α ; −�I
m I

ξ
)dξ. (31)

The Rayleigh case reduces from (31) when m = mI = 1; a key
result previously obtained in [1, Th. 3], under, however, a more
involved expression that encompasses a two-fold integration.

Equations (20), (25), (29), and (31) show that if σ 2 → 0 (or
the transmit power is not a binding constraint, i.e., P = ∞),
the average rate in a single-tier cellular network is independent
of the BS intensity. This result is in compliance with those
disclosed in [1]. In terms of average spectral efficiency,
the downlink SINR performance (in case of non-binding
maximum transmit power constraint) is independent of the BS
intensity. Therefore, interference management techniques such
as frequency reuse, interference cancellation, MIMO commu-
nications, interference avoidance, inter-cell cooperation, etc.,
are indeed overriding in order to increase the average rate in
interference-limited cellular networks.

V. COVERAGE PROBABILITY

The cellular coverage probability is defined as

Pcov (T ) � P (SINR ≥ T ) , (32)

where T represents the minimum SINR value for reliable
downlink connection.

Remark (Laplace Transform Inversion): The Laplace trans-
form of the complementary cumulative distribution func-
tion (CCDF) of the SINR, that is Pcov (T ) = P (SINR ≥ T ),
T ≥ 0, is related to the Laplace transform of the SINR as
follows

LPcov (z) =
∫ ∞

0
Pcov (y)e−zydy

(a)=
[

Pcov (y)
−e−zy

z

]∞
0
−
∫ ∞

0
P ′cov (y)

−e−zy

z
dy

(b)= 1− E[e−zSINR]
z

= 1

z
− MSINR(z)

z
, (33)

where equality (a) is due to integration by parts and equal-
ity (b) follows form the definition of the MGF. The SINR
CCDF Pcov (T ) may be retrieved from its Laplace transform
using the Euler characterization as [36, eq. (2)]

Pcov (T ) � P (SINR ≥ T )

= 2 ebT

π

∫ ∞
0

Re
[
LPcov (b + iu)

]
cos(uT )du, (34)

where i2 = −1 and b > 0 is such that LPcov has no
singularities on or to the right of it. The above inversion may
be carried numerically using the Abate and Whitt algorithm
[36, eq. (15)]

Pcov (T ) � 2−meA/2

T

m∑
k=0

(
m

k

) n+k∑
l=0

(−1)lRe
[
LPcov

( A+2iπl
2T

)]

l + 1{l = 0} ,

(35)

with a typical choice of A = 18.4, m = 11, and n = 15.
The following propositions provide the downlink SINR in

cellular networks over the considered fading models.
Proposition 1: The coverage probability of a typical-

randomly located mobile user in the general cellular network
model of Section II over shadowed κ-μ fading is

P Sκμ
cov (T ) = 2 ebT �

π
(μκ

m + 1
)m

(1+ κ)

∫ ∞
0

∫ ∞
0

Re

×
[
�1

(
μ+1, m; 2, μ;−(b+iu)ξ�

μ(1+κ)
,

μκ

μκ+m

)]

× cos(uT )duEr

[
exp

(
−ξrα σ 2

P

)
LSκμ

I

(
ξrα

)]
dξ.

(36)

Proof: Combining (33) and (34) and using (6) yield the
result after some manipulations.
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Proposition 2: The coverage probability of a typical
randomly-located mobile user in the general cellular network
model of Section II over κ-μ fading is

Pκμ
cov (T ) = 2 ebT �e−κμ

π(1+ κ)

×
∫ ∞

0

∫ ∞
0

Re

[
�2

(
μ+1; 2, μ;−(b+iu)ξ�

μ(1+κ)
, μκ

)]

× cos(uT )duEr

[
exp

(
−ξrα σ 2

P

)
Lκμ

I

(
ξrα

)]
dξ.

(37)

Proof: The result is obtained along the same lines of (36)
with the difference of using (9).

As for η-μ fading, the result follows along the same lines
of (37) with the use of the appropriate SINR’s MGF expression
given in (11). The result is omitted here for the sake of
conciseness.

Proposition 3: In a Rician fading environment with para-
meters K and �, the coverage probability is given by

P Rice
cov (T ) = 2 ebT e−K �

π(1+K )

∫ ∞
0

∫ ∞
0

Re

×
[
�2

(
2; 2, 1;−(b+ iu)ξ�

1+K
, K

)]
cos(uT )Er

×
[

exp

(
−ξrα σ 2

P

)
L Rice

I

(
ξrα

)]
du dξ. (38)

Proof: The coverage probability under Rician fading is
derived from (37) by setting μ = 1 and κ = K .

Proposition 4: In Nakagami-m, the coverage probability is
given by

pm
cov(T ) = 2 ebT �

m

∫ ∞
0

∫ ∞
0

Re

×
[
1F1

(
m+1, 2;−(b+ iu)�

m
ξ

)]
cos(uT )Er

×
[

exp

(
−ξrα σ 2

P

)
Lm

I

(
ξrα

)]
du dξ. (39)

Proof: Combining (33) and (34) and using (14) yield the
desired result after some manipulations. Note that (39) could
also be derived from (36) by setting μ = m and form (37)
when κ → 0 [20].

Under the commonly-used Rayleigh fading, the coverage
probability follows from substituting (16) into (34). Resorting
to the fact that

∫ ∞
0

Re
[
exp(−(b + iu)ξ�)

]
cos(uT )du = e−bξ�

2
δ[T −�ξ ],

(40)

where δ(·) is the Dirac delta function, it follows that under
Rayleigh fading, Pcov is given by

pR
cov(T ) = �ebT

∫ ∞
0

e−bξ�δ[T −�ξ ]Er

×
[

exp

(−ξrασ 2

P

)
LI
(
ξrα

)]
dξ

= Er

[
exp

(
− T

�
rασ 2

)
LI

(
T

�
rα

)]
. (41)

The last expression in (41) matches the well-known main result
for Rayleigh fading in [1], validating once again the wider
scope of our new analysis approach.

So far, we have been able to provide a unified framework
for cellular networks performance through the derivation of
average rate and coverage probability, two metrics that are
agnostic towards the modulation scheme and the receiver
type. However, to capture more system details, we aim in
the following to extend our new stochastic geometry analysis
framework to a tangible error performance metric, namely
the BEP.

VI. AVERAGE BEP UNDER GAUSSIAN

SIGNALING APPROXIMATION

This section delves into fine wireless communication details
trough BEP analysis. In the context of wireless networks,
error probability performance has mainly been studied and
conducted over additive white Gaussian noise (AWGN)
or Gaussian-interference channels [26]. Without loss of gen-
erality, we focus on the BEP, denoted by B, for coherent
M-PSK (phase shift keying) and M-QAM (quadrature ampli-
tude modulation) constellations given by [26], [37]

B = βM

τM∑
p=1

E
[
Q
(

ap
√

SINR
)]

, (42)

where Q(·) is the Gaussian Q-function [37, eq. (2.1.97)] and
βM , ap, and τM are modulation-dependent parameters speci-
fied in [26] and [37]. All parameters in the BEP expression
in (42) are deterministic, and the expression is derived based
on the Gaussian distribution of the noise and interference.
However, in the context of cellular networks, many research
works have shown that the aggregate interference does not
follow a Gaussian distribution [5], [38], [39], thereby render-
ing (42) obsolete.

One elegant solution for the exploitation of (42) in the
error performance analysis in cellular networks is to assume
that each transmitter randomly selects its transmitted symbol
from a Gaussian constellation with unit variance, known as
Gaussian signalling approximation, with the main idea of
abstracting unnecessary system details (i.e., the interferers’
transmitted symbols) [10], [11]. Besides its simplicity, this
method accurately captures the symbol and bit error probabil-
ities without compromising the modeling accuracy (i.e., does
not change the distribution of the aggregate interference [10]).
Hereafter, by exploiting the Gaussian signaling approximation,
we provide the BEP performance of a typical mobile user on
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the downlink under the considered channel models, namely
shadowed κ-μ, κ-μ, η-μ, and all other related distributions.

A. General Case

Theorem 8: The average BEP of a cellular downlink over
shadowed κ-μ fading is

BSκμ(λ, α) = βMτM

2
−

βM�(μ+ 1
2 )
√

�
μ(1+κ)√

2π�(μ)
(μκ

m + 1
)m

τM∑
p=1

ap

×
∫ ∞

0

�1

(
μ+ 1

2 , m; 3
2 , μ; −a2

pξ�

2μ(1+κ) ,
μκ

μκ+m

)

√
ξ

×Er

[
exp

(
−ξrα σ 2

P

)
LSκμ

I

(
ξrα

)]
dξ. (43)

Proof: See Appendix F.
Theorem 9: The average BEP of a cellular downlink over

κ-μ fading is

Bκμ(λ, α) = βMτM

2
−

βM�(μ+ 1
2 )eκμ

√
�

μ(1+κ)√
2π�(μ)

×
τM∑
p=1

ap

∫ ∞
0

�2

(
μ+ 1

2 ; 3
2 , μ; −a2

p�ξ

2μ(1+κ) , μκ

)

√
ξ

×Er

[
exp

(
−ξrα σ 2

P

)
Lκμ

I

(
ξrα

)]
dξ. (44)

Proof: The result follows after recognizing that
Bκμ(λ, α) = limm→∞ BSκμ(λ, α). Then, recalling (64)
yields the desired result after some manipulations. Note that
the same result could be obtained by following similar steps
leading to (44) with one difference of using the integral
representation of �2 in [34, eq. (40)]. Notice when μ = 1
and κ = K that (44) reduces to the BEP expression under
Rice fading.

Theorem 10: The average BEP of a cellular downlink over
η-μ fading is

Bημ(λ, α) = βMτM

2
−

βMημ�(2μ+ 1
2 )
√

�η
μ√

2π�(2μ)

τM∑
p=1

ap

∫ ∞
0

×
�1

(
2μ+ 1

2 , μ; 3
2 , 2μ; −a2

pξ�η

2μ(1+η) , 1− η

)

√
ξ

×Er

[
exp

(
−ξrα σ 2

P

)
Lημ

I

(
ξrα

)]
dξ. (45)

Proof: The average BEP over η-μ fading is obtained
form (43) by setting m = μ, μ = 2μ, and κ = 1−η

2η in both
the desired and interfering fading channels and performing the
necessary simplifications.

Corollary 5: The average BEP for the downlink cellular
communication links in general Nakagami-m fading is

Bm(λ, α) = βMτM

2
−

βM�(m + 1
2 )
√

�
m√

2π�(m)

τM∑
p=1

ap

×
∫ ∞

0

1F1

(
m + 1

2 , 3
2 ;
−a2

pξ�

2 m

)

√
ξ

Er

×
[

e−ξrα σ2
P Lm

I

(
ξrα

)]
dξ. (46)

Proof: The result follows from (43) by setting m = μ
and using the Humbert �1 function reduction formulas given
in Appendix D. Alternatively, plugging (14) into (42) and
following the same steps of Appendix F yield the desired
result.

Recently, the authors of [11] investigated the impact of
Gaussian signalling under Nakagami-m and derived the cor-
responding error rates. Although the number of integrals in
the obtained BEP expression in (46) is not reduced when
compared to [11], our approach discards the necessity for
integer m, an assumption made in [11] for the sake of
tractability. In practical scenarios, however, the m parameter
often takes non-integer values, as argued by [40]. Once again,
the significance of this work is highlighted by its very wide
scope.

It is worthwhile to notice that all the BEP expressions
in (43)-(46) are characterized by the Laplace transforms of the
aggregate interference LI given in Section II, which are the
same ones used to characterize the coverage probability and
average rate. As far as computational complexity is concerned,
the comparison with previous results is not legitimate since
this work is the first of its kind addressing fading distributions
other than Rayleigh and integer Nakgami-m fading. Yet, all
the obtained BEP expressions, like those obtained in previous
works [3], [5], [11], encompass a two-fold integration of
common built-in functions. A single integral approximation
of the BEP is only possible for the special case of α = 4.
Since that has been extensively investigated in the literature,
we omit it for the sake of conciseness.

B. Special Case of No Noise and High Signal to
Interference Ratio (SIR)

When interference dominates the noise (i.e., σ 2 −→ 0),
the average BEP expressions under the different considered
fading distributions follow from (43)-(46) after computing
the expectation over the distance r using [23, eq. (3.326.2)].
We are not providing these expressions here since similar proof
has been already shown in Section III. However, it is interest-
ing to further push the analysis toward closed-form expressions
for the BEP by considering the high SIR scenario. In this case,
to simplify the analysis we assume that interference undergoes
Nakagami-m fading and thus LI is given by (15).

Assuming that the desired link undergoes shadowed κ-μ
fading, then substituting (15) into (43) with σ 2 = 0 and aver-
aging over r yields the interference-limited BEP expression
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for shadowed κ-μ fading on the desired link and Nakagami-m
fading on the interfering links as

BSκμ(α) = βMτM

2
−

βM�(μ+ 1
2 )
√

�
μ(1+κ)√

2π�(μ)
(μκ

m + 1
)m

τM∑
p=1

ap

×
∫ ∞

0

�1

(
μ+ 1

2 , m; 3
2 , μ; −a2

pξ�

2μ(1+κ) ,
μκ

μκ+m

)

√
ξ 2F1

(−2
α , mI , 1− 2

α ; −�I
m I

ξ
) dξ. (47)

In what follows, we define the average received SIR as
SIR = �

�I
and derive closed-from BEP expressions under the

considered fading models when SIR→∞.
Corollary 1 (Shadowed κ-μ, High SIR): The high SIR

interference-limited average BEP over shadowed κ-μ on the
desired link and Nakagami-m fading on the interfering links
is given by

BSκμ,∞(α)

= βM

2
(μκ

m +1
)m
( τM∑

p=1

�1

(
μ, m; 1

2
, μ; a2

pδ

4μ(1+κ)
,

μκ

μκ+m

)

−
�(μ+ 1

2 )
√

δ
μ(1+κ)

�(μ)

τM∑
p=1

ap�1

(
μ+ 1

2
, m; 3

2
,

μ; a2
pδ

4μ(1+κ)
,

μκ

μκ+m

))
. (48)

Proof: See Appendix G with δ = (α−2)�
�I

.
Corollary 2 (κ-μ, High SIR): If the desired signal fading

is κ-μ distributed, the average BEP in the high SIR regime
becomes

Bκμ,∞(α) = βM eκμ

2

( τM∑
p=1

�2

(
μ; 1

2
;μ a2

pδ

4μ(1+ κ)
, μκ

)

−
�(μ+ 1

2 )
√

δ
μ(1+κ)

�(μ)

τM∑
p=1

ap�2

×
(

μ+ 1

2
; 3

2
, μ; a2

pδ

4μ(1+ κ)
, μκ

))
. (49)

Proof: The proof starts from (48) and uses the limit
relations in (64) and (65).

Corollary 3 (Nakagami-m, High SIR): The high SIR
interference-limited average BEP when both the desired and
interference channels undergo Nakagami-m fading reduces to

Bm,∞(α) = βM

2

( τM∑
p=1

1F1

(
m,

1

2
; a2

pδ

4m

)
−

�(m + 1
2 )
√

δ
m

�(m)

×
τM∑
p=1

ap 1F1

(
m + 1

2
,

3

2
; a2

pδ

4m

))

= βM�(m + 1
2 )

2
√

π

τM∑
p=1

U

(
m,

1

2
,

a2
pδ

4m

)
, (50)

where U(a, b; z) stands for the Tricomi confluent hypergeo-
metric function [23, eq. (9.211.1)].

Proof: See Appendix H.
Notice that (50) also follows from (48) by setting m = μ

and using the Humbert �1 function reduction formulas given
in Appendix D, thereby corroborating again the correctness of
our derivations.

Remark: Inspecting (50) reveals that the error probability
tends to decrease as δ and/or m increase, meanwhile it is
independent of mI . Along the same lines, both BSκμ,∞ and
Bκμ,∞ are independent of mI . However, trends against κ and μ
which are rather intricate to investigate analytically will be
assessed through simulations in the next section.

VII. NUMERICAL AND SIMULATION RESULTS

In this section, numerical examples are shown to substanti-
ate the accuracy of the new unified mathematical framework
and to confirm its potential for analyzing cellular networks. All
the results shown here have been analytically obtained by the
direct evaluation of the expressions developed in this paper.
Additionally, using the procedure described in [17, Sec. V-a],
Monte Carlo simulations have been performed to validate the
derived expressions, and are also presented in some figures,
showing an excellent agreement with the analytical results.

Fig. 1 compares the average rate and average BEP for
the κ-μ shadowed fading across a wide range of channel
parameters (m, κ , μ). In Fig. 1 (a), C Sκμ is represented
as a function of the LOS component in the received wave
clusters κ for different values of the μ parameter. We note
that a rich scattering (large μ) achieves a higher rate with
diminishing returns as κ increases, since increasing μ in the
strong LOS scenario has little effect as the performance is
dominated by the LOS component. When m = μ, the κ-μ
shadowed fading distribution boils down to the Nakagami-m
distribution, whence the average rate’s independency of κ .

The impact of shadowed LOS components on performance
can be observed in Fig. 1 (b), where the average rate under
κ-μ shadowed fading is presented as a function of the average
SNR for different values of m and considering, respectively,
small (κ = 1) and large (κ = 20) LOS components. It can be
observed that performance improves with small LOS compo-
nents (κ = 1) if the latter are affected by heavy shadowing
(small m). However, when the shadowing is mild, large LOS
components (κ = 20) always improve the average rate. In fact,
small m indicates highly fluctuating dominant components,
which decrease both the received signal and the aggregate
interference powers thereby increasing the SINR level and
ultimately achieving higher rates. Conversely, when m is large,
the shadowing on the dominant components subsides and
κ-μ shadowed fading reduces to κ-μ fading. Moreover, light
shadowing always yields higher interference power thereby
deteriorating the received SINR level as well as the average
rate. Fig. 1 (b) also compares the average rate for various BS
densities λ. It can be seen that the average rate of a sparse
network (λ ≤ 10−4) is much lower than that of a dense
network (λ ≥ 10−2). For example the average average rate
is about 0.02 for λ = 10−4 and 1 for λ = 10−2 with m = 0.5,
κ = 20 and SNR = 15 dB.

Fig. 1 (c) plots the average BEP of the downlink with
coherent QPSK (M = 4) under shadowed κ-μ fading on
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Fig. 1. Performance of downlink transmission over shadowed κ-μ fading. Setup: �I = �, κI = κ , λ = 10−4, and α = 3.

both the desired and interfering links. As can be seen,
a strong dominant LOS component (large κ) and rich scat-
tering (large μ) collectively improve the error performance.
The figure also shows that Rician fading on the useful link
has higher performance than the Rayleigh fading due to the
LOS path.

Fig. 1 (d) shows the average BEP versus the received SIR
for various shadowed κ-μ fading environments in downlink.
Recall that although the Rician model represents a LOS (and
better) channel than the Rayleigh model, the large SNR tails
of the Rician distribution always have the same decay rate
as (i.e., are parallel to) the tails of the Rayleigh distribution
(reflecting the diversity order of the channel). At high SIR,
the asymptotic expansion in (48) matches very well its exact
counterpart, which confirms the validity of our mathematical
analysis for different parameter settings.

In Figs. 2 (a)-(d), the performance of downlink transmission
over κ-μ and η-μ fading is presented.

Fig. 2 (a) depicts the ergodic rate Cκμ under the κ-μ fading
model. Since the shadowing can be neglected in this case,

any increase in the power of the dominant components is
obviously favorable for the channel capacity. It is therefore
straightforward to see that increasing the parameter κ implies
increasing the ergodic rate since a higher LOS power implies
improving the capacity of the κ-μ channel.

Fig. 2 (b) compares the average rate under κ-μ fading versus
the BS density λ for different values of the μ parameter.
As conjectured in Corollay 1, the network performance is
invariant of the network density in an interference-limited
condition (large BS intensity). The results show that the rate
saturation may happen at certain network density required to
obtain sufficiently larger interference power than the noise.
In fact, at high SNR, the saturation regime is reached at
λ = 10−2, compared to λ ≥ 10−1 in the low SNR regime.
In practice, installing more BSs is beneficial to the user perfor-
mance up to a density point, after which further densification
turns out to be extremely ineffective due to faster growth of
interference compared to useful signal. This highlights the
cardinal importance of interference mitigation, coordination
among neighboring cells and local spatial scheduling.
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Fig. 2. Performance of downlink transmission over κ-μ and η-μ fading. Setup: �I = �, κI = κ , λ = 10−4, and α = 3.

Fig. 2 (c) plots the coverage probability versus the SIR
threshold for different fading environments contained within
the κ-μ model. It can be seen that both μ and κ have impact
on the coverage probability with a more pronounced impact
for the cluster number μ, especially for small κ , a behavior
previously observed in Fig. 1 (a).

Fig. 2 (d) depicts the interference-limited average BEP
for η-μ fading, which is, as expected, symmetrical on a
logarithmic scale around the minimum value of the average
BEP at η = 1 regardless of the number of clusters μ. In the
same figure, we have specified the limit cases for η→ 0 and
η → ∞. When μ = 0.5, the η-μ model collapses into the
one-sided Gaussian model for η = 0 or η→∞, whereas for
η = 1, it collapses into the Rayleigh model. When μ = 1, the
η-μ is reduced to the Rayleigh case for η = 0 or η → ∞.
Both the Rayleigh and one-sided Gaussian BEP values are
illustrated by horizontal dotted and dashed lines, respectively.

In Fig. 1 and Fig. 2, please note that we have identified
in the figure legends or with rounded circles the performance
curves or points, respectively, of some particular fading distri-
butions that simply reduce from the shadowed κ-μ, the κ-μ,
and the η-μ models.

VIII. CONCLUSION

In this paper a novel mathematical methodology for perfor-
mance evaluation on the downlink of cellular networks over
fading channels is presented. The proposed approach exploits
results from stochastic geometry for the computation of the
SINR’s MGF, which is shown to be conveniently formulated
as a function of a desired-user fading dependent term and the
Laplace transform of the interference. By capitalizing on this
mathematical formulation, we have been able to obtain two-
fold integral expressions for the ergodic rate, the coverage
probability, and the tangible decoding error probability for var-
ious fading distributions. Remarkably, the proposed framework
accommodates generic fading distribution models including
shadowed κ-μ, κ-μ, and η-μ that account for LOS/NLOS and
shadowed fading. Our results provide useful insights into the
coverage, throughput, and BEP performance in complex fading
environments and shed new lights on the prominent impact of
DSCs and shadowed DSCs propagation on cellular networks.
Finally, this new framework is flexible to capture several
fading conditions ranging from deterministic and favorable
Rician to severely shadowed and Rayleigh fading. Future
work possibilities relying on this new modeling paradigm
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are tremendous and include without limitation the extension
to multi-tier heterogeneous networks (HetNet)s with arbitrary
numbers of tiers having different densities and transmit pow-
ers. Moreover, the developed baseline model provides new
powerful tools to analyze other network architectures such that
device-to-device (D2D) and MIMO-enabled networks.

APPENDIX

A. Proof of Lemma 1

Given the SINR = hr−α

σ2
P +I(r)

, its MGF, defined as

MSINR(s) � Er,h,I
[
exp (−sSINR)

]
, is evaluated as

MSINR(s) = Er,h

[∫ ∞
0

exp

(
− shr−α

y

)
f
I+ σ2

P
(y)dy

]

= Er,h

[
L 1

I+ σ2
P

(
shr−α

)
]

(a)= 1− 2Er

[√
sr−α

∫ ∞
0

Eh

[√
hJ1

(
2
√

shr−αξ
)]

×L
I+ σ2

P
(ξ2)dξ

]
, (51)

where (a) follows from applying [32, Th. 1] and J1(·)
is the Bessel function of the first kind and first order
[23, eq. (8.402)]. Then Lemma 1 is obtained by a change
of variable relabeling ξr− α

2 as ξ , while taking into account
the linearity and the time shifting properties of the Laplace

transform implying that L
I+ σ2

P
(x) = e− σ2

P x LI (x).

B. Proof of M Sκμ
SINR and LSκμ

I

After applying (5), the expectation over shadowed κ-μ
fading using the distribution in (1) can be calculated as

Eh

[√
hJ1

(
2
√

shξ
)]
= A

∫ ∞
0

yμ− 1
2 e−ByJ1

(
2
√

syξ
)

× 1F1 (m, μ, Cy) dy,(52)

where we denote A = μμmm(1+κ)μ

�(μ)�μ(μκ+m)m , B = μ(1+κ)
� , and

C = μ2κ(1+κ)
�(μκ+m) . Recalling the Bessel Jν(·) representation

through the more general confluent hypergeometric function
1F1(·) given by

Jν(z) = zν

2ν�(ν + 1)
lim

a→∞ 1F1

(
a, ν + 1; −z2

4a

)
, (53)

then it follows that

Eh

[√
hJ1

(
2
√

shξ
)]

= A
√

sξ lim
a→∞

∫ ∞
0

yμe−By
1F1

×
(

a, 2,
−sξ2

a
y

)
1F1 (m, μ, Cy) dy

(a)= A�(μ+ 1)
√

s

Bμ+1 ξ lim
a→∞F2

×
(

μ+ 1, a, m, 2, μ; −sξ2

a B
,

C

B

)

(b)= A�(μ+ 1)

Bμ+1

√
sξ�1

×
(

μ+ 1, m; 2, μ; −sξ2

B
,

C

B

)
, (54)

where (a) follows from recognizing Appell’s F2 representation
[34, eq. (27)]

F2

(
a, b, b′, c, c′; w

p
,

z

p

)

= pa

�(a)

∫ ∞
0

xa−1e−px
1F1(b, c, wx)

× 1F1
(
b′, c′, xz

)
dx, Re(a), Re > 0, (55)

and (b) is obtained by limit (confluence) formula [34]

lim
ε→0

F2

(
α,

b′

ε
, b, c′, c; εx, y

)
= �1

(
α, b; c′, c; b′x, y

)
. (56)

Finally substituting (54) into (5) and carrying out the change
of variable relabeling ξ2 as ξ yield the desired result after
some manipulations.

The Laplace transform of the aggregate interference from
the interfering BSs received at the tagged user under κ-μ
shadowed fading, denoted as LSκμ

I (ξ), is obtained as

LI (ξ) = E�,h

⎡
⎣exp

⎛
⎝−ξ

∑

i∈�(\0)

hir
−α
i

⎞
⎠
⎤
⎦

(a)= exp

(
−2πλ

∫ ∞
r

(
1− Eh[exp

(−ξhv−α
)]) vdv

)

(b)= exp

(
− 2πλ

∫ ∞
r

(
1− μm I

I mm I
I (1+ κI )

μI

�
μI
I (μI κI + mI )m I

×
(
ξv−α + μI (1+κI )

�I

)m I−μI

(
ξv−α + μI (1+κI )

�I

m I
μI κI+m I

)m I

)
vdv

)
, (57)

where (a) follows from independence between � and hi and
the probability generation functional (PGFL) of the PPP [27]
and (b) follows from the MGF of hi under shadowed κ-μ
fading recently derived in [20, eq. (5)]. Further by letting
x ←− rαv−α in (57), the latter is obtained as

LSκμ
I (ξrα) = exp

(
− 2πλ

r2

α

∫ 1

0
x−

2
α−1

×
⎛
⎜⎝1−

(
1+ μI (1+κI )

�I
ξx
)m I−μI

(
1+ (μI κ+m I )�I

m I μI (1+κI )
ξx
)m I

⎞
⎟⎠ dx

)
, (58)

when μI ≤ mI , and in case of μI ≥ mI , it can be
calculated as

LSκμ
I (ξrα) = exp

(
− 2πλ

r2

α

∫ 1

0
x−

2
α−1

×
⎛
⎜⎝1− 1(

1+ μI (1+κI )
�I

ξx
)μI−m I

(
1+ (μI κ+m I )�I

m I μI (1+κI )
ξx
)m I

⎞
⎟⎠dx

)
.

(59)

Let � = μI (1+κI )
�I

and � = (μI κI+m I )�I
m I μI (1+κI )

. Then applying
binomial expansion on (1+�ξx)m I − (1+�ξx)m I−μI =
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∑m I
k=1

(m I
k

)
�kξ k − ∑m I−μI

n=1

(m I−μI
n

)
�nξn in the

numerator of (58) and on (1+�ξx)m I (1+�ξx)m I−μI =∑m I
k=0

∑m I−μI
n=0

(m I
k

)(m I−μI
n

)
�k�nxk+n in the numerator

of (59), we obtain 4

LSκμ
I (ξrα) = exp

(
− 2πλ

r2

α

( m I∑
k=1

(
mI

k

)
�kξ k

×
∫ 1

0

xk− 2
α−1

(1+�ξx)m dx−
m I−μI∑

n=1

(
mI−μI

n

)
�nξn

×
∫ 1

0

xn− 2
α−1

(1+ �ξx)m
dx

))
, when μI ≤ mI ,

(60)

and

LSκμ
I (ξrα)

= exp

(
− 2πλ

r2

α

m I ,μI−m I∑
n,k;(n,k) 	=(0,0)

(
μI − mI

k

)(
mI

n

)
�k�n

× ξ k+n
∫ 1

0

xk+n− 2
α−1

(1+�ξx)μI−m I (1+�ξx)m I
dx

)
,

when μI ≥ mI . (61)

Closed-form expressions of (60) and (61) are obtained after
recognizing that

2F1 (a, b; c; x) = �(c)

�(b)�(c − b)

∫ 1

0
tb−1(1− t)c−b−1

× (1− tx)−adt, Re(c) > Re(b) > 0, (62)

and

F1
(
a, b, b′; c;w, z

)

= �(a)

�(c)�(c − a)

∫ 1

0
ta−1(1− t)c−a−1

×(1− tw)−b(1− tz)−b′dt, Re(a) > 0, (63)

which completes the proof and provide explicitly the LSκμ
I (ξ)

as shown in Theorem 1.

C. Proof of Mκμ
SINR and Lκμ

I

The κ-μ fading arises from the shadowed κ-μ fad-
ing as m → ∞. Accordingly, it follows that Mκμ

SINR =
limm→∞ M Sκμ

SINR, and Lκμ
I = limm I→∞ LSκμ

I . As far as Mκμ
SINR

is concerned, the desired result follows by applying the fol-
lowing properties:

lim
ε→0

�1

(
a,

b

ε
; c, c′; εw, z

)
= �2

(
a; c, c′; bw, z

)
, (64)

and

lim
a→∞

( x

a
+ 1

)−a = e−x , (65)

where (65) is the well-known limit that defines the exponential
function.

4Note that the obtainment of (60) and (61) inflicts the quantities m I and μI
to be integer valued.

Regarding Lκμ
I , the specialization from LSκμ

I is not straight-
forward and requires further manipulations. The proof tracks
the proof of LSκμ

I up until step (a) of (57). Then,

Lκμ
I (ξ)

(a)= exp

(
− 2πλ

∫ ∞
r

Eh

[
ξhv−α exp

(−ξhv−α
)

×1F1
(
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) ]
vdv

)

(b)= exp
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2

eκI μI �
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I κ
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2

I

×
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2
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∫ ∞
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x
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x
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⎜⎝2μI
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)

⎞
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)
,

(66)

where (a) follows from using the relation (1 − e−x)/x =
e−x

1F1 (1, 2; x) and (b) follows from the κ-μ distribution
of hi given in (2) and carrying out the change of variable
x = h

(
ξv−α + μI (κI+1)

�I

)
.

Lκμ
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(c)= exp
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I

∫ 1

0

ξv−α+1

(
ξx + μI (κI+1)

�I

)μI−1

×�1

⎛
⎝μI + 1, 1;μI , 2; μ2

I κI (1+ κI )

�I

(
ξx + μI (κI+1)

�I

) ,
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∞∑
k=0

(μI+1)k

(
μ2
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)
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I
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×
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n
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α
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α
,
−ξ�I
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In (67), (c) results in the same line of (54) after using Iν(z) =
zν

2ν�(ν+1) lima→∞ 1F1

(
a, ν + 1; z2

4 a

)
followed by the change

of variable x = ( r
v

)α
. The aggregate interference under κ-μ

still needs manipulations as to solve the integral involving the
Humbert function obtained after (c). To this end, we resort
in (d) to the the series expansion of the Humbert function �1
given by [34]

�1
(
a, b; c, c′; x, y

)=
∞∑

k=0

(a)k

k!(c′)k
yk

2F1(a+k, b, c; x), |x |<1,

(68)

where (a)n denote the Pochhammer symbol, along with the
reduction formulas of the Gauss hypergeometric function
2F1(·) given in [23, eq. (9.121.5)]. Finally (e) follows from
using to the binomial expansion and recognising (62), thereby
leading the desired result after some manipulations.

D. Proof of Mm
SINR and Lm

I

When m = μ, it holds that

�1

(
m + 1, m; 2, m; −sξ�

m(1+ κ)
,

mκ

mκ + m

)

(a)= lim
ε→0

(
1− mκ

mκ + m

)−m−1

2F1

(
m+1,

β

ε
; 2;

−sεξ�
m(1+κ)

1− mκ
mκ+m

)

(b)=
(

1− mκ

mκ + m

)−m−1

1F1

(
m+1, 2;

−sξ�
m(1+κ)

1− mκ
mκ+m

)
, (69)

where (a) follows form using (56) and applying the reduction
formulas [23, eq. (9.182.2)]

F2 (α, β, b, c, b; x, y) = (1− x)−α
2F1

(
α, β; c; y

1− x

)
,

(70)

and (b) follows from evaluating the limit according to
limε→0 2F1

(
α, b′

ε ; c′; εz
)
= 1F1

(
b′; γ ; z). Substituting (69)

into (6) yields the desired result after some simplifications.
The Laplace transform of the aggregate interference under
Nakagami-m fading, i.e., Lm

I , specialises from LSκμ
I when

mI = μI . In this case, its is straightforward to show that
the second summation in the RHS of (7) vanishes while the
first summation reduces to Lm

I .

E. Proof of Cm

Setting m = μ in (30) and resorting to [41, Th. 1], we have

F2

(
μ+ 1, m, 1;μ, 2; μκ

μκ + m
,
−ξ�

μ(1+ κ)

)

= (1+ κ)

ξ�
2F1

(
μ, m;μ; μκ

μκ + m

)

−
(1+ κ)2F1

(
μ, m;μ;

μκ
μκ+m

1+ ξ�
μ(1+κ)

)

ξ�
(

1+ ξ�
μ(1+κ)

)μ

(b)= (κ + 1)m+1

�ξ

(
1−

(
1+ ξ�

m

)−m
)

, (71)

where (b) follows form applying 2F1 (a, b; b; z) = (1− z)−a .
Substituting (71) into (30) yields the desired result after some
manipulations.

F. Proof of BSκμ(λ, α)

Using Craig’s alternative expression for the Gaussian
Q-function [26, eq. (9)], it is possible to reexpress (42) in
terms of the MGF of the SINR as

B = βM

π

τM∑
p=1

∫ π/2

0
MSINR

(
a2

p

2 sin2(θ)

)
dθ. (72)

Under shadowed κ-μ fading, substituting the SINR MGF by
its expression in (6) and swapping the integration order gives

BSκμ(λ, α)

= βM

2
− AβM�(μ+ 1)

2π Bμ+1

τM∑
p=1

a2
p

∫ ∞
0

×

⎛
⎜⎜⎝
∫ π/2

0

�1

(
μ+1, m; 2, μ; −a2

pξ�

2 sin2(θ)μ(1+κ)
, μκ

μκ+m

)

sin2(θ)
dθ

⎞
⎟⎟⎠

×Er

[
exp(−ξrασ 2)LSκμ

I

(
ξrα

)]
dξ, (73)

Denote by ϒ the inner integral in the RHS of (73) and let
t = sin2(θ). Then after some manipulation one obtains

ϒ = 1

2

∫ 1

0

�1

(
μ+ 1, m; 2, μ; −a2

pξ�

2tμ(1+κ) ,
μκ

μκ+m

)

t
3
2
√

1− t
dt . (74)

To solve ϒ we recall the single integral representation of
the Humbert function �1(a; b; c, c′; z, w), for |w| < 1, given
in [34] as

�1
(
a, b; c, c′;w, z

)

= �(c)

�(b)�(c − b)

∫ 1

0
tb−1(1− t)c−b−1(1− tw)−a

× 1F1

(
a; c′, z

1− tw

)
dt, (75)

Substituting �1 by its integral representation in (74) and
resorting to
∫ 1

0

1F1
(
a + 1, b + 1; − c

x

)

x3/2
√

1− x
dx

=
√

π

c

�(a+ 1
2 )�(b+1)

�(1+a)�(b+ 1
2 )

1F1

(
a+ 1

2
, b+ 1

2
; −c

)
, (76)

we obtain

ϒ =
2
√

2�(μ+ 1
2 )

√
μ(1+κ)

�

�(μ+ 1)
√

ξ

×�1

(
μ+ 1

2
, m; 3

2
, μ; −a2

pξ�

2μ(1+ κ)
,

μκ

μκ + m

)
. (77)

Substituting ϒ by its expression in (73) yields the desired
result after some simplifications.
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G. Proof of BSκμ,∞(α)

Carrying out the change of variable x = �ξ in (47) and
using [42, Ch. 5, eq. (2)], we have

2F1

(
− 2

α
, mI ; 1− 2

α
;− �I

�mI
x

)
≈

�I
� →0

1+ 2�I

�(α − 2)
x, (78)

Subsequently, the following integral arises from (48):

J =
∫ ∞

0

�1

(
μ+ 1

2 , m; 3
2 , μ; −a2

p x
2μ(1+κ) ,

μκ
μκ+m

)

√
x(1+ 2�I

�(α−2) x)
dx . (79)

To solve J , we introduce the integral representation of the
Humbert function �1 given by [34]

�1
(
a, b; c, c′;w, z

)

= �(c′)
�(a)

z
1−c′

2

∫ ∞
0

ta−(c′+1)/2e−t

× Ic′−1(2
√

tz)1F1 (b; c, tw) dt, Re(a) > 0, |w| < 1.

(80)

Then substituting (80) into J and swapping the integration
order generate an integral of the form

∫ ∞
0

I 1
2

(√
−2a2

p xt
μ(1+κ)

)

x3/4
(

1+ 2�I
�(α−2) x

)dx

= √π

( −a2
pt

2μ(1+ κ)

)− 1
4

⎛
⎜⎜⎜⎜⎜⎝

1− e

−

√
a2

p t
μ(1+κ)√

�I
�(α−2)

⎞
⎟⎟⎟⎟⎟⎠

. (81)

Let δ = �(α−2)
�I

, then resorting to the representation ez =√
zπ
2

(
I 1

2
(z)+ I− 1

2
(z)
)

and using [23, eqs. (7.621.4) and
(9.121.1)], we obtain J , after several manipulations, as

J = √2π
�(μ)�( 3

2 )
√

μ(1+ κ)

�(μ+ 1
2 )ap

(
m

μκ + m

)−m

+ πδ
1
2√
2

�1

(
μ+ 1

2
, m; 3

2
, μ; a2

pδ

4μ(1+ κ)
,

μκ

μκ + m

)

−π�(μ)
√

μ(1+κ)√
2ap�(μ+ 1

2 )
�1

(
μ, m; 1

2
, μ; a2

pδ

4μ(1+κ)
,

μκ

μκ+m

)

(82)

Tacking all these facts into consideration yields the desired
result after some manipulations.

H. Proof of Bm,∞(α)

From (46) and (78), the high SIR BEP under Nakagami-m
fading involves an integral of the form

K =
∫ ∞

0

1F1

(
m + 1

2 , 3
2 ;
−a2

pξ

2m

)

√
ξ
(

1+ 2�I
�(α−2) ξ

) dξ, (83)

which can be solved using [23, eqs. (7.623.1) and

(9.210.2)] after recognizing that 1F1

(
m + 1

2 , 3
2 ;
−a2

pξ

2m

)
=

e−
a2

pξ

2m 1F1

(
1− m, 3

2 ;
a2

pξ

2m

)
. We then obtain

K = − π�(m)
√

m√
2ap�(m + 1

2 )

(
1F1

(
m,

1

2
; a2

p�(α − 2)

4m�I

)
− 1

)

+
π1F1

(
m + 1

2 , 3
2 ;

a2
p�(α−2)

4m�I

)

√
2�I

�(α−2)

. (84)

Substituting the latter result in Bm,∞(α) and resorting
to [23, eq. (9.210.2)] completes the proof.
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